메뉴 건너뛰기




Volumn 11, Issue 1, 1999, Pages 5-40

A recurrent neural network that learns to count

Author keywords

Context free languages; Dynamical systems; Recurrent neural network

Indexed keywords


EID: 0033098329     PISSN: 09540091     EISSN: None     Source Type: Journal    
DOI: 10.1080/095400999116340     Document Type: Article
Times cited : (206)

References (43)
  • 2
    • 0002311275 scopus 로고
    • Innate biases and critical periods: Combining evolution and learning the acquisition of syntax
    • Cambridge, MA: MIT Press
    • Batali, J. (1994) Innate biases and critical periods: combining evolution and learning the acquisition of syntax. Artificial Life IV, pp. 160-171. Cambridge, MA: MIT Press.
    • (1994) Artificial Life Iv , pp. 160-171
    • Batali, J.1
  • 3
    • 0000392660 scopus 로고    scopus 로고
    • Analysis of dynamical recognizers
    • Blair, A.D. & Pollack, J.B. (1997) Analysis of dynamical recognizers. Neural Computation, 9, 1127-1142.
    • (1997) Neural Computation , vol.9 , pp. 1127-1142
    • Blair, A.D.1    Pollack, J.B.2
  • 4
    • 0000145864 scopus 로고
    • Exploring the symbolic/subsymbolic continuum: A case study of RAAM
    • J. Dinsmore (Ed.), Hillsdale, NJ: Lawrence Erlbaum Associates
    • Blank, D.S., Meeden, L.A. & Marshall, J.B. (1992) Exploring the symbolic/subsymbolic continuum: a case study of RAAM. In J. Dinsmore (Ed.), Closing the Gap: Symbolism vs. Connectionism, pp. 113-147. Hillsdale, NJ: Lawrence Erlbaum Associates.
    • (1992) Closing the Gap: Symbolism Vs. Connectionism , pp. 113-147
    • Blank, D.S.1    Meeden, L.A.2    Marshall, J.B.3
  • 5
    • 0030586641 scopus 로고    scopus 로고
    • The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
    • Casey, M. (1996) The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction. Neural Computation, 8, 1135-1178.
    • (1996) Neural Computation , vol.8 , pp. 1135-1178
    • Casey, M.1
  • 7
    • 21144473322 scopus 로고
    • Learning simple arithmetic procedures
    • Cottrell, G.W. & Tsung, F.-S. (1993) Learning simple arithmetic procedures. Connection Science, 5, 37-58.
    • (1993) Connection Science , vol.5 , pp. 37-58
    • Cottrell, G.W.1    Tsung, F.-S.2
  • 8
    • 0009401446 scopus 로고
    • Learning context-free grammars: Capabilities and limitations of a recurrent neural network with an external memory stack
    • Hillsdale, NJ: Lawrence Erlbaum Associates
    • Das, S., Giles, C.L. & Sun, G.Z. (1992) Learning context-free grammars: capabilities and limitations of a recurrent neural network with an external memory stack. Proceedings of the 14th Annual Conference of the Cognitive Science Society, pp. 791-796. Hillsdale, NJ: Lawrence Erlbaum Associates.
    • (1992) Proceedings of the 14th Annual Conference of the Cognitive Science Society , pp. 791-796
    • Das, S.1    Giles, C.L.2    Sun, G.Z.3
  • 9
    • 0001419757 scopus 로고
    • Distributed representations, simple recurrent networks, and grammatical structure
    • Elman, J.L. (1991) Distributed representations, simple recurrent networks, and grammatical structure. Machine Learning, 7, 195-225.
    • (1991) Machine Learning , vol.7 , pp. 195-225
    • Elman, J.L.1
  • 10
    • 84953506049 scopus 로고
    • Extraction, insertion and refinement of symbolic rules in dynamically driven recurrent neural networks
    • Giles, C.L. & Omlin, C.W. (1993) Extraction, insertion and refinement of symbolic rules in dynamically driven recurrent neural networks. Connection Science, 5, 307-337.
    • (1993) Connection Science , vol.5 , pp. 307-337
    • Giles, C.L.1    Omlin, C.W.2
  • 11
    • 0000651312 scopus 로고
    • Extracting and learning an unknown grammar with recurrent neural networks
    • J.E. Moody, S.J. Hanson & R.P. Lippmann (Eds), San Mateo, CA: Morgan Kaufman
