-
1
-
-
0032616683
-
Identification of genetic networks from a small number of gene expression patterns under the Boolean network model
-
T. Akutsu, S. Miyano, and S. Kuhara Identification of genetic networks from a small number of gene expression patterns under the Boolean network model Pac. Symp. Biocomput. 4 1999 17 28
-
(1999)
Pac. Symp. Biocomput.
, vol.4
, pp. 17-28
-
-
Akutsu, T.1
Miyano, S.2
Kuhara, S.3
-
2
-
-
0032005366
-
The cyclin family of budding yeast: Abundant use of a good idea
-
B. Andrews, and V. Measday The cyclin family of budding yeast: abundant use of a good idea Trends Genet. 14 1998 66 72
-
(1998)
Trends Genet.
, vol.14
, pp. 66-72
-
-
Andrews, B.1
Measday, V.2
-
3
-
-
15944361900
-
Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data
-
A. Bernard, and A.J. Hartemink Informative structure priors: Joint learning of dynamic regulatory networks from multiple types of data Pac. Symp. Biocomput. 10 2005 459 470
-
(2005)
Pac. Symp. Biocomput.
, vol.10
, pp. 459-470
-
-
Bernard, A.1
Hartemink, A.J.2
-
4
-
-
0032611513
-
Modeling gene expression with differential equations
-
T. Chen, H. He, and G. Church Modeling gene expression with differential equations Pac. Symp. Biocomput. 4 1999 29 40
-
(1999)
Pac. Symp. Biocomput.
, vol.4
, pp. 29-40
-
-
Chen, T.1
He, H.2
Church, G.3
-
5
-
-
0002211373
-
Approximate predictive likelihood
-
A.C. Davison Approximate predictive likelihood Biometrika 73 1986 323 332
-
(1986)
Biometrika
, vol.73
, pp. 323-332
-
-
Davison, A.C.1
-
7
-
-
0043130707
-
Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations
-
M.J.L. De Hoon, S. Imoto, K. Kobayashi, N. Ogasawara, and S. Miyano Inferring gene regulatory networks from time-ordered gene expression data of Bacillus subtilis using differential equations Pac. Symp. Biocomput. 8 2003 17 28
-
(2003)
Pac. Symp. Biocomput.
, vol.8
, pp. 17-28
-
-
De Hoon, M.J.L.1
Imoto, S.2
Kobayashi, K.3
Ogasawara, N.4
Miyano, S.5
-
8
-
-
24744436402
-
Predicting gene regulation by sigma factors in Bacillus subtilis from genome-wide data
-
M.J.L. De Hoon, Y. Makita, S. Imoto, K. Kobayashi, N. Ogasawara, K. Nakai, and S. Miyano Predicting gene regulation by sigma factors in Bacillus subtilis from genome-wide data Bioinformatics 20 2004 i101 i108
-
(2004)
Bioinformatics
, vol.20
-
-
De Hoon, M.J.L.1
Makita, Y.2
Imoto, S.3
Kobayashi, K.4
Ogasawara, N.5
Nakai, K.6
Miyano, S.7
-
9
-
-
0002344794
-
Bootstrap methods: Another look at the jackknife
-
B. Efron Bootstrap methods: Another look at the jackknife Ann. Statist. 7 1979 1 26
-
(1979)
Ann. Statist.
, vol.7
, pp. 1-26
-
-
Efron, B.1
-
11
-
-
25444532788
-
Flexible smoothing with B-splines and penalties (with discussion)
-
P.H.C. Eilers, and B. Marx Flexible smoothing with B -splines and penalties (with discussion) Statist. Sci. 11 1996 89 121
-
(1996)
Statist. Sci.
