메뉴 건너뛰기




Volumn 63, Issue , 2007, Pages 15-35

New Millennium AI and the Convergence of History

Author keywords

[No Author keywords available]

Indexed keywords


EID: 34250026668     PISSN: 1860949X     EISSN: None     Source Type: Book Series    
DOI: 10.1007/978-3-540-71984-7_2     Document Type: Review
Times cited : (26)

References (126)
  • 1
    • 0023563286 scopus 로고
    • A learning rule for asynchronous perceptrons with feedback in a combinatorial environment
    • L. B. Almeida. A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. In IEEE 1st International Conference on Neural Networks, San Diego, volume 2, pages 609-618, 1987.
    • (1987) IEEE 1st International Conference on Neural Networks, San Diego , vol.2 , pp. 609-618
    • Almeida, L.B.1
  • 2
    • 85011779332 scopus 로고
    • Removing the genetics from the standard genetic algorithm
    • A. Prieditis and S. Russell, editors, Morgan Kaufmann Publishers, San Francisco, CA
    • S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm. In A. Prieditis and S. Russell, editors, Machine Learning: Proceedings of the Twelfth International Conference, pages 38-46. Morgan Kaufmann Publishers, San Francisco, CA, 1995.
    • (1995) Machine Learning: Proceedings of the Twelfth International Conference , pp. 38-46
    • Baluja, S.1    Caruana, R.2
  • 3
    • 33646170451 scopus 로고    scopus 로고
    • Classifying unprompted speech by retraining LSTM nets
    • W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors, Artificial Neural Networks: Biological Inspirations, ICANN 2005, Springer-Verlag Berlin Heidelberg
    • N. Beringer, A. Graves, F. Schiel, and J. Schmidhuber. Classifying unprompted speech by retraining LSTM nets. In W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors, Artificial Neural Networks: Biological Inspirations - ICANN 2005, LNCS 3696, pages 575-581. Springer-Verlag Berlin Heidelberg, 2005.
    • (2005) LNCS , vol.3696 , pp. 575-581
    • Beringer, N.1    Graves, A.2    Schiel, F.3    Schmidhuber, J.4
  • 5
    • 0000392660 scopus 로고    scopus 로고
    • Analysis of dynamical recognizers
    • Alan D. Blair and Jordan B. Pollack. Analysis of dynamical recognizers. Neural Computation, 9(5):1127-1142, 1997.
    • (1997) Neural Computation , vol.9 , Issue.5 , pp. 1127-1142
    • Blair, A.D.1    Pollack, J.B.2
  • 6
    • 0034345038 scopus 로고    scopus 로고
    • Context-free and context-sensitive dynamics in recurrent neural networks
    • M. Boden and J. Wiles. Context-free and context-sensitive dynamics in recurrent neural networks. Connection Science, 2000.
    • (2000) Connection Science
    • Boden, M.1    Wiles, J.2
  • 8
    • 0030586641 scopus 로고    scopus 로고
    • The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
    • M. P. Casey. The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction. Neural Computation, 8(6):1135-1178, 1996.
    • (1996) Neural Computation , vol.8 , Issue.6 , pp. 1135-1178
    • Casey, M.P.1
  • 10
    • 0343449995 scopus 로고
    • A theory for neural networks with time delays
    • R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Morgan Kaufmann
    • B. de Vries and J. C. Principe. A theory for neural networks with time delays. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3, pages 162-168. Morgan Kaufmann, 1991.
    • (1991) Advances in Neural Information Processing Systems 3 , pp. 162-168
    • de Vries, B.1    Principe, J.C.2
  • 11
    • 34250027253 scopus 로고    scopus 로고
    • D. Dickmanns, J. Schmidhuber, and A. Winklhofer. Der genetische Algorithmus: Eine Implementierung in Prolog. Fortgeschrittenenpraktikum, Institut für Informatik, Lehrstuhl Prof. Radig, Technische Universität München, 1987.
    • D. Dickmanns, J. Schmidhuber, and A. Winklhofer. Der genetische Algorithmus: Eine Implementierung in Prolog. Fortgeschrittenenpraktikum, Institut für Informatik, Lehrstuhl Prof. Radig, Technische Universität München, 1987.
