메뉴 건너뛰기




Volumn 3, Issue 1, 2006, Pages 1-16

Error tolerant model for incorporating biological knowledge with expression data in estimating gene networks

Author keywords

Bayesian network; Biological knowledge; Error tolerant model; Gene network; Microarray data

Indexed keywords


EID: 33644783926     PISSN: 15723127     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.stamet.2005.09.013     Document Type: Article
Times cited : (14)

References (40)
  • 1
    • 0032616683 scopus 로고    scopus 로고
    • Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
    • T. Akutsu, S. Miyano, and S. Kuhara Identification of genetic networks from a small number of gene expression patterns under the Boolean network model Pac. Symp. Biocomput. 4 1999 17 28
    • (1999) Pac. Symp. Biocomput. , vol.4 , pp. 17-28
    • Akutsu, T.1    Miyano, S.2    Kuhara, S.3
  • 2
    • 0032005366 scopus 로고    scopus 로고
    • The cyclin family of budding yeast: Abundant use of a good idea
    • B. Andrews, and V. Measday The cyclin family of budding yeast: abundant use of a good idea Trends Genet. 14 1998 66 72
    • (1998) Trends Genet. , vol.14 , pp. 66-72
    • Andrews, B.1    Measday, V.2
  • 3
    • 15944361900 scopus 로고    scopus 로고
    • Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
    • A. Bernard, and A.J. Hartemink Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data Pac. Symp. Biocomput. 10 2005 459 470
    • (2005) Pac. Symp. Biocomput. , vol.10 , pp. 459-470
    • Bernard, A.1    Hartemink, A.J.2
  • 4
    • 0032611513 scopus 로고    scopus 로고
    • Modeling gene expression with differential equations
    • T. Chen, H. He, and G. Church Modeling gene expression with differential equations Pac. Symp. Biocomput. 4 1999 29 40
    • (1999) Pac. Symp. Biocomput. , vol.4 , pp. 29-40
    • Chen, T.1    He, H.2    Church, G.3
  • 5
    • 0002211373 scopus 로고
    • Approximate predictive likelihood
    • A.C. Davison Approximate predictive likelihood Biometrika 73 1986 323 332
    • (1986) Biometrika , vol.73 , pp. 323-332
    • Davison, A.C.1
  • 7
    • 0043130707 scopus 로고    scopus 로고
    • Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations
    • M.J.L. De Hoon, S. Imoto, K. Kobayashi, N. Ogasawara, and S. Miyano Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations Pac. Symp. Biocomput. 8 2003 17 28
    • (2003) Pac. Symp. Biocomput. , vol.8 , pp. 17-28
    • De Hoon, M.J.L.1    Imoto, S.2    Kobayashi, K.3    Ogasawara, N.4    Miyano, S.5
  • 9
    • 0002344794 scopus 로고
    • Bootstrap methods: Another look at the jackknife
    • B. Efron Bootstrap methods: Another look at the jackknife Ann. Statist. 7 1979 1 26
    • (1979) Ann. Statist. , vol.7 , pp. 1-26
    • Efron, B.1
  • 10
    • 0029982849 scopus 로고    scopus 로고
    • Bootstrap confidence levels for phylogenetic trees
    • B. Efron, E. Halloran, and S. Holmes Bootstrap confidence levels for phylogenetic trees Proc. Natl. Acad. Sci. USA 93 1996 13429 13434
    • (1996) Proc. Natl. Acad. Sci. USA , vol.93 , pp. 13429-13434
    • Efron, B.1    Halloran, E.2    Holmes, S.3
  • 11
    • 25444532788 scopus 로고    scopus 로고
    • Flexible smoothing with B-splines and penalties (with discussion)
    • P.H.C. Eilers, and B. Marx Flexible smoothing with B -splines and penalties (with discussion) Statist. Sci. 11 1996 89 121
    • (1996) Statist. Sci. , vol.11 , pp. 89-121
    • Eilers, P.H.C.1    Marx, B.2
  • 12
    • 0000220520 scopus 로고    scopus 로고
    • Learning Bayesian networks with local structure
    • M.I. Jordan Kluwer Academic Publishers
    • N. Friedman, and M. Goldszmidt Learning Bayesian networks with local structure M.I. Jordan Graphical Models 1998 Kluwer Academic Publishers 421 459
    • (1998) Graphical Models , pp. 421-459
    • Friedman, N.1    Goldszmidt, M.2
  • 16
    • 0035221560 scopus 로고    scopus 로고
    • Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
    • A.J. Hartemink, D.K. Gifford, T.S. Jaakkola, and R.A. Young Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks Pac. Symp. Biocomput. 6 2001 422 433
