메뉴 건너뛰기




Volumn , Issue , 1998, Pages 87-93

Recurrent neural networks can learn to implement symbol-sensitive counting

Author keywords

[No Author keywords available]

Indexed keywords

ANALOG COMPUTERS; COMPLEX NETWORKS; DYNAMICAL SYSTEMS; RECURRENT NEURAL NETWORKS; SYSTEMS ANALYSIS;

EID: 0002098405     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (34)

References (7)
  • 1
    • 0030586641 scopus 로고    scopus 로고
    • The dynamics of discrete-time computation, with application to recurrent neural networks and finite state machine extraction
    • Casey, M. (1996) The Dynamics of Discrete-Time Computation, With Application to Recurrent Neural Networks and Finite State Machine Extraction. Neural Computation, 8.
    • (1996) Neural Computation , vol.8
    • Casey, M.1
  • 2
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman, J.L. (1990) Finding Structure in Time. Cognitive Science, 14, 179-211.
    • (1990) Cognitive Science , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 4
    • 84899007893 scopus 로고    scopus 로고
    • Dynamical recognizers: Real-time language recognition by analog computation
    • Moore, C. (1996) Dynamical Recognizers: Real-Time Language Recognition by Analog Computation. Santa Fe InstituteWorking Paper 96-05-023.
    • (1996) Santa Fe InstituteWorking Paper 96-05-023
    • Moore, C.1
  • 5
    • 0001460434 scopus 로고
    • The induction of dynamical recognizers
    • Pollack, J.B. (1991) The Induction of Dynamical Recognizers. Machine Learning, 7, 227-252.
    • (1991) Machine Learning , vol.7 , pp. 227-252
    • Pollack, J.B.1
  • 6
    • 0009380241 scopus 로고
    • PhD. dissertation, unpublished. New Brunswick Rutgers, The State University of New Jersey
    • Siegelmann, H.(1993) Foundations of Recurrent Neural Networks. PhD. dissertation, un-published. New Brunswick Rutgers, The State University of New Jersey.
    • (1993) Foundations of Recurrent Neural Networks
    • Siegelmann, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.