    • Giles, C.L., Sun, G.Z., Chen, H.H., Lee, Y.C. & Chen, D. (1992) Extracting and learning an unknown grammar with recurrent neural networks. In J.E. Moody, S.J. Hanson & R.P. Lippmann (Eds), Advances in Information Processing 4, pp. 317-323. San Mateo, CA: Morgan Kaufman.
    • (1992) Advances in Information Processing , vol.4 , pp. 317-323
    • Giles, C.L.1    Sun, G.Z.2    Chen, H.H.3    Lee, Y.C.4    Chen, D.5
  • 14
    • 0021277713 scopus 로고
    • Brain potentials during reading reflect word expectancy and semantic association
    • Kutas, M. & Hillyard, S.A. (1984) Brain potentials during reading reflect word expectancy and semantic association. Nature, 307, 161-163.
    • (1984) Nature , vol.307 , pp. 161-163
    • Kutas, M.1    Hillyard, S.A.2
  • 15
    • 21844516019 scopus 로고
    • Tail-recursive distributed representations and simple recurrent networks
    • Kwasny, S.C. & Kalman, B.L. (1995) Tail-recursive distributed representations and simple recurrent networks. Connection Science, 7, 61-80.
    • (1995) Connection Science , vol.7 , pp. 61-80
    • Kwasny, S.C.1    Kalman, B.L.2
  • 18
    • 0001723256 scopus 로고
    • Mechanisms of sentence processing: Assigning roles to constituents
    • IE. D.E. Rumelhart & J.L. McClelland (Eds), Cambridge, MA: MIT Press
    • McClelland, J.L. & Kawamoto, A.H. (1986) Mechanisms of sentence processing: assigning roles to constituents. IE. D.E. Rumelhart & J.L. McClelland (Eds), Parallel Distributed Processing, Vol. 2. Cambridge, MA: MIT Press.
    • (1986) Parallel Distributed Processing , vol.2
    • McClelland, J.L.1    Kawamoto, A.H.2
  • 19
    • 0009384340 scopus 로고
    • Script recognition with hierarchical feature maps
    • N. Sharkey (Ed.), Dordrecht: Kluwer Academic
    • Miikulainen, R. (1992) Script recognition with hierarchical feature maps. In N. Sharkey (Ed.), Connectionist Natural language Processing, pp. 196-214. Dordrecht: Kluwer Academic.
    • (1992) Connectionist Natural Language Processing , pp. 196-214
    • Miikulainen, R.1
  • 21
    • 0001460434 scopus 로고
    • The induction of dynamical recognizers
    • Pollack, J.B. (1991) The induction of dynamical recognizers. Machine Learning, 7, 227-252.
    • (1991) Machine Learning , vol.7 , pp. 227-252
    • Pollack, J.B.1
  • 22
    • 0025519291 scopus 로고
    • Recursive autoassociative memories
    • Pollack, J.B. (1990) Recursive autoassociative memories. Artificial Intelligence, 46, 77-105.
    • (1990) Artificial Intelligence , vol.46 , pp. 77-105
    • Pollack, J.B.1
  • 23
    • 0002088049 scopus 로고
    • Recursive autoassociative memory: Devising compositional distributed representations
    • Hillsdale, NJ: Lawrence Erlbaurn Associates
    • Pollack, J.B. (1988) Recursive autoassociative memory: devising compositional distributed representations. Proceedings of the 10th Annual Conference of the Cognitive Science Society, pp. 33-38. Hillsdale, NJ: Lawrence Erlbaurn Associates.
    • (1988) Proceedings of the 10th Annual Conference of the Cognitive Science Society , pp. 33-38
    • Pollack, J.B.1
  • 24
    • 0002420356 scopus 로고
    • Cascaded back propagation on dynamic connectionist networks
    • Hillsdale, NJ: Lawrence Erlbaum Associates
    • Pollack, J.B. (1987a) Cascaded back propagation on dynamic connectionist networks. Proceedings of the 9th Annual Conference of the Cognitive Science Society, pp. 391-404. Hillsdale, NJ: Lawrence Erlbaum Associates.
    • (1987) Proceedings of the 9th Annual Conference of the Cognitive Science Society , pp. 391-404
    • Pollack, J.B.1
  • 25
    • 84875559391 scopus 로고
    • PhD dissertation, Computer Science Department, University of Illinois at Urbana-Champaign
    • Pollack, J.B. (1987b) On Connectionist Models of Language, PhD dissertation, Computer Science Department, University of Illinois at Urbana-Champaign.
    • (1987) On Connectionist Models of Language
    • Pollack, J.B.1
  • 27
    • 0002098405 scopus 로고    scopus 로고