    • (2001) Pac. Symp. Biocomput. , vol.6 , pp. 422-433
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 17
    • 0036366689 scopus 로고    scopus 로고
    • Combining location and expression data for principled discovery of genetic regulatory network models
    • A.J. Hartemink, D.K. Gifford, T.S. Jaakkola, and R.A. Young Combining location and expression data for principled discovery of genetic regulatory network models Pac. Symp. Biocomput. 7 2002 437 449
    • (2002) Pac. Symp. Biocomput. , vol.7 , pp. 437-449
    • Hartemink, A.J.1    Gifford, D.K.2    Jaakkola, T.S.3    Young, R.A.4
  • 18
    • 0036372453 scopus 로고    scopus 로고
    • Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
    • S. Imoto, T. Goto, and S. Miyano Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression Pac. Symp. Biocomput. 7 2002 175 186
    • (2002) Pac. Symp. Biocomput. , vol.7 , pp. 175-186
    • Imoto, S.1    Goto, T.2    Miyano, S.3
  • 19
    • 3042698613 scopus 로고    scopus 로고
    • Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
    • S. Imoto, S. Kim, T. Goto, S. Aburatani, K. Tashiro, S. Kuhara, and S. Miyano Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network J. Bioinform. Comp. Biol. 1 2003 231 252
    • (2003) J. Bioinform. Comp. Biol. , vol.1 , pp. 231-252
    • Imoto, S.1    Kim, S.2    Goto, T.3    Aburatani, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 20
    • 3242876379 scopus 로고    scopus 로고
    • Selection of smoothing parameters in B-spline nonparametric regression models using information criteria
    • S. Imoto, and S. Konishi Selection of smoothing parameters in B -spline nonparametric regression models using information criteria Ann. Inst. Statist. Math. 55 2003 671 687
    • (2003) Ann. Inst. Statist. Math. , vol.55 , pp. 671-687
    • Imoto, S.1    Konishi, S.2
  • 21
    • 3242875300 scopus 로고    scopus 로고
    • Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
    • S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks J. Bioinform. Comp. Biol. 2 2004 77 98
    • (2004) J. Bioinform. Comp. Biol. , vol.2 , pp. 77-98
    • Imoto, S.1    Higuchi, T.2    Goto, T.3    Tashiro, K.4    Kuhara, S.5    Miyano, S.6
  • 23
    • 0842309206 scopus 로고    scopus 로고
    • Inferring gene networks from time series microarray data using dynamic Bayesian networks
    • S. Kim, S. Imoto, and S. Miyano Inferring gene networks from time series microarray data using dynamic Bayesian networks Brief. Bioinform. 4 2003 228 235
    • (2003) Brief. Bioinform. , vol.4 , pp. 228-235
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 24
    • 3042738945 scopus 로고    scopus 로고
    • Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
    • S. Kim, S. Imoto, and S. Miyano Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data Biosystems 75 2004 57 65
    • (2004) Biosystems , vol.75 , pp. 57-65
    • Kim, S.1    Imoto, S.2    Miyano, S.3
  • 25
    • 3242882795 scopus 로고    scopus 로고
    • Bayesian information criteria and smoothing parameter selection in radial basis function networks
    • S. Konishi, T. Ando, and S. Imoto Bayesian information criteria and smoothing parameter selection in radial basis function networks Biometrika 91 2004 27 43
    • (2004) Biometrika , vol.91 , pp. 27-43
    • Konishi, S.1    Ando, T.2    Imoto, S.3
  • 26
    • 0033588106 scopus 로고    scopus 로고
    • Recovery of the yeast cell cycle from heat shock-induced G(1) arrest involves a positive regulation of G(1) cyclin expression by the S phase cyclin Clb5
    • X. Li, and M. Cai Recovery of the yeast cell cycle from heat shock-induced G(1) arrest involves a positive regulation of G(1) cyclin expression by the S phase cyclin Clb5 J. Biol. Chem. 274 1999 24220 24231
    • (1999) J. Biol. Chem. , vol.274 , pp. 24220-24231
    • Li, X.1    Cai, M.2
  • 27
    • 0031616241 scopus 로고    scopus 로고
    • REVEAL, a general reverse engineering algorithm for inference of genetic network architectures