  • 12
    • 0004262806 scopus 로고
    • Finding structure in time
    • 8801, Center for Research in Language, University of California, San Diego
    • J. L. Elman. Finding structure in time. Technical Report CRL Technical Report 8801, Center for Research in Language, University of California, San Diego, 1988.
    • (1988) Technical Report CRL Technical Report
    • Elman, J.L.1
  • 13
    • 0001086881 scopus 로고
    • The recurrent cascade-correlation learning algorithm
    • R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Morgan Kaufmann
    • S. E. Fahlman. The recurrent cascade-correlation learning algorithm. In R. P. Lippmann, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3, pages 190-196. Morgan Kaufmann, 1991.
    • (1991) Advances in Neural Information Processing Systems 3 , pp. 190-196
    • Fahlman, S.E.1
  • 16
    • 0035505385 scopus 로고    scopus 로고
    • LSTM recurrent networks learn simple context free and context sensitive languages
    • F. A. Gers and J. Schmidhuber. LSTM recurrent networks learn simple context free and context sensitive languages. IEEE Transactions on Neural Networks, 12(6):1333-1340, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1333-1340
    • Gers, F.A.1    Schmidhuber, J.2
  • 17
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10):2451-2471, 2000.
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 19
    • 33646241314 scopus 로고    scopus 로고
    • Evolving modular fast-weight networks for control
    • W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors, Artificial Neural Networks: Biological Inspirations, ICANN 2005, Springer-Verlag Berlin Heidelberg
    • F. Gomez and J. Schmidhuber. Evolving modular fast-weight networks for control. In W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors, Artificial Neural Networks: Biological Inspirations - ICANN 2005, LNCS 3697, pages 383-389. Springer-Verlag Berlin Heidelberg, 2005.
    • (2005) LNCS , vol.3697 , pp. 383-389
    • Gomez, F.1    Schmidhuber, J.2
  • 20
    • 21244457900 scopus 로고    scopus 로고
    • PhD thesis, Department of Computer Sciences, University of Texas at Austin
    • F. J. Gomez. Robust Nonlinear Control through Neuroevolution. PhD thesis, Department of Computer Sciences, University of Texas at Austin, 2003.
    • (2003) Robust Nonlinear Control through Neuroevolution
    • Gomez, F.J.1
  • 21
    • 0031287711 scopus 로고    scopus 로고
    • Incremental evolution of complex general behavior
    • F. J. Gomez and R. Miikkulainen. Incremental evolution of complex general behavior. Adaptive Behavior, 5:317-342, 1997.
    • (1997) Adaptive Behavior , vol.5 , pp. 317-342
    • Gomez, F.J.1    Miikkulainen, R.2
  • 22
    • 84880666558 scopus 로고    scopus 로고
    • Solving non-Markovian control tasks with neuroevolution
    • Denver, CO, Morgan Kaufman
    • F. J. Gomez and R. Miikkulainen. Solving non-Markovian control tasks with neuroevolution. In Proc. IJCAI 99, Denver, CO, 1999. Morgan Kaufman.
    • (1999) Proc. IJCAI 99
    • Gomez, F.J.1    Miikkulainen, R.2
  • 24
    • 32444448207 scopus 로고    scopus 로고
    • F. J. Gomez and J. Schmidhuber. Co-evolving recurrent neurons learn deep memory POMDPs. In Proc. of the 2005 conference on genetic and evolutionary computation (GECCO), Washington, D. C. ACM Press, New York, NY, USA, 2005. Nominated for a best paper award.
    • F. J. Gomez and J. Schmidhuber. Co-evolving recurrent neurons learn deep memory POMDPs. In Proc. of the 2005 conference on genetic and evolutionary computation (GECCO), Washington, D. C. ACM Press, New York, NY, USA, 2005. Nominated for a best paper award.
  • 25
    • 31944444962 scopus 로고    scopus 로고
    • Rapid retraining on speech data with LSTM recurrent networks
    • Technical Report IDSIA-09-05, IDSIA
    • A. Graves, N. Beringer, and J. Schmidhuber. Rapid retraining on speech data with LSTM recurrent networks. Technical Report IDSIA-09-05, IDSIA, www.idsia.ch/techrep.html, 2005.
    • (2005)
    • Graves, A.1    Beringer, N.2    Schmidhuber, J.3
  • 27
    • 27744588611 scopus 로고    scopus 로고
    • Framewise phoneme classification with bidirectional LSTM and other neural network architectures
    • A. Graves and J. Schmidhuber. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks, 18:602-610, 2005.