, vol.11
, pp. 89-121
-
-
Eilers, P.H.C.1
Marx, B.2
-
12
-
-
0000220520
-
Learning Bayesian networks with local structure
-
M.I. Jordan Kluwer Academic Publishers
-
N. Friedman, and M. Goldszmidt Learning Bayesian networks with local structure M.I. Jordan Graphical Models 1998 Kluwer Academic Publishers 421 459
-
(1998)
Graphical Models
, pp. 421-459
-
-
Friedman, N.1
Goldszmidt, M.2
-
14
-
-
0000854197
-
Learning the structure of dynamic probabilistic networks
-
N. Friedman, K. Murphy, S. Russell, Learning the structure of dynamic probabilistic networks, in: Proc. 14th Conf. Uncertainty in Art. Intel., 1998, pp. 139-147
-
(1998)
Proc. 14th Conf. Uncertainty in Art. Intel.
, pp. 139-147
-
-
Friedman, N.1
Murphy, K.2
Russell, S.3
-
15
-
-
0142052944
-
A Bayesian networks approach for predicting protein-protein interactions from genomic data
-
R. Jansen, H. Yu, D. Greenbaum, Y. Kluger, N.J. Krogan, S. Chung, A. Emili, M. Snyder, J.F. Greenblatt, and M. Gerstein A Bayesian networks approach for predicting protein-protein interactions from genomic data Science 302 2003 449 453
-
(2003)
Science
, vol.302
, pp. 449-453
-
-
Jansen, R.1
Yu, H.2
Greenbaum, D.3
Kluger, Y.4
Krogan, N.J.5
Chung, S.6
Emili, A.7
Snyder, M.8
Greenblatt, J.F.9
Gerstein, M.10
-
16
-
-
0035221560
-
Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks
-
A.J. Hartemink, D.K. Gifford, T.S. Jaakkola, and R.A. Young Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks Pac. Symp. Biocomput. 6 2001 422 433
-
(2001)
Pac. Symp. Biocomput.
, vol.6
, pp. 422-433
-
-
Hartemink, A.J.1
Gifford, D.K.2
Jaakkola, T.S.3
Young, R.A.4
-
17
-
-
0036366689
-
Combining location and expression data for principled discovery of genetic regulatory network models
-
A.J. Hartemink, D.K. Gifford, T.S. Jaakkola, and R.A. Young Combining location and expression data for principled discovery of genetic regulatory network models Pac. Symp. Biocomput. 7 2002 437 449
-
(2002)
Pac. Symp. Biocomput.
, vol.7
, pp. 437-449
-
-
Hartemink, A.J.1
Gifford, D.K.2
Jaakkola, T.S.3
Young, R.A.4
-
18
-
-
0036372453
-
Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression
-
S. Imoto, T. Goto, and S. Miyano Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression Pac. Symp. Biocomput. 7 2002 175 186
-
(2002)
Pac. Symp. Biocomput.
, vol.7
, pp. 175-186
-
-
Imoto, S.1
Goto, T.2
Miyano, S.3
-
19
-
-
3042698613
-
Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network
-
S. Imoto, S. Kim, T. Goto, S. Aburatani, K. Tashiro, S. Kuhara, and S. Miyano Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network J. Bioinform. Comp. Biol. 1 2003 231 252
-
(2003)
J. Bioinform. Comp. Biol.
, vol.1
, pp. 231-252
-
-
Imoto, S.1
Kim, S.2
Goto, T.3
Aburatani, S.4
Tashiro, K.5
Kuhara, S.6
Miyano, S.7
-
20
-
-
3242876379
-
Selection of smoothing parameters in B-spline nonparametric regression models using information criteria
-
S. Imoto, and S. Konishi Selection of smoothing parameters in B -spline nonparametric regression models using information criteria Ann. Inst. Statist. Math. 55 2003 671 687
-
(2003)
Ann. Inst. Statist. Math.
