메뉴 건너뛰기




Volumn 8, Issue 6, 2007, Pages 451-463

Centrosome biogenesis and function: Centrosomics brings new understanding

Author keywords

[No Author keywords available]

Indexed keywords

CELL PROTEIN;

EID: 34249336078     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm2180     Document Type: Review
Times cited : (438)

References (153)
  • 1
    • 0036831681 scopus 로고    scopus 로고
    • Centrosome aberrations: Cause or consequence of cancer progression?
    • Nigg, E. A. Centrosome aberrations: cause or consequence of cancer progression? Nature Rev. Cancer 2, 815-825 (2002).
    • (2002) Nature Rev. Cancer , vol.2 , pp. 815-825
    • Nigg, E.A.1
  • 2
    • 1642412809 scopus 로고    scopus 로고
    • The good, the bad and the ugly: The practical consequences of centrosome amplification
    • Sluder, G. & Nordberg, J. J. The good, the bad and the ugly: the practical consequences of centrosome amplification. Curr. Opin. Cell Biol. 16, 49-54 (2004).
    • (2004) Curr. Opin. Cell Biol , vol.16 , pp. 49-54
    • Sluder, G.1    Nordberg, J.J.2
  • 4
    • 15544367400 scopus 로고    scopus 로고
    • A physiological view of the primary cilium
    • Praetorius, H. A. & Spring, K. R. A physiological view of the primary cilium. Annu. Rev. Physiol. 67, 515-529 (2005).
    • (2005) Annu. Rev. Physiol , vol.67 , pp. 515-529
    • Praetorius, H.A.1    Spring, K.R.2
  • 5
    • 0019775373 scopus 로고
    • Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy
    • Kuriyama, R. & Borisy, G. G. Centriole cycle in Chinese hamster ovary cells as determined by whole-mount electron microscopy. J. Cell Biol. 91, 814-821 (1981).
    • (1981) J. Cell Biol , vol.91 , pp. 814-821
    • Kuriyama, R.1    Borisy, G.G.2
  • 6
    • 0014250991 scopus 로고
    • The centriole cycle in synchronized HeLa cells
    • Robbins, E., Jentzsch, G. & Micali, A. The centriole cycle in synchronized HeLa cells. J. Cell Biol. 36, 329-339 (1968).
    • (1968) J. Cell Biol , vol.36 , pp. 329-339
    • Robbins, E.1    Jentzsch, G.2    Micali, A.3
  • 8
    • 0025370580 scopus 로고
    • Mode of centriole duplication and distribution
    • Kochanski, R. S. & Borisy, G. G. Mode of centriole duplication and distribution. J. Cell Biol. 110, 1599-1605 (1990).
    • (1990) J. Cell Biol , vol.110 , pp. 1599-1605
    • Kochanski, R.S.1    Borisy, G.G.2
  • 9
    • 0022272127 scopus 로고
    • An investigation of the centriole cycle using 3T3 and CHO cells
    • Alvey, P. L. An investigation of the centriole cycle using 3T3 and CHO cells. J. Cell Sci. 78, 147-162 (1985).
    • (1985) J. Cell Sci , vol.78 , pp. 147-162
    • Alvey, P.L.1
  • 10
    • 0020317988 scopus 로고
    • Centrioles in the cell cycle. I. Epithelial cells
    • Vorobjev, I. A. & Chentsov Yu, S. Centrioles in the cell cycle. I. Epithelial cells. J. Cell Biol. 93, 938-949 (1982).
    • (1982) J. Cell Biol , vol.93 , pp. 938-949
    • Vorobjev, I.A.1    Chentsov Yu, S.2
  • 11
    • 20344396122 scopus 로고    scopus 로고
    • Preventing re-replication of chromosomal DNA
    • Blow, J. J. & Dutta, A. Preventing re-replication of chromosomal DNA. Nature Rev. Mol. Cell Biol. 6, 476-486 (2005).
    • (2005) Nature Rev. Mol. Cell Biol , vol.6 , pp. 476-486
    • Blow, J.J.1    Dutta, A.2
  • 12
    • 26244431903 scopus 로고    scopus 로고
    • Right place, right time, and only once: Replication initiation in metazoans
    • Machida, Y. J., Hamlin, J. L. & Dutta, A. Right place, right time, and only once: replication initiation in metazoans. Cell 123, 13-24 (2005).
    • (2005) Cell , vol.123 , pp. 13-24
    • Machida, Y.J.1    Hamlin, J.L.2    Dutta, A.3
  • 13
    • 14744271979 scopus 로고    scopus 로고
    • La Terra, S. et al. The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J. Cell Biol. 168, 713-722 (2005). Defines the properties of de novo assembled centrioles in HeLa cells: they are born in S phase; they mature in the next cycle; and the presence of a single centriole inhibits the assembly of additional centrioles.
    • La Terra, S. et al. The de novo centriole assembly pathway in HeLa cells: cell cycle progression and centriole assembly/maturation. J. Cell Biol. 168, 713-722 (2005). Defines the properties of de novo assembled centrioles in HeLa cells: they are born in S phase; they mature in the next cycle; and the presence of a single centriole inhibits the assembly of additional centrioles.