    • (2005) Neural Networks , vol.18 , pp. 602-610
    • Graves, A.1    Schmidhuber, J.2
  • 29
    • 34249984401 scopus 로고    scopus 로고
    • S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991. See www7.informatik.tu-muenchen.de/ ~hochreit; advisor: J. Schmidhuber.
    • S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991. See www7.informatik.tu-muenchen.de/ ~hochreit; advisor: J. Schmidhuber.
  • 30
  • 31
    • 34249996999 scopus 로고    scopus 로고
    • Sequence classification for protein analysis
    • Snowbird, Utah, April 5-8, Computational and Biological Learning Society
    • S. Hochreiter and K. Obermayer. Sequence classification for protein analysis. In Snowbird Workshop, Snowbird, Utah, April 5-8 2005. Computational and Biological Learning Society.
    • (2005) Snowbird Workshop
    • Hochreiter, S.1    Obermayer, K.2
  • 34
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities. Proc. of the National Academy of Sciences, 79:2554-2558, 1982.
    • (1982) Proc. of the National Academy of Sciences , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 35
    • 1642393842 scopus 로고    scopus 로고
    • M. Hutter. The fastest and shortest algorithm for all well-defined problems. International Journal of Foundations of Computer Science 13(3):431-443, 2002. (On J. Schmidhuber's SNF grant 20-61847).
    • M. Hutter. The fastest and shortest algorithm for all well-defined problems. International Journal of Foundations of Computer Science 13(3):431-443, 2002. (On J. Schmidhuber's SNF grant 20-61847).
  • 36
    • 34250015800 scopus 로고    scopus 로고
    • M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer, Berlin, 2004. (On J. Schmidhuber's SNF grant 20-61847).
    • M. Hutter. Universal Artificial Intelligence: Sequential Decisions based on Algorithmic Probability. Springer, Berlin, 2004. (On J. Schmidhuber's SNF grant 20-61847).
  • 37
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • H. Jaeger. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304:78-80, 2004.
    • (2004) Science , vol.304 , pp. 78-80
    • Jaeger, H.1
  • 39
    • 84947944274 scopus 로고    scopus 로고
    • Computation in recurrent neural networks: From counters to iterated function systems
    • G. Antoniou and J. Slaney, editors, Advanced Topics in Artificial Intelligence, Proceedings of the 11th Australian Joint Conference on Artificial Intelligence, of, Berlin, Heidelberg, Springer
    • Y. Kalinke and H. Lehmann. Computation in recurrent neural networks: From counters to iterated function systems. In G. Antoniou and J. Slaney, editors, Advanced Topics in Artificial Intelligence, Proceedings of the 11th Australian Joint Conference on Artificial Intelligence, volume 1502 of LNAI, Berlin, Heidelberg, 1998. Springer.
    • (1998) LNAI , vol.1502
    • Kalinke, Y.1    Lehmann, H.2
  • 41
    • 0000202647 scopus 로고
    • Universal sequential search problems
    • L. A. Levin. Universal sequential search problems. Problems of Information Transmission, 9(3):265-266, 1973.
    • (1973) Problems of Information Transmission , vol.9 , Issue.3 , pp. 265-266
    • Levin, L.A.1
  • 43
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependencies in NARX recurrent neural networks
    • T. Lin, B.G. Horne, P. Tino, and C.L. Giles. Learning long-term dependencies in NARX recurrent neural networks. IEEE Transactions on Neural Networks, 7(6):1329-1338, 1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.6 , pp. 1329-1338
    • Lin, T.1    Horne, B.G.2    Tino, P.3    Giles, C.L.4
  • 44
    • 0029311877 scopus 로고
    • Evolving mobile robots in simulated and real environments
    • O. Miglino, H. Lund, and S. Nolfi. Evolving mobile robots in simulated and real environments. Artificial Life, 2(4):417-434, 1995.
    • (1995) Artificial Life , vol.2 , Issue.4 , pp. 417-434
    • Miglino, O.1    Lund, H.2    Nolfi, S.3
  • 48
    • 0141906160 scopus 로고    scopus 로고
    • Wiley Interscience
    • H. Moravec. Robot. Wiley Interscience, 1999.