    • A recurrent neural network can learn to implement symbol-sensitive counting
    • M. Jordan, M. Kearns & S. Solla (Eds), Cambridge, MA: MIT Press
    • Rodriguez, P. & Wiles, J. (1998) A recurrent neural network can learn to implement symbol-sensitive counting. In M. Jordan, M. Kearns & S. Solla (Eds), Advances in Neural Information Processing Systems 10, pp. 87-93. Cambridge, MA: MIT Press.
    • (1998) Advances in Neural Information Processing Systems , vol.10 , pp. 87-93
    • Rodriguez, P.1    Wiles, J.2
  • 28
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D.E. Rumelhart & J.L. McClelland (Eds), Cambridge, MA: MIT Press
    • Rumelhart, D.E., Hinton, G.E. & Williams, R.J. (1986) Learning internal representations by error propagation. In D.E. Rumelhart & J.L. McClelland (Eds), Parallel Distributed Processing, Vol. 2. Cambridge, MA: MIT Press.
    • (1986) Parallel Distributed Processing , vol.2
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 30
    • 0009380241 scopus 로고
    • PhD dissertation, New Brunswick Rutgers, The State University of New Jersey
    • Siegelmann, H.T. (1993) Foundations of Recurrent Neural Networks. PhD dissertation, New Brunswick Rutgers, The State University of New Jersey.
    • (1993) Foundations of Recurrent Neural Networks
    • Siegelmann, H.T.1
  • 31
    • 0001274675 scopus 로고
    • Learning sequential structure with the real-time recurrent learning algorithm
    • Smith, A.W. & Zipser, D. (1989) Learning sequential structure with the real-time recurrent learning algorithm. Interactional Journal of Neural Systems, 1, 125-131.
    • (1989) Interactional Journal of Neural Systems , vol.1 , pp. 125-131
    • Smith, A.W.1    Zipser, D.2
  • 32
    • 0001379398 scopus 로고
    • The story gestalt: A model of knowledge-intensive processes in text comprehension
    • St. John, M. (1992) The story Gestalt: a model of knowledge-intensive processes in text comprehension. Cognitive Science, 16, 271-306.
    • (1992) Cognitive Science , vol.16 , pp. 271-306
    • St John, M.1
  • 36
    • 84875563983 scopus 로고    scopus 로고
    • Recurrent networks are unstable in learning a simple context free language
    • in press
    • Tonkes, B. (1998) Recurrent networks are unstable in learning a simple context free language. 4th Biannual Australian Conference of Cognitive Science (in press).
    • (1998) 4th Biannual Australian Conference of Cognitive Science
    • Tonkes, B.1
  • 39
    • 0000032536 scopus 로고
    • Induction of finite-state automata using second order recurrent networks
    • J.E. Moody, S.J. Hanson & R.P. Lippmann (Eds), San Mateo, CA: Morgan Kaufman
    • Watrous, R.L. & Kuhn, G.M. (1992) Induction of finite-state automata using second order recurrent networks. In J.E. Moody, S.J. Hanson & R.P. Lippmann (Eds), Advances in Information Processing 4, pp. 309-316. San Mateo, CA: Morgan Kaufman.
    • (1992) Advances in Information Processing , vol.4 , pp. 309-316
    • Watrous, R.L.1    Kuhn, G.M.2
  • 42
    • 0002365180 scopus 로고
    • Learning to count without a counter: A case study of dynamics and activation landscapes in recurrent neural networks
    • Cambridge, MA: MIT Press
    • Wiles, J. & Elman, J.L. (1995) Learning to count without a counter: a case study of dynamics and activation landscapes in recurrent neural networks. Proceedings of the 17th Annual Conference of the Cognitive Science Society, pp. 482-487. Cambridge, MA: MIT Press.
    • (1995) Proceedings of the 17th Annual Conference of the Cognitive Science Society , pp. 482-487
    • Wiles, J.1    Elman, J.L.2
  • 43
    • 0003066062 scopus 로고
    • Experimental analysis of the real-time recurrent learning algorithm
    • Williams, R.J. & Zipser, D. (1989) Experimental analysis of the real-time recurrent learning algorithm. Connection Science, 1, 87-111.
    • (1989) Connection Science , vol.1 , pp. 87-111
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.