  • 14
    • 0035814898 scopus 로고    scopus 로고
    • Marshall, W. F., Vucica, Y. & Rosenbaum, J. L. Kinetics and regulation of de novo centriole assembly. Implications for the mechanism of centriole duplication. Curr. Biol. 11, 308-317 (2001). Defines the properties of de novo assembled centrioles in C. reinhardtii. The presence of a single centriole inhibits the assembly of additional centrioles, and the rate of de novo assembly is approximately half the rate of templated duplication.
    • Marshall, W. F., Vucica, Y. & Rosenbaum, J. L. Kinetics and regulation of de novo centriole assembly. Implications for the mechanism of centriole duplication. Curr. Biol. 11, 308-317 (2001). Defines the properties of de novo assembled centrioles in C. reinhardtii. The presence of a single centriole inhibits the assembly of additional centrioles, and the rate of de novo assembly is approximately half the rate of templated duplication.
  • 15
    • 0041560943 scopus 로고    scopus 로고
    • Drosophila parthenogenesis: A model for de novo centrosome assembly
    • Riparbelli, M. G. & Callaini, G. Drosophila parthenogenesis: a model for de novo centrosome assembly. Dev. Biol. 260, 298-313 (2003).
    • (2003) Dev. Biol , vol.260 , pp. 298-313
    • Riparbelli, M.G.1    Callaini, G.2
  • 16
    • 0346874342 scopus 로고    scopus 로고
    • Proteomic characterization of the human centrosome by protein correlation profiling
    • Andersen, J. S. et al. Proteomic characterization of the human centrosome by protein correlation profiling. Nature 426, 570-574 (2003).
    • (2003) Nature , vol.426 , pp. 570-574
    • Andersen, J.S.1
  • 17
    • 0036618084 scopus 로고    scopus 로고
    • A proteomic analysis of human cilia: Identification of novel components
    • Ostrowski, L. E. et al. A proteomic analysis of human cilia: identification of novel components. Mol. Cell. Proteomics 1, 451-465 (2002).
    • (2002) Mol. Cell. Proteomics , vol.1 , pp. 451-465
    • Ostrowski, L.E.1
  • 18
    • 20544436245 scopus 로고    scopus 로고
    • Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary-disease genes
    • Keller, L. C., Romijn, E. P., Zamora, I., Yates, J. R. 3rd & Marshall, W. F. Proteomic analysis of isolated Chlamydomonas centrioles reveals orthologs of ciliary-disease genes. Curr. Biol. 15, 1090-1098 (2005).
    • (2005) Curr. Biol , vol.15 , pp. 1090-1098
    • Keller, L.C.1    Romijn, E.P.2    Zamora, I.3    Yates 3rd, J.R.4    Marshall, W.F.5
  • 19
  • 20
    • 14844346387 scopus 로고    scopus 로고
    • Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes
    • Stolc, V., Samanta, M. P., Tongprasit, W. & Marshall, W. F. Genome-wide transcriptional analysis of flagellar regeneration in Chlamydomonas reinhardtii identifies orthologs of ciliary disease genes. Proc. Natl Acad. Sci. USA 102, 3703-3707 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 3703-3707
    • Stolc, V.1    Samanta, M.P.2    Tongprasit, W.3    Marshall, W.F.4
  • 21
    • 2342501364 scopus 로고    scopus 로고
    • Li, J. B. et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117, 541-552 (2004). References 21 and 22 use comparative genomics to predict the ciliary and basal body proteomes, leading to a global evolutionary view and to human disease-gene candidates.
    • Li, J. B. et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 117, 541-552 (2004). References 21 and 22 use comparative genomics to predict the ciliary and basal body proteomes, leading to a global evolutionary view and to human disease-gene candidates.
  • 22
    • 2342657884 scopus 로고    scopus 로고
    • Decoding cilia function: Defining specialized genes required for compartmentalized cilia biogenesis
    • Avidor-Reiss, T. et al. Decoding cilia function: defining specialized genes required for compartmentalized cilia biogenesis. Cell 117, 527-539 (2004).
    • (2004) Cell , vol.117 , pp. 527-539
    • Avidor-Reiss, T.1
  • 23
    • 24144463731 scopus 로고    scopus 로고
    • Centrosome duplication and nematodes: Recent insights from an old relationship
    • Leidel, S. & Gonczy, P. Centrosome duplication and nematodes: recent insights from an old relationship. Dev. Cell 9, 317-325 (2005).
    • (2005) Dev. Cell , vol.9 , pp. 317-325
    • Leidel, S.1    Gonczy, P.2
  • 24
    • 13944278891 scopus 로고    scopus 로고
