메뉴 건너뛰기




Volumn 8, Issue 6, 1996, Pages 1135-1178

The Dynamics of Discrete-Time Computation, with Application to Recurrent Neural Networks and Finite State Machine Extraction

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; ARTIFICIAL NEURAL NETWORK; TIME;

EID: 0030586641     PISSN: 08997667     EISSN: None     Source Type: Journal    
DOI: 10.1162/neco.1996.8.6.1135     Document Type: Article
Times cited : (156)

References (45)
  • 1
    • 0014563228 scopus 로고
    • On the relevance of abstract algebra to control theory
    • Arbib, M. A., and Zeiger, H. P. 1969. On the relevance of abstract algebra to control theory. Automatica 5, 589-606.
    • (1969) Automatica , vol.5 , pp. 589-606
    • Arbib, M.A.1    Zeiger, H.P.2
  • 2
    • 84977060605 scopus 로고    scopus 로고
    • On the dynamics of small continuous-time recurrent neural networks
    • Beer, R. D. 1996. On the dynamics of small continuous-time recurrent neural networks. Adaptive Behavior 3(4), 471-511.
    • (1996) Adaptive Behavior , vol.3 , Issue.4 , pp. 471-511
    • Beer, R.D.1
  • 3
    • 85009367586 scopus 로고
    • Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
    • Springer-Verlag, Berlin
    • Bowen, R. 1975. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, Vol. 470. Springer-Verlag, Berlin.
    • (1975) Lecture Notes in Mathematics , vol.470
    • Bowen, R.1
  • 5
    • 0038948512 scopus 로고
    • Relaxing the symmetric weight condition for convergent dynamics in discrete-time recurrent networks
    • April
    • Casey, M. 1995a. Relaxing the symmetric weight condition for convergent dynamics in discrete-time recurrent networks. Institute for Neural Computation Tech. Rep. Series No. INC-9503, April.
    • (1995) Institute for Neural Computation Tech. Rep. Series No. INC-9503
    • Casey, M.1
  • 8
    • 0039812616 scopus 로고
    • Observing complexity and the complexity of observation
    • H. Atmanspacher, ed., Springer-Verlag, Berlin
    • Crutchfield, J. P. 1994a. Observing complexity and the complexity of observation. In Inside versus Outside, H. Atmanspacher, ed., pp. 235-272. Springer-Verlag, Berlin.
    • (1994) Inside Versus Outside , pp. 235-272
    • Crutchfield, J.P.1
  • 9
    • 33845297701 scopus 로고
    • The calculi of emergence: Computation, dynamics, and induction
    • Crutchfield, J. P. 1994b. The calculi of emergence: Computation, dynamics, and induction. Physica D, 75, 11-54.
    • (1994) Physica D , vol.75 , pp. 11-54
    • Crutchfield, J.P.1
  • 11
    • 0000909837 scopus 로고
    • Inferring statistical complexity
    • Crutchfield, J. P., and Young, K. 1989b. Inferring statistical complexity. Phys. Rev. Let. 63, 105-108.
    • (1989) Phys. Rev. Let. , vol.63 , pp. 105-108
    • Crutchfield, J.P.1    Young, K.2
  • 14
    • 0010207961 scopus 로고
    • Representation and structure in connectionist models
    • Center for Research in Language, University of California, San Diego, La Jolla, CA, August
    • Elman, J. L. 1989. Representation and structure in connectionist models. Tech. Rep. 8903, Center for Research in Language, University of California, San Diego, La Jolla, CA, August.
    • (1989) Tech. Rep. 8903
    • Elman, J.L.1
  • 16
    • 0001327717 scopus 로고
    • Learning and extracting finite state automata with second-order recurrent neural networks
    • Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z., and Lee, Y. C. 1992. Learning and extracting finite state automata with second-order recurrent neural networks. Neural Comp. 4, 393-405.
    • (1992) Neural Comp. , vol.4 , pp. 393-405
    • Giles, C.L.1    Miller, C.B.2    Chen, D.3    Chen, H.H.4    Sun, G.Z.5    Lee, Y.C.6
  • 17
    • 37049182192 scopus 로고
    • Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics
    • Grebogi, C., Ott, E., and Yorke, J. A. 1987. Chaos, strange attractors, and fractal basin boundaries in nonlinear dynamics. Science 238 632-638.
    • (1987) Science , vol.238 , pp. 632-638
    • Grebogi, C.1    Ott, E.2    Yorke, J.A.3
  • 19
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J. J. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554-2558.
    • (1982) Proc. Natl. Acad. Sci. U.S.A. , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 21
    • 0002046921 scopus 로고
    • Fool's Gold: Extracting finite state machines from recurrent network dynamics
    • J. D. Cowan, G. Tesauro, and J. Alspector, eds., Morgan Kaufmann, San Mateo, CA
    • Kolen, J. F. 1994. Fool's Gold: Extracting finite state machines from recurrent network dynamics. In Advances in Neural Information Processing Systems 6, J. D. Cowan, G. Tesauro, and J. Alspector, eds., pp. 501-508. Morgan Kaufmann, San Mateo, CA.
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 501-508
    • Kolen, J.F.1
  • 22
    • 0039944187 scopus 로고
    • Generation of rhythmic motor patterns
    • H. M. Pinsker and W. D. Willis, Jr., eds., Raven Press, New York
    • Kristan, W. B., Jr. 1980. Generation of rhythmic motor patterns. In Information Processing in the Nervous System, H. M. Pinsker and W. D. Willis, Jr., eds., pp. 241-261, Raven Press, New York.
    • (1980) Information Processing in the Nervous System , pp. 241-261
    • Kristan Jr., W.B.1
  • 23
