메뉴 건너뛰기




Volumn 7, Issue 6, 1996, Pages 1329-1338

Learning long-term dependencies in NARX recurrent neural networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 33646241633     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.548162     Document Type: Article
Times cited : (645)

References (38)
  • 1
    • 0000029787 scopus 로고
    • FIR and IIR synapses, a new neural network architecture for time series modeling
    • A. D. Back and A. C. Tsoi, "FIR and IIR synapses, a new neural network architecture for time series modeling," Neural Computa., vol. 3, no. 3, pp. 375-385, 1991.
    • (1991) Neural Computa. , vol.3 , Issue.3 , pp. 375-385
    • Back, A.D.1    Tsoi, A.C.2
  • 2
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient is difficult
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient is difficult," IEEE Trans. Neural Networks, vol. 5, pp. 157-166, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 3
    • 0025448276 scopus 로고
    • Nonlinear system identification using neural networks
    • S. Chen, S. A. Billings, and P. M. Grant, "Nonlinear system identification using neural networks," Int. J. Contr., vol. 51, no. 6, pp. 1191-1214, 1990.
    • (1990) Int. J. Contr. , vol.51 , Issue.6 , pp. 1191-1214
    • Chen, S.1    Billings, S.A.2    Grant, P.M.3
  • 4
    • 0344111838 scopus 로고
    • Recurrent networks and NARMA modeling
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann
    • J. Connor, L. E. Atlas, and D. R. Martin, "Recurrent networks and NARMA modeling." in Advances in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 301-308.
    • (1992) Advances in Neural Information Processing Systems , vol.4 , pp. 301-308
    • Connor, J.1    Atlas, L.E.2    Martin, D.R.3
  • 5
    • 84966250408 scopus 로고
    • Pseudo-orbit shadowing in the family of tent maps
    • E. Coven, I. Kan, and J. Yorke, "Pseudo-orbit shadowing in the family of tent maps," Trans. Amer. Med. Soc., vol. 308, pp. 227-241, 1988.
    • (1988) Trans. Amer. Med. Soc. , vol.308 , pp. 227-241
    • Coven, E.1    Kan, I.2    Yorke, J.3
  • 6
    • 0026895542 scopus 로고
    • The gamma model - A new neural model for temporal processing
    • B. de Vries and J. C. Principe, "The gamma model - A new neural model for temporal processing," Neural Networks, vol. 5, pp. 565-576, 1992.
    • (1992) Neural Networks , vol.5 , pp. 565-576
    • De Vries, B.1    Principe, J.C.2
  • 7
    • 26444565569 scopus 로고
    • Finding structure in time
    • J. E. Elman, "Finding structure in time," Cognitive Sci., vol. 14, pp. 179-211, 1990.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.E.1
  • 8
    • 0029291395 scopus 로고
    • Unified integration of explicit rules and learning by example in recurrent networks
    • P. Frasconi, M. Gori, M. Maggini, and G. Soda, "Unified integration of explicit rules and learning by example in recurrent networks," IEEE Trans. Knowledge Data Eng., vol. 7, pp. 340-346, 1995.
    • (1995) IEEE Trans. Knowledge Data Eng. , vol.7 , pp. 340-346
    • Frasconi, P.1    Gori, M.2    Maggini, M.3    Soda, G.4
  • 9
    • 0001657855 scopus 로고
    • Local feedback multilayered networks
    • P. Frasconi, M. Gori, and G. Soda, "Local feedback multilayered networks," Neural Computa. vol. 4, pp. 120-130, 1992.
    • (1992) Neural Computa. , vol.4 , pp. 120-130
    • Frasconi, P.1    Gori, M.2    Soda, G.3
  • 10
    • 33747960254 scopus 로고
    • Observability of neural-network behavior
    • J. D. Cowen, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann
    • M. Garzon and F. Botelho, "Observability of neural-network behavior," in Advances in Neural Information Processing Systems 6, J. D. Cowen, G. Tesauro, and J. Alspector, Eds. San Mateo, CA: Morgan Kaufmann, 1994, pp. 455-462.
    • (1994) Advances in Neural Information Processing Systems 6 , pp. 455-462
    • Garzon, M.1    Botelho, F.2
  • 11
    • 0039523391 scopus 로고
    • Representation and learning in recurrent neural-network architectures
    • C. L. Giles and B. G. Horne, "Representation and learning in recurrent neural-network architectures," in Proc. 8th Yale Wkshp. Adaptive Learning Syst., 1994, pp. 128-134.