    • (1999) Robot
    • Moravec, H.1
  • 49
    • 0002318273 scopus 로고    scopus 로고
    • Efficient reinforcement learning through symbiotic evolution
    • D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learning through symbiotic evolution. Machine Learning, 22:11-32, 1996.
    • (1996) Machine Learning , vol.22 , pp. 11-32
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 50
    • 0008554931 scopus 로고
    • A focused back-propagation algorithm for temporal sequence recognition
    • M. C. Mozer. A focused back-propagation algorithm for temporal sequence recognition. Complex Systems, 3:349-381, 1989.
    • (1989) Complex Systems , vol.3 , pp. 349-381
    • Mozer, M.C.1
  • 51
    • 0005316958 scopus 로고
    • Induction of multiscale temporal structure
    • D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Morgan Kaufmann
    • M. C. Mozer. Induction of multiscale temporal structure. In D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 4, pages 275-282. Morgan Kaufmann, 1992.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 275-282
    • Mozer, M.C.1
  • 52
    • 0002921687 scopus 로고
    • GPS, a program that simulates human thought
    • E. Feigenbaum and J. Feldman, editors, McGraw-Hill, New York
    • A. Newell and H. Simon. GPS, a program that simulates human thought. In E. Feigenbaum and J. Feldman, editors, Computers and Thought, pages 279-293. McGraw-Hill, New York, 1963.
    • (1963) Computers and Thought , pp. 279-293
    • Newell, A.1    Simon, H.2
  • 54
    • 0029272644 scopus 로고
    • Inductive functional programming using incremental program transformation
    • J. R. Olsson. Inductive functional programming using incremental program transformation. Artificial Intelligence, 74 (1):55-83, 1995.
    • (1995) Artificial Intelligence , vol.74 , Issue.1 , pp. 55-83
    • Olsson, J.R.1
  • 55
    • 0001202597 scopus 로고
    • Learning state space trajectories in recurrent neural networks
    • B. A. Pearlmutter. Learning state space trajectories in recurrent neural networks. Neural Computation, 1(2):263-269, 1989.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 263-269
    • Pearlmutter, B.A.1
  • 56
    • 0029375851 scopus 로고
    • Gradient calculations for dynamic recurrent neural networks: A survey
    • B. A. Pearlmutter. Gradient calculations for dynamic recurrent neural networks: A survey. IEEE Transactions on Neural Networks, 6(5):1212-1228, 1995.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , Issue.5 , pp. 1212-1228
    • Pearlmutter, B.A.1
  • 58
    • 0038764011 scopus 로고    scopus 로고
    • Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets
    • J. A. Pérez-Ortiz, F. A. Gers, D. Eck, and J. Schmidhuber. Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural Networks, (16):241-250, 2003.
    • (2003) Neural Networks , vol.16 , pp. 241-250
    • Pérez-Ortiz, J.A.1    Gers, F.A.2    Eck, D.3    Schmidhuber, J.4
  • 59
    • 0038764011 scopus 로고    scopus 로고
    • Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets
    • J. A. Pérez-Ortiz, F. A. Gers, D. Eck, and J. Schmidhuber. Kalman filters improve LSTM network performance in problems unsolvable by traditional recurrent nets. Neural Networks, 16(2):241-250, 2003.
    • (2003) Neural Networks , vol.16 , Issue.2 , pp. 241-250
    • Pérez-Ortiz, J.A.1    Gers, F.A.2    Eck, D.3    Schmidhuber, J.4
  • 60
    • 0001184176 scopus 로고
    • Recurrent backpropagation and the dynamical approach to adaptive neural computation
    • F. J. Pineda. Recurrent backpropagation and the dynamical approach to adaptive neural computation. Neural Computation, 1(2):161-172, 1989.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 161-172
    • Pineda, F.J.1
  • 61
    • 0009382953 scopus 로고
    • Holographic recurrent networks
    • J. D. Cowan S. J. Hanson and C. L. Giles, editors, Morgan Kaufmann
    • T. A. Plate. Holographic recurrent networks. In J. D. Cowan S. J. Hanson and C. L. Giles, editors, Advances in Neural Information Processing Systems 5, pages 34-41. Morgan Kaufmann, 1993.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 34-41
    • Plate, T.A.1
  • 62
    • 0028401031 scopus 로고
    • Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks
    • G. V. Puskorius and L. A. Feldkamp. Neurocontrol of nonlinear dynamical systems with Kalman filter trained recurrent networks. IEEE Transactions on Neural Networks, 5(2):279-297, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 279-297
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 64
    • 0007912190 scopus 로고
    • Learning sequential tasks by incrementally adding higher orders
    • J. D. Cowan S. J. Hanson and C. L. Giles, editors, Morgan Kaufmann
    • M. B. Ring. Learning sequential tasks by incrementally adding higher orders. In J. D. Cowan S. J. Hanson and C. L. Giles, editors, Advances in Neural Information Processing Systems 5, pages 115-122. Morgan Kaufmann, 1993.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 115-122
    • Ring, M.B.1
  • 65
    • 34250014130 scopus 로고    scopus 로고
    • A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network. Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering Department, 1987.