, vol.55
, pp. 671-687
-
-
Imoto, S.1
Konishi, S.2
-
21
-
-
3242875300
-
Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks
-
S. Imoto, T. Higuchi, T. Goto, K. Tashiro, S. Kuhara, and S. Miyano Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks J. Bioinform. Comp. Biol. 2 2004 77 98
-
(2004)
J. Bioinform. Comp. Biol.
, vol.2
, pp. 77-98
-
-
Imoto, S.1
Higuchi, T.2
Goto, T.3
Tashiro, K.4
Kuhara, S.5
Miyano, S.6
-
22
-
-
0345863935
-
The KEGG resources for deciphering the genome
-
M. Kanehisa, S. Goto, S. Kawashima, Y. Okuno, and M. Hattori The KEGG resources for deciphering the genome Nucleic Acids Res. 32 2004 D277 D280
-
(2004)
Nucleic Acids Res.
, vol.32
-
-
Kanehisa, M.1
Goto, S.2
Kawashima, S.3
Okuno, Y.4
Hattori, M.5
-
23
-
-
0842309206
-
Inferring gene networks from time series microarray data using dynamic Bayesian networks
-
S. Kim, S. Imoto, and S. Miyano Inferring gene networks from time series microarray data using dynamic Bayesian networks Brief. Bioinform. 4 2003 228 235
-
(2003)
Brief. Bioinform.
, vol.4
, pp. 228-235
-
-
Kim, S.1
Imoto, S.2
Miyano, S.3
-
24
-
-
3042738945
-
Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data
-
S. Kim, S. Imoto, and S. Miyano Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data Biosystems 75 2004 57 65
-
(2004)
Biosystems
, vol.75
, pp. 57-65
-
-
Kim, S.1
Imoto, S.2
Miyano, S.3
-
25
-
-
3242882795
-
Bayesian information criteria and smoothing parameter selection in radial basis function networks
-
S. Konishi, T. Ando, and S. Imoto Bayesian information criteria and smoothing parameter selection in radial basis function networks Biometrika 91 2004 27 43
-
(2004)
Biometrika
, vol.91
, pp. 27-43
-
-
Konishi, S.1
Ando, T.2
Imoto, S.3
-
26
-
-
0033588106
-
Recovery of the yeast cell cycle from heat shock-induced G(1) arrest involves a positive regulation of G(1) cyclin expression by the S phase cyclin Clb5
-
X. Li, and M. Cai Recovery of the yeast cell cycle from heat shock-induced G(1) arrest involves a positive regulation of G(1) cyclin expression by the S phase cyclin Clb5 J. Biol. Chem. 274 1999 24220 24231
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 24220-24231
-
-
Li, X.1
Cai, M.2
-
27
-
-
0031616241
-
REVEAL, a general reverse engineering algorithm for inference of genetic network architectures
-
S. Liang, S. Fuhrman, and R. Somogyi REVEAL, a general reverse engineering algorithm for inference of genetic network architectures Pac. Symp. Biocomput. 3 1998 18 29
-
(1998)
Pac. Symp. Biocomput.
, vol.3
, pp. 18-29
-
-
Liang, S.1
Fuhrman, S.2
Somogyi, R.3
-
28
-
-
0004158155
-
Modelling gene expression data using dynamic Bayesian networks
-
Computer Science Division, University of California, Berkeley, CA
-
K. Murphy, S. Mian, Modelling gene expression data using dynamic Bayesian networks, Technical Report, Computer Science Division, University of California, Berkeley, CA, 1999
-
(1999)
Technical Report
-
-
Murphy, K.1
Mian, S.2
-
29
-
-
2442718023
-
Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks
-
N. Nariai, S. Kim, S. Imoto, and S. Miyano Using protein-protein interactions for refining gene networks estimated from microarray data by Bayesian networks Pac. Symp. Biocomput. 9 2004 336 347
-
(2004)
Pac. Symp. Biocomput.
, vol.9
, pp. 336-347
-
-
Nariai, N.1
Kim, S.2
Imoto, S.3
Miyano, S.4
-
31
-
-
0347755535
-
The database of interacting proteins: 2004 update
-
L. Salwinski, C.S. Miller, A.J. Smith, F.K. Pettit, J.U. Bowie, and D. Eisenberg The database of interacting proteins: 2004 update Nucleic Acids Res. 32 2004 D449 D451
-
(2004)
Nucleic Acids Res.