    • S. Liang, S. Fuhrman, and R. Somogyi REVEAL, a general reverse engineering algorithm for inference of genetic network architectures Pac. Symp. Biocomput. 3 1998 18 29
    • (1998) Pac. Symp. Biocomput. , vol.3 , pp. 18-29
    • Liang, S.1    Fuhrman, S.2    Somogyi, R.3
  • 28
    • 0004158155 scopus 로고    scopus 로고
    • Modelling gene expression data using dynamic Bayesian networks
    • Computer Science Division, University of California, Berkeley, CA
    • K. Murphy, S. Mian, Modelling gene expression data using dynamic Bayesian networks, Technical Report, Computer Science Division, University of California, Berkeley, CA, 1999
    • (1999) Technical Report
    • Murphy, K.1    Mian, S.2
  • 29
    • 2442718023 scopus 로고    scopus 로고
    • Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks
    • N. Nariai, S. Kim, S. Imoto, and S. Miyano Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks Pac. Symp. Biocomput. 9 2004 336 347
    • (2004) Pac. Symp. Biocomput. , vol.9 , pp. 336-347
    • Nariai, N.1    Kim, S.2    Imoto, S.3    Miyano, S.4
  • 30
    • 18144442687 scopus 로고    scopus 로고
    • Inferring subnetworks from perturbed expression profiles
    • D. Pe'er, A. Regev, G. Elidan, and N. Friedman Inferring subnetworks from perturbed expression profiles Bioinformatics 17 2001 S215 S224
    • (2001) Bioinformatics , vol.17
    • Pe'Er, D.1    Regev, A.2    Elidan, G.3    Friedman, N.4
  • 32
    • 0027220020 scopus 로고
    • CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae
    • E. Schwob, and K. Nasmyth CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae Genes Dev. 7 1993 1160 1175
    • (1993) Genes Dev. , vol.7 , pp. 1160-1175
    • Schwob, E.1    Nasmyth, K.2
  • 33
    • 0842309161 scopus 로고    scopus 로고
    • Discovering molecular pathways from protein interaction and gene expression data
    • E. Segal, H. Wang, and D. Koller Discovering molecular pathways from protein interaction and gene expression data Bioinformatics 19 2003 i264 i272
    • (2003) Bioinformatics , vol.19
    • Segal, E.1    Wang, H.2    Koller, D.3
  • 34
    • 2442446708 scopus 로고    scopus 로고
    • Genome-wide discovery of transcriptional modules from DNA sequence and gene expression
    • E. Segal, R. Yelensky, and D. Koller Genome-wide discovery of transcriptional modules from DNA sequence and gene expression Bioinformatics 19 2003 i273 i282
    • (2003) Bioinformatics , vol.19
    • Segal, E.1    Yelensky, R.2    Koller, D.3
  • 35
    • 0036184629 scopus 로고    scopus 로고
    • Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
    • I. Shmulevich, E.R. Dougherty, S. Kim, and W. Zhang Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks Bioinformatics 18 2002 261 274
    • (2002) Bioinformatics , vol.18 , pp. 261-274
    • Shmulevich, I.1    Dougherty, E.R.2    Kim, S.3    Zhang, W.4
  • 36
    • 0002054202 scopus 로고    scopus 로고
    • Modeling the complexity of genetic networks: Understanding multigene and pleiotropic regulation
    • R. Somogyi, and C.A. Sniegoski Modeling the complexity of genetic networks: Understanding multigene and pleiotropic regulation Complexity 1 1996 45 63
    • (1996) Complexity , vol.1 , pp. 45-63
    • Somogyi, R.1    Sniegoski, C.A.2
  • 38
    • 3242891560 scopus 로고    scopus 로고
    • Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
    • Y. Tamada, S. Kim, H. Bannai, S. Imoto, K. Tashiro, S. Kuhara, and S. Miyano Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection Bioinformatics 19 2003 ii227 ii236
    • (2003) Bioinformatics , vol.19
    • Tamada, Y.1    Kim, S.2    Bannai, H.3    Imoto, S.4    Tashiro, K.5    Kuhara, S.6    Miyano, S.7
  • 39
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • L. Tinerey, and J.B. Kadane Accurate approximations for posterior moments and marginal densities J. Amer. Statist. Assoc. 81 1986 82 86
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 82-86
    • Tinerey, L.1    Kadane, J.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.