    • A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network. Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering Department, 1987.
  • 66
    • 0028392167 scopus 로고
    • An application of recurrent nets to phone probability estimation
    • March
    • Anthony J. Robinson. An application of recurrent nets to phone probability estimation. IEEE Transactions on Neural Networks, 5(2):298-305, March 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 298-305
    • Robinson, A.J.1
  • 67
    • 0033098329 scopus 로고    scopus 로고
    • A recurrent neural network that learns to count
    • P. Rodriguez, J. Wiles, and J Elman. A recurrent neural network that learns to count. Connection Science, 11(1):5-40, 1999.
    • (1999) Connection Science , vol.11 , Issue.1 , pp. 5-40
    • Rodriguez, P.1    Wiles, J.2    Elman, J.3
  • 68
    • 0002098405 scopus 로고    scopus 로고
    • Recurrent neural networks can learn to implement symbol-sensitive counting
    • The MIT Press
    • Paul Rodriguez and Janet Wiles. Recurrent neural networks can learn to implement symbol-sensitive counting. In Advances in Neural Information Processing Systems, volume 10, pages 87-93. The MIT Press, 1998.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 87-93
    • Rodriguez, P.1    Wiles, J.2
  • 70
    • 0003444646 scopus 로고
    • D. E. Rumelhart and J. L. McClelland, editors, MIT Press
    • D. E. Rumelhart and J. L. McClelland, editors. Parallel Distributed Processing, volume 1. MIT Press, 1986.
    • (1986) Parallel Distributed Processing , vol.1
  • 71
    • 0000108169 scopus 로고    scopus 로고
    • Probabilistic incremental program evolution
    • R. P. lustowicz and J. Schmidhuber. Probabilistic incremental program evolution. Evolutionary Computation, 5(2):123-141, 1997.
    • (1997) Evolutionary Computation , vol.5 , Issue.2 , pp. 123-141
    • lustowicz, R.P.1    Schmidhuber, J.2
  • 72
    • 0032208296 scopus 로고    scopus 로고
    • Learning team strategies: Soccer case studies
    • R. P. lustowicz, M. A. Wiering, and J. Schmidhuber. Learning team strategies: Soccer case studies. Machine Learning, 33(2/ 3):263-282, 1998.
    • (1998) Machine Learning , vol.33 , Issue.2-3 , pp. 263-282
    • lustowicz, R.P.1    Wiering, M.A.2    Schmidhuber, J.3
  • 76
    • 0000728324 scopus 로고
    • Reinforcement learning in Markovian and non-Markovian environments
    • D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Morgan Kaufmann
    • J. Schmidhuber. Reinforcement learning in Markovian and non-Markovian environments. In D. S. Lippman, J. E. Moody, and D. S. Touretzky, editors, Advances in Neural Information Processing Systems 3 (NIPS 3 pages 500-506. Morgan Kaufmann, 1991.
    • (1991) Advances in Neural Information Processing Systems 3 (NIPS , vol.3 , pp. 500-506
    • Schmidhuber, J.1
  • 77
    • 0000053463 scopus 로고
    • 3) time complexity learning algorithm for fully recurrent continually running networks
    • 3) time complexity learning algorithm for fully recurrent continually running networks. Neural Computation, 4(2):243-248, 1992.
    • (1992) Neural Computation , vol.4 , Issue.2 , pp. 243-248
    • Schmidhuber, J.1
  • 78
    • 0346377064 scopus 로고
    • Learning to control fast-weight memories: An alternative to recurrent nets
    • J. Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent nets. Neural Computation, 4(1):131-139, 1992.
