-
1
-
-
0003802343
-
-
Boca Raton-London-New York-Washington, DC: Chapman & Hall
-
Breiman, L., Friedman, J., Olshen, R. and Stone, C., 1984, Classification and Regression Trees (Boca Raton-London-New York-Washington, DC: Chapman & Hall).
-
(1984)
Classification and Regression Trees
-
-
Breiman, L.1
Friedman, J.2
Olshen, R.3
Stone, C.4
-
5
-
-
0030211964
-
Bagging predictors
-
Breiman, L., 1996, Bagging predictors. Machine Learning, 24, 123-140.
-
(1996)
Machine Learning
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
6
-
-
0346786584
-
Arcing classifiers
-
Breiman, L., 1998, Arcing classifiers. Annals of Statistics, 26, 801-849.
-
(1998)
Annals of Statistics
, vol.26
, pp. 801-849
-
-
Breiman, L.1
-
7
-
-
58149321460
-
Boosting a weak learning algorithm by majority
-
Freund, Y., 1995, Boosting a weak learning algorithm by majority. Information and Computation, 121, 256-285.
-
(1995)
Information and Computation
, vol.121
, pp. 256-285
-
-
Freund, Y.1
-
10
-
-
0043289776
-
Analyzing bagging
-
Bühlmann, P. and Yu, B., 2002a, Analyzing bagging. Annals of Statistics, 30, 927-961.
-
(2002)
Annals of Statistics
, vol.30
, pp. 927-961
-
-
Bühlmann, P.1
Yu, B.2
-
12
-
-
0037410515
-
Double-bagging: Combining classifiers by bootstrap aggregation
-
Hothorn, T. and Lausen, B., 2003, Double-bagging: combining classifiers by bootstrap aggregation. Pattern Recognition, 36, 1303-1309.
-
(2003)
Pattern Recognition
, vol.36
, pp. 1303-1309
-
-
Hothorn, T.1
Lausen, B.2
-
13
-
-
0032280519
-
Boosting the margin: A new explanation for the effectiveness of voting methods
-
Schapire, R., Freund, Y., Bartlett, P. and Lee, W., 1998, Boosting the margin: a new explanation for the effectiveness of voting methods. A nnals of Statistics, 26, 1651-1686.
-
(1998)
A Nnals of Statistics
, vol.26
, pp. 1651-1686
-
-
Schapire, R.1
Freund, Y.2
Bartlett, P.3
Lee, W.4
-
15
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting
-
Friedman, J., Hastie, T. and Tibshirani, R., 2000, Additive logistic regression: a statistical view of boosting. Annals of Statistics, 28, 337-374.
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-374
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
19
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit, S., Fridlyand, J. and Speed, T., 2002, Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association, 97, 77-87.
-
(2002)
Journal of the American Statistical Association
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.3
-
20
-
-
0038391397
-
Boosting for tumor classification with gene expression data
-
Dettling, M. and Bühlmann, P., 2003, Boosting for tumor classification with gene expression data. Bioinformatics, 19, 1061-1069.
-
(2003)
Bioinformatics
, vol.19
, pp. 1061-1069
-
-
Dettling, M.1
Bühlmann, P.2
-
22
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting and randomization
-
Dietterich, T., 2000, An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting and randomization. Machine Learning, 40, 139-157.
-
(2000)
Machine Learning
, vol.40
, pp. 139-157
-
-
Dietterich, T.1
-
23
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting and variants
-
Bauer, E. and Kohavi, R., 1999, An empirical comparison of voting classification algorithms: bagging, boosting and variants. Machine Learning, 36, 105-142.
-
(1999)
Machine Learning
, vol.36
, pp. 105-142
-
-
Bauer, E.1
Kohavi, R.2
-
24
-
-
0001986692
-
Regression, discrimination and measurement models for ordered categorical variables
-
Anderson, J. and Philips, P., 1981, Regression, discrimination and measurement models for ordered categorical variables. Applied Statistics, 30, 22-31.
-
(1981)
Applied Statistics
, vol.30
, pp. 22-31
-
-
Anderson, J.1
Philips, P.2
-
25
-
-
21844487811
-
Are ordinal models useful for classification? A revised analysis
-
Rudolfer, S., Watson, P. and Lesaffre, E., 1995, Are ordinal models useful for classification? A revised analysis. Journal of Statistical Computation and Simulation, 52, 105-132.
-
(1995)
Journal of Statistical Computation and Simulation
, vol.52
, pp. 105-132
-
-
Rudolfer, S.1
Watson, P.2
Lesaffre, E.3
|