    • Leidel, S., Delattre, M., Cerutti, L., Baumer, K. & Gonczy, P. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nature Cell Biol. 7, 115-125 (2005). Identification and characterization of SAS-6, a conserved regulator of centriole biogenesis, the overexpression of which leads to the amplification of MTOCs.
    • Leidel, S., Delattre, M., Cerutti, L., Baumer, K. & Gonczy, P. SAS-6 defines a protein family required for centrosome duplication in C. elegans and in human cells. Nature Cell Biol. 7, 115-125 (2005). Identification and characterization of SAS-6, a conserved regulator of centriole biogenesis, the overexpression of which leads to the amplification of MTOCs.
  • 25
    • 0037343945 scopus 로고    scopus 로고
    • SAS-4 is essential for centrosome duplication in C. elegans and is recruited to daughter centrioles once per cell cycle
    • Leidel, S. & Gonczy, P. SAS-4 is essential for centrosome duplication in C. elegans and is recruited to daughter centrioles once per cell cycle. Dev. Cell 4, 431-439 (2003).
    • (2003) Dev. Cell , vol.4 , pp. 431-439
    • Leidel, S.1    Gonczy, P.2
  • 26
    • 0034676448 scopus 로고    scopus 로고
    • Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III
    • Gonczy, P. et al. Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III. Nature 408, 331-336 (2000).
    • (2000) Nature , vol.408 , pp. 331-336
    • Gonczy, P.1
  • 27
    • 3042688773 scopus 로고    scopus 로고
    • The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication
    • Pelletier, L. et al. The Caenorhabditis elegans centrosomal protein SPD-2 is required for both pericentriolar material recruitment and centriole duplication. Curr. Biol. 14, 863-873 (2004).
    • (2004) Curr. Biol , vol.14 , pp. 863-873
    • Pelletier, L.1
  • 28
    • 10644253531 scopus 로고    scopus 로고
    • Dammermann, A. et al. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell 7, 815-829 (2004). Identification and characterization of SAS-6, a conserved regulator of centriole biogenesis. The results further suggest that the PCM promotes daughter centriole formation by concentrating γ-tubulin around the parent centriole.
    • Dammermann, A. et al. Centriole assembly requires both centriolar and pericentriolar material proteins. Dev. Cell 7, 815-829 (2004). Identification and characterization of SAS-6, a conserved regulator of centriole biogenesis. The results further suggest that the PCM promotes daughter centriole formation by concentrating γ-tubulin around the parent centriole.
  • 29
    • 29044431521 scopus 로고    scopus 로고
    • Bettencourt-Dias, M. et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199-2207 (2005). Describes the conserved role of SAK/PLK4 in centriole duplication. Both references 29 and 36 show that cells without centrioles can proliferate in the context of a whole organism. However, centrioles are needed to form basal bodies and for male meiotic divisions.
    • Bettencourt-Dias, M. et al. SAK/PLK4 is required for centriole duplication and flagella development. Curr. Biol. 15, 2199-2207 (2005). Describes the conserved role of SAK/PLK4 in centriole duplication. Both references 29 and 36 show that cells without centrioles can proliferate in the context of a whole organism. However, centrioles are needed to form basal bodies and for male meiotic divisions.
  • 30
    • 31144463968 scopus 로고    scopus 로고
    • Habedanck, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nature Cell Biol. 7, 1140-1146 (2005). Reports the requirement for SAK/PLK4 in centriole duplication. SAK/PLK4 might operate as a master regulator in this process, given that overexpression leads to centriole amplification.
    • Habedanck, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. The Polo kinase Plk4 functions in centriole duplication. Nature Cell Biol. 7, 1140-1146 (2005). Reports the requirement for SAK/PLK4 in centriole duplication. SAK/PLK4 might operate as a master regulator in this process, given that overexpression leads to centriole amplification.
  • 31
    • 19944413010 scopus 로고    scopus 로고
    • Genome-wide survey of protein kinases required for cell cycle progression
    • Bettencourt-Dias, M. et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature 432, 980-987 (2004).
    • (2004) Nature , vol.432 , pp. 980-987
    • Bettencourt-Dias, M.1
  • 32
    • 0026606831 scopus 로고