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 131-139
    • Schmidhuber, J.1
  • 80
    • 1642358077 scopus 로고    scopus 로고
    • Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit
    • J. Schmidhuber. Hierarchies of generalized Kolmogorov complexities and nonenumerable universal measures computable in the limit. International Journal of Foundations of Computer Science, 13(4):587-612, 2002.
    • (2002) International Journal of Foundations of Computer Science , vol.13 , Issue.4 , pp. 587-612
    • Schmidhuber, J.1
  • 81
    • 84937439050 scopus 로고    scopus 로고
    • The Speed Prior: A new simplicity measure yielding near-optimal computable predictions
    • J. Kivinen and R. H. Sloan, editors, Proceedings of the 15th Annual Conference on Computational Learning Theory COLT 2002, Springer, Sydney, Australia
    • J. Schmidhuber. The Speed Prior: A new simplicity measure yielding near-optimal computable predictions. In J. Kivinen and R. H. Sloan, editors, Proceedings of the 15th Annual Conference on Computational Learning Theory (COLT 2002), Lecture Notes in Artificial Intelligence, pages 216-228. Springer, Sydney, Australia, 2002.
    • (2002) Lecture Notes in Artificial Intelligence , pp. 216-228
    • Schmidhuber, J.1
  • 83
    • 34250002773 scopus 로고    scopus 로고
    • odel machines: Self-referential universal problem solvers making provably optimal self-improvements. Technical Report IDSIA-19-03, arXiv:cS.LO/0309048, IDSIA, Manno-Lugano, Switzerland, 2003.
    • odel machines: Self-referential universal problem solvers making provably optimal self-improvements. Technical Report IDSIA-19-03, arXiv:cS.LO/0309048, IDSIA, Manno-Lugano, Switzerland, 2003.
  • 84
    • 34250026431 scopus 로고    scopus 로고
    • J. Schmidhuber. The new AI: General & sound & relevant for physics. Technical Report TR IDSIA-04-03, Version 1.0, cs.AI/0302012 v1, February 2003
    • J. Schmidhuber. The new AI: General & sound & relevant for physics. Technical Report TR IDSIA-04-03, Version 1.0, cs.AI/0302012 v1, February 2003.
  • 86
    • 33646236328 scopus 로고    scopus 로고
    • Completely self-referential optimal reinforcement learners
    • W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors, Artificial Neural Networks: Biological Inspirations, ICANN 2005, Springer-Verlag Berlin Heidelberg, Plenary talk
    • J. Schmidhuber. Completely self-referential optimal reinforcement learners. In W. Duch, J. Kacprzyk, E. Oja, and S. Zadrozny, editors, Artificial Neural Networks: Biological Inspirations - ICANN 2005, LNCS 3697, pages 223-233. Springer-Verlag Berlin Heidelberg, 2005. Plenary talk.
    • (2005) LNCS , vol.3697 , pp. 223-233
    • Schmidhuber, J.1
  • 87
    • 77649245309 scopus 로고    scopus 로고
    • odel machines: Towards a technical justification of consciousness
    • D. Kudenko, D. Kazakov, and E. Alonso, editors, Adaptive Agents and Multi-Agent Systems III, Springer Verlag
    • odel machines: Towards a technical justification of consciousness. In D. Kudenko, D. Kazakov, and E. Alonso, editors, Adaptive Agents and Multi-Agent Systems III (LNCS 3394), pages 1-23. Springer Verlag, 2005.
    • (2005) LNCS , vol.3394 , pp. 1-23
    • Schmidhuber, J.1
  • 89
    • 33745616086 scopus 로고    scopus 로고
    • Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts
    • J. Schmidhuber. Developmental robotics, optimal artificial curiosity, creativity, music, and the fine arts. Connection Science, 18(2):173-187, 2006.
    • (2006) Connection Science , vol.18 , Issue.2 , pp. 173-187
    • Schmidhuber, J.1
  • 90
    • 33745631389 scopus 로고    scopus 로고
    • odel machines: Fully self-referential optimal universal problem solvers
    • B. Goertzel and C. Pennachin, editors, Springer Verlag, in press
    • odel machines: Fully self-referential optimal universal problem solvers. In B. Goertzel and C. Pennachin, editors, Artificial General Intelligence. Springer Verlag, in press, 2006.