    • (1994) Proc. 8th Yale Wkshp. Adaptive Learning Syst. , pp. 128-134
    • Giles, C.L.1    Horne, B.G.2
  • 12
    • 0011837459 scopus 로고
    • Scheduling of modular architectures for inductive inference of regular grammars
    • Amsterdam, The Netherlands, Aug.
    • M. Gori, M. Maggini, and G. Soda, "Scheduling of modular architectures for inductive inference of regular grammars," in Proc. ECAI'94 Wkshp. Combining Symbolic Connectionist Procedures, Amsterdam, The Netherlands, Aug. 1994, pp. 78-87.
    • (1994) Proc. ECAI'94 Wkshp. Combining Symbolic Connectionist Procedures , pp. 78-87
    • Gori, M.1    Maggini, M.2    Soda, G.3
  • 13
    • 0003331189 scopus 로고    scopus 로고
    • Hierarchical recurrent neural networks for long-term dependencies
    • Cambridge, MA: MIT Press
    • S. El Hihi and Y. Bengio, "Hierarchical recurrent neural networks for long-term dependencies," in Neural Information Processing Systems 8. Cambridge, MA: MIT Press, 1996.
    • (1996) Neural Information Processing Systems , vol.8
    • El Hihi, S.1    Bengio, Y.2
  • 15
    • 0001039722 scopus 로고
    • An experimental comparison of recurrent neural networks
    • Cambridge, MA: MIT Press
    • B. G. Horne and C. L. Giles, "An experimental comparison of recurrent neural networks," in Advances in Neural Information Processing Systems 7. Cambridge, MA: MIT Press, 1995, pp. 697-704.
    • (1995) Advances in Neural Information Processing Systems7 , pp. 697-704
    • Horne, B.G.1    Giles, C.L.2
  • 16
    • 0003792312 scopus 로고
    • Englewood Cliffs, NJ: Prentice-Hall
    • T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.
    • (1980) Linear Systems
    • Kailath, T.1
  • 19
    • 0022011031 scopus 로고
    • Input-output parametric models for nonlinear systems: Part I: Deterministic nonlinear systems
    • I. J. Leontaritis and S. A. Billings, "Input-output parametric models for nonlinear systems: Part I: Deterministic nonlinear systems," Int. J. Contr., vol. 41, no. 2, pp. 303-328, 1985.
    • (1985) Int. J. Contr. , vol.41 , Issue.2 , pp. 303-328
    • Leontaritis, I.J.1    Billings, S.A.2
  • 21
    • 0005316958 scopus 로고
    • Induction of multiscale temporal structure
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann
    • M. C. Mozer, "Induction of multiscale temporal structure," in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 275-282.
    • (1992) Neural Information Processing Systems 4 , pp. 275-282
    • Mozer, M.C.1
  • 22
    • 0025399567 scopus 로고
    • Identification and control of dynamical systems using neural networks
    • Mar.
    • K. S. Narendra and K. Parthasarathy, "Identification and control of dynamical systems using neural networks," IEEE Trans. Neural Networks, vol. 1, pp. 4-27, Mar. 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 4-27
    • Narendra, K.S.1    Parthasarathy, K.2
  • 23
    • 0001382203 scopus 로고
    • Neural networks and nonlinear adaptive filtering: Unifying concepts and new algorithms
    • O. Nerrand, P. Roussel-Ragot, L. Personnaz, G. Dreyfus, and S. Marcos, "Neural networks and nonlinear adaptive filtering: Unifying concepts and new algorithms," Neural Computa., vol. 5, pp. 165-199, 1993.
    • (1993) Neural Computa. , vol.5 , pp. 165-199
    • Nerrand, O.1    Roussel-Ragot, P.2    Personnaz, L.3    Dreyfus, G.4    Marcos, S.5
  • 25
    • 0028401031 scopus 로고
    • Neurocontrol of nonlinear dynamical systems with Kalman filter-trained recurrent networks
    • G. V. Puskorius and L. A. Feldkamp, "Neurocontrol of nonlinear dynamical systems with Kalman filter-trained recurrent networks," IEEE Trans. Neural Networks, vol. 5, pp. 279-297, 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 279-297
    • Puskorius, G.V.1    Feldkamp, L.A.2
  • 26
    • 0026626377 scopus 로고
    • Comparison of four neural-net learning methods for dynamic system identification
    • S.-Z. Qin, H.-T. Su, and T. J. McAvoy, "Comparison of four neural-net learning methods for dynamic system identification," IEEE Trans. Neural Networks, vol. 3, pp. 122-130, 1992.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 122-130
    • Qin, S.-Z.1    Su, H.-T.2    McAvoy, T.J.3
  • 28
    • 0001033889 scopus 로고
    • Learning complex, extended sequences using the principle of history compression
    • J. Schmidhuber, "Learning complex, extended sequences using the principle of history compression," Neural Computa., vol. 4, no. 2, pp. 234-242, 1992.
