-
1
-
-
13844295342
-
The variational EM algorithm for incomplete data: With application to scoring graphical model structures
-
M. Beal and Z. Ghahramani. The Variational EM Algorithm for Incomplete Data: with Application to Scoring Graphical Model Structures. Bayesian Statistics, 7, 2003.
-
(2003)
Bayesian Statistics
, vol.7
-
-
Beal, M.1
Ghahramani, Z.2
-
2
-
-
34249832377
-
A Bayesian method for the induction of probabilistic networks from data
-
G. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9:309-347, 1992.
-
(1992)
Machine Learning
, vol.9
, pp. 309-347
-
-
Cooper, G.1
Herskovits, E.2
-
3
-
-
84880688943
-
Learning probabilistic relational models
-
N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning Probabilistic Relational Models. In IJCAI 16, pages 1300-1309, 1999.
-
(1999)
IJCAI
, vol.16
, pp. 1300-1309
-
-
Friedman, N.1
Getoor, L.2
Koller, D.3
Pfeffer, A.4
-
4
-
-
0037266163
-
Improving Markov chain Monte Carlo model search for data mining
-
P. Giudici and R. Castelo. Improving Markov Chain Monte Carlo Model Search for Data Mining. Machine Learning, 50:127-158, 2003.
-
(2003)
Machine Learning
, vol.50
, pp. 127-158
-
-
Giudici, P.1
Castelo, R.2
-
7
-
-
0001829919
-
Bayesian model averaging
-
Portland, OR
-
D. Madigan, A. Raftery, C. Volinsky, and J. Hoeting. Bayesian model averaging. In Proc. AAAI Workshop on Integrating Multiple Learned Models, Portland, OR, 1996.
-
(1996)
Proc. AAAI Workshop on Integrating Multiple Learned Models
-
-
Madigan, D.1
Raftery, A.2
Volinsky, C.3
Hoeting, J.4
-
8
-
-
0012751948
-
Learning bayes net structure from sparse data sets
-
UC Berkeley
-
K. Murphy. Learning bayes net structure from sparse data sets. Technical report, Comp. Sci. Div., UC Berkeley, 2001.
-
(2001)
Technical Report, Comp. Sci. Div.
-
-
Murphy, K.1
-
9
-
-
0343773001
-
Learning Bayesian network parameters from small data sets: Application of Noisy-OR gates
-
DOI 10.1016/S0888-613X(01)00039-1, PII S0888613X01000391
-
A. Onisko, M. J. Druzdzel, and H. Wasyluk. Learning Bayesian network parameters from small data sets: Application of noisy-OR gates. International Journal of Approximate Reasoning, 27:165-182, 2001. (Pubitemid 32610600)
-
(2001)
International Journal of Approximate Reasoning
, vol.27
, Issue.2
, pp. 165-182
-
-
Onisko, A.1
Druzdzel, M.J.2
Wasyluk, H.3
-
10
-
-
33646338193
-
MinReg: A scalable algorithm for learning parsimonious regulatory networks in yeast and mammals
-
D. Pe'er, A. Tanay, and A. Regev. MinReg: A Scalable Algorithm for Learning Parsimonious Regulatory Networks in Yeast and Mammals. Journal of Machine Learning Research, 7:167-189, 2006. (Pubitemid 43668127)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 167-189
-
-
Pe'er, D.1
Tanay, A.2
Regev, A.3
-
12
-
-
79955803023
-
The infinite Gaussian mixture model
-
C. Rasmussen. The Infinite Gaussian Mixture Model. In NIPS 12, pages 554-560, 2000.
-
(2000)
NIPS
, vol.12
, pp. 554-560
-
-
Rasmussen, C.1
-
13
-
-
21844455527
-
Learning module networks
-
E. Segal, D. Pe'er, A. Regev, D. Koller, and N. Friedman. Learning Module Networks. Journal of Machine Learning Research, 6:557-588, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 557-588
-
-
Segal, E.1
Pe'er, D.2
Regev, A.3
Koller, D.4
Friedman, N.5
-
14
-
-
0026056182
-
Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base I. - The probabilistic model and inference algorithms
-
M. Shwe, B. Middleton, D. Heckerman, M. Henrion, E. Horvitz, H. Lehmann, and G. Cooper. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base I. - The probabilistic model and inference algorithms. Methods of Information in Medicine, 30:241-255, 1991.
-
(1991)
Methods of Information in Medicine
, vol.30
, pp. 241-255
-
-
Shwe, M.1
Middleton, B.2
Heckerman, D.3
Henrion, M.4
Horvitz, E.5
Lehmann, H.6
Cooper, G.7
-
15
-
-
14344256958
-
Hierarchical dirichlet processes
-
Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei. Hierarchical Dirichlet Processes. Technical report, UC Berkeley Statistics Department, 2004.
-
(2004)
Technical Report, UC Berkeley Statistics Department
-
-
Teh, Y.W.1
Jordan, M.I.2
Beal, M.J.3
Blei, D.M.4
-
16
-
-
36348929435
-
Ordering-based search: A simple and effective algorithm for learning Bayesian networks
-
Edinburgh, Scottland, UK, July
-
M. Teyssier and D. Koller. Ordering-based Search: A Simple and Effective Algorithm for Learning Bayesian Networks. In UAI 21, pages 584-590, Edinburgh, Scottland, UK, July 2005.
-
(2005)
UAI
, vol.21
, pp. 584-590
-
-
Teyssier, M.1
Koller, D.2
|