    • (2006) Artificial General Intelligence
    • Schmidhuber, J.1
  • 92
    • 34249979494 scopus 로고    scopus 로고
    • J. Schmidhuber and B. Bakker. NIPS 2003 RNNaissance workshop on recurrent neural networks, Whistler, CA, 2003. http://www.idsia.ch/ ~juergen/rnnaissance.html.
    • J. Schmidhuber and B. Bakker. NIPS 2003 RNNaissance workshop on recurrent neural networks, Whistler, CA, 2003. http://www.idsia.ch/ ~juergen/rnnaissance.html.
  • 94
    • 0036715804 scopus 로고    scopus 로고
    • Learning nonregular languages: A comparison of simple recurrent networks and LSTM
    • J. Schmidhuber, F. Gers, and D. Eck. Learning nonregular languages: A comparison of simple recurrent networks and LSTM. Neural Computation 14(9):2039-2041, 2002.
    • (2002) Neural Computation , vol.14 , Issue.9 , pp. 2039-2041
    • Schmidhuber, J.1    Gers, F.2    Eck, D.3
  • 97
    • 0000156236 scopus 로고    scopus 로고
    • Reinforcement learning with self-modifying policies
    • S. Thrun and L. Pratt, editors, Kluwer
    • J. Schmidhuber, J. Zhao, and N. Schraudolph. Reinforcement learning with self-modifying policies. In S. Thrun and L. Pratt, editors, Learning to learn, pages 293-309. Kluwer, 1997.
    • (1997) Learning to learn , pp. 293-309
    • Schmidhuber, J.1    Zhao, J.2    Schraudolph, N.3
  • 99
    • 84940644968 scopus 로고
    • A mathematical theory of communication (parts I and II)
    • C. E. Shannon. A mathematical theory of communication (parts I and II). Bell System Technical Journal, XXVII:379-423, 1948.
    • (1948) Bell System Technical Journal , vol.27 , pp. 379-423
    • Shannon, C.E.1
  • 102
    • 85028095895 scopus 로고    scopus 로고
    • K. Sims. Evolving virtual creatures. In Andrew Glassner, editor, Proceedings of SIGGRAPH'94 (Orlando, Florida, July 1994), Computer Graphics Proceedings, Annual Conference, pages 15-22. ACM SIGGRAPH, ACM Press, jul 1994. ISBN 0-89791-667-0.
    • K. Sims. Evolving virtual creatures. In Andrew Glassner, editor, Proceedings of SIGGRAPH'94 (Orlando, Florida, July 1994), Computer Graphics Proceedings, Annual Conference, pages 15-22. ACM SIGGRAPH, ACM Press, jul 1994. ISBN 0-89791-667-0.
  • 103
    • 0033614933 scopus 로고    scopus 로고
    • Detonator of the population explosion
    • V. Smil. Detonator of the population explosion. Nature, 400:415, 1999.
    • (1999) Nature , vol.400 , pp. 415
    • Smil, V.1
  • 104
    • 4544279425 scopus 로고
    • A formal theory of inductive inference. Part I
    • R. J. Solomonoff. A formal theory of inductive inference. Part I. Information and Control, 7:1-22, 1964.
    • (1964) Information and Control , vol.7 , pp. 1-22
    • Solomonoff, R.J.1
  • 107
    • 0000651310 scopus 로고
    • Time warping invariant neural networks
    • J. D. Cowan S. J. Hanson and C. L. Giles, editors, Morgan Kaufmann
    • G. Sun, H. Chen, and Y. Lee. Time warping invariant neural networks. In J. D. Cowan S. J. Hanson and C. L. Giles, editors, Advances in Neural Information Processing Systems 5, pages 180-187. Morgan Kaufmann, 1993.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 180-187
    • Sun, G.1    Chen, H.2    Lee, Y.3
  • 108
    • 3142639916 scopus 로고
    • The neural network pushdown automaton: Model, stack and learning simulations
    • Technical Report CS-TR-3118, University of Maryland, College Park, August
    • G. Z. Sun, C. Lee Giles, H. H. Chen, and Y. C. Lee. The neural network pushdown automaton: Model, stack and learning simulations. Technical Report CS-TR-3118, University of Maryland, College Park, August 1993.
