메뉴 건너뛰기




Volumn , Issue , 2005, Pages 1795-1802

Modeling systems with internal state using evolino

Author keywords

Evolution and Learning; Recurrent Neural Networks; Time series prediction

Indexed keywords

COMPUTATION THEORY; CONTROL NONLINEARITIES; LEARNING SYSTEMS; MAPPING; MATHEMATICAL MODELS; REGRESSION ANALYSIS;

EID: 32444434467     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1068009.1068315     Document Type: Conference Paper
Times cited : (57)

References (26)
  • 1
    • 0001410750 scopus 로고
    • A new factor in evolution
    • J. M. Baldwin. A new factor in evolution. The American Naturalist, 30:441-451, 536-553, 1896.
    • (1896) The American Naturalist , vol.30 , pp. 441-451
    • Baldwin, J.M.1
  • 2
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2):157-166, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 3
    • 0032594851 scopus 로고    scopus 로고
    • Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks
    • September
    • S. Chen. Combined genetic algorithm optimization and regularized orthogonal least squares learning for radial basis function networks. IEEE Transactions on Neural Networks, 10(5), September 1999.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5
    • Chen, S.1
  • 4
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems, 2:303-314, 1989.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 5
    • 84878533948 scopus 로고    scopus 로고
    • Evolutionary neural networks for nonlinear dynamics modeling
    • Parallel Problem Solving from Nature 98
    • I. D. Falco, A. Iazzetta, P. Natale, and E. Tarantino. Evolutionary neural networks for nonlinear dynamics modeling. In Parallel Problem Solving from Nature 98, volume 1498 of Lectures Notes in Computer Science, pages 593-602, 1998.
    • (1998) Lectures Notes in Computer Science , vol.1498 , pp. 593-602
    • Falco, I.D.1    Iazzetta, A.2    Natale, P.3    Tarantino, E.4
  • 6
    • 0035505385 scopus 로고    scopus 로고
    • LSTM recurrent networks learn simple context free and context sensitive languages
    • F. A. Gers and J. Schmidhuber. LSTM recurrent networks learn simple context free and context sensitive languages. IEEE Transactions on Neural Networks, 12(6):1333-1340, 2001.
    • (2001) IEEE Transactions on Neural Networks , vol.12 , Issue.6 , pp. 1333-1340
    • Gers, F.A.1    Schmidhuber, J.2
  • 7
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • F. A. Gers, J. Schmidhuber, and F. Cummins. Learning to forget: Continual prediction with LSTM. Neural Computation, 12(10):2451-2471, 2000.
    • (2000) Neural Computation , vol.12 , Issue.10 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 10
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • H. Jaeger. Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication. Science, 304:78-80, 2004.
    • (2004) Science , vol.304 , pp. 78-80
    • Jaeger, H.1
  • 11
    • 32444433524 scopus 로고    scopus 로고
    • H. Jaeger, http://www.faculty.iu-bremen.de/hjaeger/courses/seminarspring04/ esnstandardslides.pdf, 2004.
    • (2004)
    • Jaeger, H.1
  • 12
    • 0030692262 scopus 로고    scopus 로고
    • RBF neural network, basis functions and genetic algorithms
    • Piscataway, NJ, IEEE
    • E. P. Maillard and D. Gueriot. RBF neural network, basis functions and genetic algorithms. In IEEE International Conference on Neural Networks, pages 2187-2190, Piscataway, NJ, 1997. IEEE.
    • (1997) IEEE International Conference on Neural Networks , pp. 2187-2190
    • Maillard, E.P.1    Gueriot, D.2
  • 13
    • 84901478283 scopus 로고    scopus 로고
    • Evolutionary and coevolutionary approaches to time series prediction using generalized multi-layer perceptrons
    • Washington B.C., July
    • H. A. Mayer and R. Schwaiger. Evolutionary and coevolutionary approaches to time series prediction using generalized multi-layer perceptrons. In Congress on Evolutionary Computation, Washington B.C., July 1999.
    • (1999) Congress on Evolutionary Computation
    • Mayer, H.A.1    Schwaiger, R.2
  • 15
    • 0002318273 scopus 로고    scopus 로고
    • Efficient reinforcement learning through symbiotic evolution
    • D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learning through symbiotic evolution. Machine Learning, 22:11-32, 1996.
    • (1996) Machine Learning , vol.22 , pp. 11-32
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 16
    • 0002898235 scopus 로고
    • Learning and evolution in neural networks
    • S. Nolfi, J. L. Elman, and D. Parisi. Learning and evolution in neural networks. Adaptive Behavior, 2:5-28, 1994.
    • (1994) Adaptive Behavior , vol.2 , pp. 5-28
    • Nolfi, S.1    Elman, J.L.2    Parisi, D.3
  • 18
    • 0003838146 scopus 로고
    • The utility driven dynamic error propagation network
    • Cambridge University Engineering Department
    • A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network. Technical Report CUED/F-INFENG/TR.1, Cambridge University Engineering Department, 1987.
    • (1987) Technical Report , vol.CUED-F-INFENG-TR.1
    • Robinson, A.J.1    Fallside, F.2
  • 20
    • 0025503558 scopus 로고
    • Backpropagation through time: What does it do and how to do it
    • P. Werbos. Backpropagation through time: what does it do and how to do it. In Proceedings of IEEE, volume 78, pages 1550-1560, 1990.
    • (1990) Proceedings of IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.1
  • 21
    • 0030197198 scopus 로고    scopus 로고
    • Cooperative-Competitive genetic evolution of radial basis function centers and widths for time series prediction
    • B. Whitehead and T. D. Choate. Cooperative-Competitive genetic evolution of radial basis function centers and widths for time series prediction. IEEE Transactions on Neural Networks, 7(4):869-880, 1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.4 , pp. 869-880
    • Whitehead, B.1    Choate, T.D.2
  • 22
    • 0003215604 scopus 로고
    • Delta-Coding: An iterative search strategy for genetic algorithms
    • R. K. Belew and L. B. Booker, editors, San Francisco, CA: Morgan Kaufmann
    • D. Whitley, K. Mathias, and P. Fitzhorn. Delta-Coding: An iterative search strategy for genetic algorithms. In R. K. Belew and L. B. Booker, editors, Proceedings of the Fourth International Conference on Genetic Algorithms, pages 77-84. San Francisco, CA: Morgan Kaufmann, 1991.
    • (1991) Proceedings of the Fourth International Conference on Genetic Algorithms , pp. 77-84
    • Whitley, D.1    Mathias, K.2    Fitzhorn, P.3
  • 23
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent networks
    • R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent networks. Neural Computation, 1(2):270-280, 1989.
    • (1989) Neural Computation , vol.1 , Issue.2 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 24
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423-1447, 1999.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1
  • 25
    • 0031143030 scopus 로고    scopus 로고
    • A new evolutionary system for evolving artificial neural networks
    • May
    • X. Yao and Y. Liu. A new evolutionary system for evolving artificial neural networks. IEEE Transactions on Neural Networks, 8(3):694-713, May 1997.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 694-713
    • Yao, X.1    Liu, Y.2
  • 26
    • 0001063749 scopus 로고    scopus 로고
    • Evolutionary induction of sparse neural trees
    • B.-T. Zhang, P. Ohm, and H. Mhlenbein. Evolutionary induction of sparse neural trees. Evolutionary Computation, 5(2):213-236, 1997.
    • (1997) Evolutionary Computation , vol.5 , Issue.2 , pp. 213-236
    • Zhang, B.-T.1    Ohm, P.2    Mhlenbein, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.