    • 0000535797 scopus 로고
    • A convergence result for learning in recurrent neural networks
    • Kuan, C. M., Hornik, K., and White, H. 1994. A convergence result for learning in recurrent neural networks. Neural Comp. 6, 420.
    • (1994) Neural Comp. , vol.6 , pp. 420
    • Kuan, C.M.1    Hornik, K.2    White, H.3
  • 25
    • 34250112778 scopus 로고
    • On the concept of attractor
    • Milnor, J. 1985. On the concept of attractor. Commun. Math. Phys. 99, 177-195.
    • (1985) Commun. Math. Phys. , vol.99 , pp. 177-195
    • Milnor, J.1
  • 27
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Narendra, K. S., and Parthasarathy, K. 1990. Identification and control of dynamical systems using neural networks. IEEE Transact. Neural Networks 1, 4-27.
    • (1990) IEEE Transact. Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 28
    • 84968499135 scopus 로고
    • Linear automata transformations
    • Nerode, A. 1958. Linear automata transformations. Proc. Am. Math. Soc. 9, 541-544.
    • (1958) Proc. Am. Math. Soc. , vol.9 , pp. 541-544
    • Nerode, A.1
  • 29
    • 0028733199 scopus 로고
    • Constructing deterministic finite-state automata in sparse recurrent neural networks
    • Omlin, C., and Giles, C. 1994. Constructing deterministic finite-state automata in sparse recurrent neural networks. IEEE Int. Conf. Neural Networks (ICNN'94) 1732-1737.
    • (1994) IEEE Int. Conf. Neural Networks (ICNN'94) , pp. 1732-1737
    • Omlin, C.1    Giles, C.2
  • 30
    • 0001460434 scopus 로고
    • The induction of dynamic recognizers
    • Pollack J. B. 1991. The induction of dynamic recognizers. Machine Learn. 7 227-252.
    • (1991) Machine Learn. , vol.7 , pp. 227-252
    • Pollack, J.B.1
  • 35
    • 84957799546 scopus 로고
    • Essentail dynamical structure in learnable autonomous robots
    • Advances in Artificial Life, F. Moran, A. Moreno, J. J. Merelo, and P. Chacon, eds., Springer-Verlag, New York
    • Tani, J. 1995. Essentail dynamical structure in learnable autonomous robots. In Advances in Artificial Life, F. Moran, A. Moreno, J. J. Merelo, and P. Chacon, eds., Lecture Notes in Artificial Intelligence 929, pp. 721-732. Springer-Verlag, New York.
    • (1995) Lecture Notes in Artificial Intelligence , vol.929 , pp. 721-732
    • Tani, J.1
  • 36
    • 2342474266 scopus 로고
    • Fixed points in two-neuron discrete time recurrent networks: Stability and bifurcation considerations
    • Institute for Advanced Computer Studies, University of Maryland, College Park, MD
    • Tino, P., Horne, B. G., and Giles, C. L. 1995a. Fixed points in two-neuron discrete time recurrent networks: Stability and bifurcation considerations. Tech. Rep. UMIACS-TR-95-51 and CS-TR-3461, Institute for Advanced Computer Studies, University of Maryland, College Park, MD.
    • (1995) Tech. Rep. UMIACS-TR-95-51 and CS-TR-3461
    • Tino, P.1    Horne, B.G.2    Giles, C.L.3
  • 37
    • 0002136163 scopus 로고
    • Finite state machines and recurrent neural networks - Automata and dynamical systems approaches
    • Institute for Advanced Computer Studies, University of Maryland, College Park, MD
    • Tino, P., Horne, B. G., Giles, C. L., and Collingwood, P. C. 1995b. Finite state machines and recurrent neural networks - Automata and dynamical systems approaches. Tech. Rep. UMIACS-TR-95-1 and CS-TR-3396, Institute for Advanced Computer Studies, University of Maryland, College Park, MD.
    • (1995) Tech. Rep. UMIACS-TR-95-1 and CS-TR-3396
    • Tino, P.1    Horne, B.G.2    Giles, C.L.3    Collingwood, P.C.4
  • 40
    • 84960561455 scopus 로고
    • On computable numbers, with an application to the Entscheidungs problem
    • Turing, A. M. 1936. On computable numbers, with an application to the Entscheidungs problem. Proc. London Math. Soc. Ser. 2-42, 230-265.
    • (1936) Proc. London Math. Soc. Ser. , vol.2-42 , pp. 230-265
    • Turing, A.M.1
  • 41
    • 0000631656 scopus 로고
    • Period doublings to chaos in a simple neural network: An analytical proof
    • Wang, X. 1991. Period doublings to chaos in a simple neural network: An analytical proof. Complex Syst. 5(4), 425-441.
    • (1991) Complex Syst. , vol.5 , Issue.4 , pp. 425-441
    • Wang, X.1
  • 42
    • 0001601299 scopus 로고    scopus 로고
    • Induction of finite-state languages using second-order recurrent networks
    • Watrous, R. L., and Kuhn, G. M. Induction of finite-state languages using second-order recurrent networks. Neural Comp. 4, 406-414.
    • Neural Comp. , vol.4 , pp. 406-414
    • Watrous, R.L.1    Kuhn, G.M.2
  • 44
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent networks
    • Williams, R. J., and Zipser, D. 1989. A learning algorithm for continually running fully recurrent networks. Neural Comp. 1, 270-280.
    • (1989) Neural Comp. , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 45
    • 84976922520 scopus 로고
    • Sequential behavior and learning in evolved dynamical neural networks
    • Yamauchi, B., and Beer, R. D. 1994. Sequential behavior and learning in evolved dynamical neural networks. Adapt. Behav. 2(3), 219-246.
    • (1994) Adapt. Behav. , vol.2 , Issue.3 , pp. 219-246
    • Yamauchi, B.1    Beer, R.D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.