    • (1993)
    • Sun, G.Z.1    Lee Giles, C.2    Chen, H.H.3    Lee, Y.C.4
  • 111
    • 0001164493 scopus 로고
    • Shift of bias for inductive concept learning
    • R. Michalski, J. Carbonell, and T. Mitchell, editors, Morgan Kaufmann, Los Altos, CA
    • P. Utgoff. Shift of bias for inductive concept learning. In R. Michalski, J. Carbonell, and T. Mitchell, editors, Machine Learning volume 2, pages 163-190. Morgan Kaufmann, Los Altos, CA, 1986.
    • (1986) Machine Learning , vol.2 , pp. 163-190
    • Utgoff, P.1
  • 114
    • 0001601299 scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • R. L. Watrous and G. M. Kuhn. Induction of finite-state languages using second-order recurrent networks. Neural Computation, 4:406-414, 1992.
    • (1992) Neural Computation , vol.4 , pp. 406-414
    • Watrous, R.L.1    Kuhn, G.M.2
  • 116
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • P. J. Werbos. Generalization of backpropagation with application to a recurrent gas market model. Neural Networks, 1, 1988.
    • (1988) Neural Networks , vol.1
    • Werbos, P.J.1
  • 117
    • 0008011457 scopus 로고
    • Neural networks, system identification, and control in the chemical industries
    • D. A. Sofge D. A. White, editor, Thomson Learning
    • P. J. Werbos. Neural networks, system identification, and control in the chemical industries. In D. A. Sofge D. A. White, editor, Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches, pages 283-356. Thomson Learning, 1992.
    • (1992) Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches , pp. 283-356
    • Werbos, P.J.1
  • 118
    • 0345073177 scopus 로고    scopus 로고
    • Reinforcement learning soccer teams with incomplete world models
    • M. A. Wiering, R. P. Salustowicz, and J. Schmidhuber. Reinforcement learning soccer teams with incomplete world models. Autonomous Robots 7(1):77-88, 1999.
    • (1999) Autonomous Robots , vol.7 , Issue.1 , pp. 77-88
    • Wiering, M.A.1    Salustowicz, R.P.2    Schmidhuber, J.3
  • 120
    • 34249991717 scopus 로고    scopus 로고
    • J. Wiles and J. Elman. Learning to count without a counter: A case study of dynamics and activation landscapes in recurrent networks. In In Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society, pages pages 482 - 487, Cambridge, MA, 1995. MIT Press.
    • J. Wiles and J. Elman. Learning to count without a counter: A case study of dynamics and activation landscapes in recurrent networks. In In Proceedings of the Seventeenth Annual Conference of the Cognitive Science Society, pages pages 482 - 487, Cambridge, MA, 1995. MIT Press.
  • 121
    • 0003594296 scopus 로고
    • Complexity of exact gradient computation algorithms for recurrent neural networks
    • NU-CCS-89-27, Boston: Northeastern University, College of Computer Science
    • R. J. Williams. Complexity of exact gradient computation algorithms for recurrent neural networks. Technical Report Technical Report NU-CCS-89-27, Boston: Northeastern University, College of Computer Science, 1989.
    • (1989) Technical Report Technical Report
    • Williams, R.J.1
  • 122
    • 0001609567 scopus 로고
    • An efficient gradient-based algorithm for on-line training of recurrent network trajectories
    • R. J. Williams and J. Peng. An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Computation, 4:491-501, 1990.
    • (1990) Neural Computation , vol.4 , pp. 491-501
    • Williams, R.J.1    Peng, J.2
  • 123
    • 84976922520 scopus 로고
    • Sequential behavior and learning in evolved dynamical neural networks
    • B. M. Yamauchi and R. D. Beer. Sequential behavior and learning in evolved dynamical neural networks. Adaptive Behavior, 2(3):219-246, 1994.
    • (1994) Adaptive Behavior , vol.2 , Issue.3 , pp. 219-246
    • Yamauchi, B.M.1    Beer, R.D.2
  • 124
    • 0027653233 scopus 로고
    • A review of evolutionary artificial neural networks
    • Xin Yao. A review of evolutionary artificial neural networks. International Journal of Intelligent Systems, 4:203-222, 1993.
    • (1993) International Journal of Intelligent Systems , vol.4 , pp. 203-222
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.