-
1
-
-
85028539051
-
Checking computations in polylogarithmic time
-
L. Babai, L. Fortnow, L. A. Levin, and M. Szegedy. Checking computations in polylogarithmic time. STOC: 23rd ACM Symp. on Theory of Computation, 23:21-31, 1991.
-
(1991)
STOC: 23rd ACM Symp. on Theory of Computation
, vol.23
, pp. 21-31
-
-
Babai, L.1
Fortnow, L.2
Levin, L.A.3
Szegedy, M.4
-
2
-
-
84926396434
-
A machine-independent theory of the complexity of recursive functions
-
M. Blum. A machine-independent theory of the complexity of recursive functions. Journal of the ACM, 14(2):322-336, 1967.
-
(1967)
Journal of the ACM
, vol.14
, Issue.2
, pp. 322-336
-
-
Blum, M.1
-
3
-
-
0015038407
-
On effective procedures for speeding up algorithms
-
M.Blum. On effective procedures for speeding up algorithms. Journal of the ACM, 18(2):290-305, 1971.
-
(1971)
Journal of the ACM
, vol.18
, Issue.2
, pp. 290-305
-
-
Blum, M.1
-
4
-
-
84918358658
-
On the length of programs for computing finite binary sequences
-
G. J. Chaitin. On the length of programs for computing finite binary sequences. Journal of the ACM, 13(4):547-569, 1966.
-
(1966)
Journal of the ACM
, vol.13
, Issue.4
, pp. 547-569
-
-
Chaitin, G.J.1
-
5
-
-
0003631434
-
First-Order logic and automated theorem proving
-
Springer-Verlag, Berlin, 2nd edition
-
Melvin C. Fitting. First-Order Logic and Automated Theorem Proving. Graduate Texts in Computer Science. Springer-Verlag, Berlin, 2nd edition, 1996.
-
(1996)
Graduate Texts in Computer Science
-
-
Fitting, M.C.1
-
6
-
-
49249154071
-
Relations between diagonalization, proof systems, and complexity gaps
-
April
-
J. Hartmanis. Relations between diagonalization, proof systems, and complexity gaps. Theoretical Computer Science, 8(2):239-253, April 1979.
-
(1979)
Theoretical Computer Science
, vol.8
, Issue.2
, pp. 239-253
-
-
Hartmanis, J.1
-
8
-
-
22944458446
-
A theory of universal artificial intelligence based on algorithmic complexity
-
M. Hutter. A theory of universal artificial intelligence based on algorithmic complexity. Technical report, 62 pages, 2000. http://arxiv.org/abs/ cs.AI/0004001.
-
(2000)
Technical Report
, pp. 62
-
-
Hutter, M.1
-
9
-
-
0001902056
-
Three approaches to the quantitative definition of information
-
A. N. Kolmogorov. Three approaches to the quantitative definition of information. Problems of Information and Transmission, 1(1): 1-7, 1965.
-
(1965)
Problems of Information and Transmission
, vol.1
, Issue.1
, pp. 1-7
-
-
Kolmogorov, A.N.1
-
12
-
-
0021404339
-
Randomness conservation inequalities: Information and independence in mathematical theories
-
L. A. Levin. Randomness conservation inequalities: Information and independence in mathematical theories. Information and Control, 61:15-37, 1984.
-
(1984)
Information and Control
, vol.61
, pp. 15-37
-
-
Levin, L.A.1
-
14
-
-
0031194381
-
Discovering neural nets with low Kolmogorov complexity and high generalization capability
-
J. Schmidhuber. Discovering neural nets with low Kolmogorov complexity and high generalization capability. Neural Networks, 10(5):857-873, 1997.
-
(1997)
Neural Networks
, vol.10
, Issue.5
, pp. 857-873
-
-
Schmidhuber, J.1
-
15
-
-
1642374463
-
-
Report IDSIA-20-00, quantph/ 0011122, IDSIA, Manno (Lugano), Switzerland
-
J. Schmidhuber. Algorithmic theories of everything. Report IDSIA-20-00, quantph/ 0011122, IDSIA, Manno (Lugano), Switzerland, 2000.
-
(2000)
Algorithmic Theories of Everything
-
-
Schmidhuber, J.1
-
16
-
-
0031186687
-
Shifting inductive bias with successstory algorithm, adaptive Levin search, and incremental self-improvement
-
J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with successstory algorithm, adaptive Levin search, and incremental self-improvement. Machine Learning, 28:105-130, 1997.
-
(1997)
Machine Learning
, vol.28
, pp. 105-130
-
-
Schmidhuber, J.1
Zhao, J.2
Wiering, M.3
-
17
-
-
84856043672
-
A mathematical theory of communication
-
Shannon-Fano codes. , 623-656
-
C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379-423, 623-656, 1948. Shannon-Fano codes.
-
(1948)
Bell System Technical Journal
, vol.27
, pp. 379-423
-
-
Shannon, C.E.1
-
18
-
-
4544279425
-
A formal theory of inductive inference: Part 1 and 2
-
224-254
-
R. J. Solomonoff. A formal theory of inductive inference: Part 1 and 2 Inform. Control, 7:1-22, 224-254, 1964.
-
(1964)
Inform. Control
, vol.7
, pp. 1-22
-
-
Solomonoff, R.J.1
-
19
-
-
0017996595
-
Complexity-based induction systems: Comparisons and convergence theorems
-
R. J. Solomonoff. Complexity-based induction systems: comparisons and convergence theorems. IEEE Trans. Inform. Theory, IT-24:422-432, 1978.
-
(1978)
IEEE Trans. Inform. Theory
, vol.IT-24
, pp. 422-432
-
-
Solomonoff, R.J.1
-
20
-
-
0022825723
-
Applications of algorithmic probability to artificial intelligence
-
Elsevier Science Publishers
-
R. J. Solomonoff. Applications of algorithmic probability to artificial intelligence. In Uncertainty in Artificial Intelligence, pages 473-491. Elsevier Science Publishers, 1986.
-
(1986)
Uncertainty in Artificial Intelligence
, pp. 473-491
-
-
Solomonoff, R.J.1
-
21
-
-
34250487811
-
Gaussian ehmination is not optimal
-
V. Strassen. Gaussian ehmination is not optimal. Numerische Mathematik, 13:354-356, 1969.
-
(1969)
Numerische Mathematik
, vol.13
, pp. 354-356
-
-
Strassen, V.1
-
22
-
-
0033877395
-
Minimum description length induction, Bayesianism, and Kolmogorov complexity
-
P. M. B. Vitanyi and M. Li. Minimum description length induction, Bayesianism, and Kolmogorov complexity. IEEE Transactions on Information Theory, 46(2) :446-464, 2000.
-
(2000)
IEEE Transactions on Information Theory
, vol.46
, Issue.2
, pp. 446-464
-
-
Vitanyi, P.M.B.1
Li, M.2
-
23
-
-
77951203397
-
The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms
-
A. K. Zvonkin and L. A. Levin. The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. RMS: Russian Mathematical Surveys, 25(6):83-124, 1970.
-
(1970)
RMS: Russian Mathematical Surveys
, vol.25
, Issue.6
, pp. 83-124
-
-
Zvonkin, A.K.1
Levin, L.A.2
|