메뉴 건너뛰기




Volumn , Issue , 2005, Pages 491-498

Co-evolving recurrent neurons learn deep memory POMDPs

Author keywords

Coevolution; POMDP; Recurrent Neural Networks

Indexed keywords

GENETIC ALGORITHMS; LEARNING SYSTEMS; NEURAL NETWORKS;

EID: 32444448207     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1068009.1068092     Document Type: Conference Paper
Times cited : (60)

References (15)
  • 1
    • 84899015857 scopus 로고    scopus 로고
    • Reinforcement learning with long short-term memory
    • T. Dietterich, S. Becker, and Z. Ghahramani, editors, Cambridge, MA. MIT Press
    • B. Bakker. Reinforcement learning with long short-term memory. In T. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, volume 14, pages 1475-1482, Cambridge, MA, 2002. MIT Press.
    • (2002) Advances in Neural Information Processing Systems 14 , vol.14 , pp. 1475-1482
    • Bakker, B.1
  • 2
    • 84977052581 scopus 로고
    • Evolving dynamical neural networks for adaptive behavior
    • Summer
    • R. D. Beer and J. C. Gallagher. Evolving dynamical neural networks for adaptive behavior. Adaptive Behavior, 1(1):91-122, Summer 1992.
    • (1992) Adaptive Behavior , vol.1 , Issue.1 , pp. 91-122
    • Beer, R.D.1    Gallagher, J.C.2
  • 3
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Y. Bengio, P. Simard, and P. Frasconi, Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2);157-166, 1994.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 4
    • 21244457900 scopus 로고    scopus 로고
    • PhD thesis, Department of Computer Sciences, The University of Texas at Austin, August. Technical Report AI-TR-03-303
    • F. J. Gomez. Robust Nonlinear Control through Neuroevolution. PhD thesis, Department of Computer Sciences, The University of Texas at Austin, August 2003. Technical Report AI-TR-03-303.
    • (2003) Robust Nonlinear Control Through Neuroevolution
    • Gomez, F.J.1
  • 5
    • 0003575034 scopus 로고
    • Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München
    • S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität München, 1991.
    • (1991) Untersuchungen zu Dynamischen Neuronalen Netzen
    • Hochreiter, S.1
  • 8
    • 0002318273 scopus 로고    scopus 로고
    • Efficient reinforcement learning through symbiotic evolution
    • D. E. Moriarty and R. Miikkulainen. Efficient reinforcement learning through symbiotic evolution. Machine Learning, 22:11-32, 1996.
    • (1996) Machine Learning , vol.22 , pp. 11-32
    • Moriarty, D.E.1    Miikkulainen, R.2
  • 9
    • 0002898235 scopus 로고
    • Learning and evolution in neural networks
    • S. Nolfi, J. L. Elman, and D. Parisi. Learning and evolution in neural networks. Adaptive Behavior, 2:5-28, 1994.
    • (1994) Adaptive Behavior , vol.2 , pp. 5-28
    • Nolfi, S.1    Elman, J.L.2    Parisi, D.3
  • 10
    • 0034153728 scopus 로고    scopus 로고
    • Cooperative coevolution: An architecture for evolving coadapted subcomponents
    • M. A. Potter and K. A. D. Jong. Cooperative coevolution: An architecture for evolving coadapted subcomponents. Evolutionary Computation, 8:1-29, 2000.
    • (2000) Evolutionary Computation , vol.8 , pp. 1-29
    • Potter, M.A.1    Jong, K.A.D.2
  • 11
    • 0003838146 scopus 로고
    • The utility driven dynamic error propagation network
    • Engineering Department, Cambridge University, Cambridge, UK
    • A. J. Robinson and F. Fallside. The utility driven dynamic error propagation network. Technical Report CUED/F-INFENG/TR.1, Engineering Department, Cambridge University, Cambridge, UK, 1987.
    • (1987) Technical Report , vol.CUED-F-INFENG-TR.1
    • Robinson, A.J.1    Fallside, F.2
  • 12
    • 0025503558 scopus 로고
    • Backpropagation through time: What does it do and how to do it
    • P. Werbos. Backpropagation through time: what does it do and how to do it. In Proceedings of IEEE, volume 78, pages 1550-1560, 1990.
    • (1990) Proceedings of IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.1
  • 14
    • 0001202594 scopus 로고
    • A learning algorithm for continually running fully recurrent neural networks
    • R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural networks. Neural Computation, 1:270-280, 1989.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipser, D.2
  • 15
    • 0033362601 scopus 로고    scopus 로고
    • Evolving artificial neural networks
    • X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423-1447, 1999.
    • (1999) Proceedings of the IEEE , vol.87 , Issue.9 , pp. 1423-1447
    • Yao, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.