, vol.32
-
-
Salwinski, L.1
Miller, C.S.2
Smith, A.J.3
Pettit, F.K.4
Bowie, J.U.5
Eisenberg, D.6
-
32
-
-
0027220020
-
CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae
-
E. Schwob, and K. Nasmyth CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae Genes Dev. 7 1993 1160 1175
-
(1993)
Genes Dev.
, vol.7
, pp. 1160-1175
-
-
Schwob, E.1
Nasmyth, K.2
-
33
-
-
0842309161
-
Discovering molecular pathways from protein interaction and gene expression data
-
E. Segal, H. Wang, and D. Koller Discovering molecular pathways from protein interaction and gene expression data Bioinformatics 19 2003 i264 i272
-
(2003)
Bioinformatics
, vol.19
-
-
Segal, E.1
Wang, H.2
Koller, D.3
-
34
-
-
2442446708
-
Genome-wide discovery of transcriptional modules from DNA sequence and gene expression
-
E. Segal, R. Yelensky, and D. Koller Genome-wide discovery of transcriptional modules from DNA sequence and gene expression Bioinformatics 19 2003 i273 i282
-
(2003)
Bioinformatics
, vol.19
-
-
Segal, E.1
Yelensky, R.2
Koller, D.3
-
35
-
-
0036184629
-
Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks
-
I. Shmulevich, E.R. Dougherty, S. Kim, and W. Zhang Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks Bioinformatics 18 2002 261 274
-
(2002)
Bioinformatics
, vol.18
, pp. 261-274
-
-
Shmulevich, I.1
Dougherty, E.R.2
Kim, S.3
Zhang, W.4
-
36
-
-
0002054202
-
Modeling the complexity of genetic networks: Understanding multigene and pleiotropic regulation
-
R. Somogyi, and C.A. Sniegoski Modeling the complexity of genetic networks: Understanding multigene and pleiotropic regulation Complexity 1 1996 45 63
-
(1996)
Complexity
, vol.1
, pp. 45-63
-
-
Somogyi, R.1
Sniegoski, C.A.2
-
37
-
-
0031742022
-
Comprehensive identification of cell cycleregulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
-
P.T. Spellman, G. Sherlock, M.Q. Zhang, V.R. Iyer, K. Anders, M.B. Eisen, P.O. Brown, D. Botstein, and B. Futcher Comprehensive identification of cell cycleregulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization Mol. Biol. Cell 9 1998 3273 3297
-
(1998)
Mol. Biol. Cell
, vol.9
, pp. 3273-3297
-
-
Spellman, P.T.1
Sherlock, G.2
Zhang, M.Q.3
Iyer, V.R.4
Anders, K.5
Eisen, M.B.6
Brown, P.O.7
Botstein, D.8
Futcher, B.9
-
38
-
-
3242891560
-
Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection
-
Y. Tamada, S. Kim, H. Bannai, S. Imoto, K. Tashiro, S. Kuhara, and S. Miyano Estimating gene networks from gene expression data by combining Bayesian network model with promoter element detection Bioinformatics 19 2003 ii227 ii236
-
(2003)
Bioinformatics
, vol.19
-
-
Tamada, Y.1
Kim, S.2
Bannai, H.3
Imoto, S.4
Tashiro, K.5
Kuhara, S.6
Miyano, S.7
-
39
-
-
84950871099
-
Accurate approximations for posterior moments and marginal densities
-
L. Tinerey, and J.B. Kadane Accurate approximations for posterior moments and marginal densities J. Amer. Statist. Assoc. 81 1986 82 86
-
(1986)
J. Amer. Statist. Assoc.
, vol.81
, pp. 82-86
-
-
Tinerey, L.1
Kadane, J.B.2
|