    • (1992) Neural Computa. , vol.4 , Issue.2 , pp. 234-242
    • Schmidhuber, J.1
  • 29
    • 0348068168 scopus 로고
    • Learning unambiguous reduced sequence descriptions
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann
    • _, "Learning unambiguous reduced sequence descriptions," in Advances in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 291-298.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 291-298
  • 30
    • 0026685375 scopus 로고
    • A structure by which a recurrent neural network can approximate a nonlinear dynamic system
    • July
    • D. R. Seidl and D. Lorenz, "A structure by which a recurrent neural network can approximate a nonlinear dynamic system," in Proc. Int. Joint Conf. Neural Networks, vol. 2, July 1991, pp. 709-714.
    • (1991) Proc. Int. Joint Conf. Neural Networks , vol.2 , pp. 709-714
    • Seidl, D.R.1    Lorenz, D.2
  • 31
    • 11244344305 scopus 로고    scopus 로고
    • Computational capabilities of recurrent narx neural networks
    • to be published. Also, Univ. Maryland, College Park, MD, Tech. Rep. UMIACS-TR-95-78 and CS-TR-3500
    • H. T. Siegelmann, B. G. Horne, and C. L. Giles, "Computational capabilities of recurrent narx neural networks," IEEE Trans. Syst., Man, Cybern., to be published. Also, Univ. Maryland, College Park, MD, Tech. Rep. UMIACS-TR-95-78 and CS-TR-3500.
    • IEEE Trans. Syst., Man, Cybern.
    • Siegelmann, H.T.1    Horne, B.G.2    Giles, C.L.3
  • 32
    • 0029255891 scopus 로고
    • On the computational power of neural networks
    • H. T. Siegelmann and E. D. Sontag, "On the computational power of neural networks," J. Comput. Syst. Sci., vol. 50, no. 1, pp. 132-150, 1995.
    • (1995) J. Comput. Syst. Sci. , vol.50 , Issue.1 , pp. 132-150
    • Siegelmann, H.T.1    Sontag, E.D.2
  • 34
    • 0026373081 scopus 로고
    • Identification of chemical processes using recurrent networks
    • H.-T. Su and T. J. McAvoy, "Identification of chemical processes using recurrent networks," in Proc. Amer. Contr. Conf., vol. 3, 1991, pp. 2314-2319.
    • (1991) Proc. Amer. Contr. Conf. , vol.3 , pp. 2314-2319
    • Su, H.-T.1    McAvoy, T.J.2
  • 35
    • 0026868901 scopus 로고
    • Long-term predictions of chemical processes using recurrent neural networks: A parallel training approach
    • H.-T. Su, T. J. McAvoy, and P. Werbo, "Long-term predictions of chemical processes using recurrent neural networks: A parallel training approach," Ind. Eng. Chem. Res., vol. 31, pp. 1338-1352, 1992.
    • (1992) Ind. Eng. Chem. Res. , vol.31 , pp. 1338-1352
    • Su, H.-T.1    McAvoy, T.J.2    Werbo, P.3
  • 36
  • 37
    • 0000358422 scopus 로고
    • Time series prediction by using a connectionist network with internal delay lines
    • A. S. Weigend and N. A. Gershenfeld, Eds. Reading, MA: Addison-Wesley
    • E. A. Wan, "Time series prediction by using a connectionist network with internal delay lines," in Time Series Prediction, A. S. Weigend and N. A. Gershenfeld, Eds. Reading, MA: Addison-Wesley, 1994, pp. 195-217.
    • (1994) Time Series Prediction , pp. 195-217
    • Wan, E.A.1
  • 38
    • 0001765578 scopus 로고
    • Gradient-based learning algorithms for recurrent networks and their computational complexity
    • Y. Chauvin and D. E. Rumelhart, Eds. Hillsdale, NJ: Lawrence Erlbaum, ch. 13
    • R. J. Williams and D. Zipser, "Gradient-based learning algorithms for recurrent networks and their computational complexity," in Backpropagation: Theory, Architectures, and Applications, Y. Chauvin and D. E. Rumelhart, Eds. Hillsdale, NJ: Lawrence Erlbaum, 1995, ch. 13, pp. 433-486.
    • (1995) Backpropagation: Theory, Architectures, and Applications , pp. 433-486
    • Williams, R.J.1    Zipser, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.