    • Centrosome organization and centriole architecture: Their sensitivity to divalent cations
    • Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. Centrosome organization and centriole architecture: their sensitivity to divalent cations. J. Struct. Biol. 108, 107-128 (1992).
    • (1992) J. Struct. Biol , vol.108 , pp. 107-128
    • Paintrand, M.1    Moudjou, M.2    Delacroix, H.3    Bornens, M.4
  • 33
    • 0036468420 scopus 로고    scopus 로고
    • Centrosome composition and microtubule anchoring mechanisms
    • Bornens, M. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. 14, 25-34 (2002).
    • (2002) Curr. Opin. Cell Biol , vol.14 , pp. 25-34
    • Bornens, M.1
  • 34
    • 0021991814 scopus 로고
    • Centriole number and the reproductive capacity of spindle poles
    • Sluder, G. & Rieder, C. L. Centriole number and the reproductive capacity of spindle poles. J. Cell Biol. 100, 887-896 (1985).
    • (1985) J. Cell Biol , vol.100 , pp. 887-896
    • Sluder, G.1    Rieder, C.L.2
  • 35
    • 0037459108 scopus 로고    scopus 로고
    • SAS-4 is a C. elegans centriolar protein that controls centrosome size
    • Kirkham, M., Muller-Reichert, T., Oegema, K., Grill, S. & Hyman, A. A. SAS-4 is a C. elegans centriolar protein that controls centrosome size. Cell 112, 575-587 (2003).
    • (2003) Cell , vol.112 , pp. 575-587
    • Kirkham, M.1    Muller-Reichert, T.2    Oegema, K.3    Grill, S.4    Hyman, A.A.5
  • 36
    • 33745255998 scopus 로고    scopus 로고
    • Basto, R. et al. Flies without centrioles. Cell 125, 1375-1386 (2006). See also reference 29. The authors also show that asymmetrical cell division can occur without centrioles (although not always).
    • Basto, R. et al. Flies without centrioles. Cell 125, 1375-1386 (2006). See also reference 29. The authors also show that asymmetrical cell division can occur without centrioles (although not always).
  • 37
    • 0032517865 scopus 로고    scopus 로고
    • Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells
    • Bobinnec, Y. et al. Centriole disassembly in vivo and its effect on centrosome structure and function in vertebrate cells. J. Cell Biol. 143, 1575-1589 (1998).
    • (1998) J. Cell Biol , vol.143 , pp. 1575-1589
    • Bobinnec, Y.1
  • 38
    • 0024365396 scopus 로고
    • Reproductive capacity of sea urchin centrosomes without centrioles
    • Sluder, G., Miller, F. J. & Rieder, C. L. Reproductive capacity of sea urchin centrosomes without centrioles. Cell Motil. Cytoskeleton 13, 264-273 (1989).
    • (1989) Cell Motil. Cytoskeleton , vol.13 , pp. 264-273
    • Sluder, G.1    Miller, F.J.2    Rieder, C.L.3
  • 39
    • 20544457358 scopus 로고    scopus 로고
    • Tubulin polyglutamylase enzymes are members of the TTL domain protein family
    • Janke, C. et al. Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308, 1758-1762 (2005).
    • (2005) Science , vol.308 , pp. 1758-1762
    • Janke, C.1
  • 40
    • 0031913583 scopus 로고    scopus 로고
    • Two proteins isolated from sea urchin sperm flagella: Structural components common to the stable microtubules of axonemes and centrioles
    • Hinchcliffe, E. H. & Linck, R. W. Two proteins isolated from sea urchin sperm flagella: structural components common to the stable microtubules of axonemes and centrioles. J. Cell Sci. 111, 585-595 (1998).
    • (1998) J. Cell Sci , vol.111 , pp. 585-595
    • Hinchcliffe, E.H.1    Linck, R.W.2
  • 41
    • 0023989716 scopus 로고
    • Evidence for tektins in centrioles and axonemal microtubules
    • Steffen, W. & Linck, R. W. Evidence for tektins in centrioles and axonemal microtubules. Proc. Natl Acad. Sci. USA 85, 2643-2647 (1988).
    • (1988) Proc. Natl Acad. Sci. USA , vol.85 , pp. 2643-2647
    • Steffen, W.1    Linck, R.W.2
  • 43
    • 0038142215 scopus 로고    scopus 로고
    • Polar expeditions - provisioning the centrosome for mitosis
    • Blagden, S. P. & Glover, D. M. Polar expeditions - provisioning the centrosome for mitosis. Nature Cell Biol. 5, 505-511 (2003).
    • (2003) Nature Cell Biol , vol.5 , pp. 505-511
    • Blagden, S.P.1    Glover, D.M.2
  • 44
    • 0028879986 scopus 로고
    • Nucleation of microtubule assembly by a γ-tubulin-containing ring complex
    • Zheng, Y., Wong, M. L., Alberts, B. & Mitchison, T. Nucleation of microtubule assembly by a γ-tubulin-containing ring complex. Nature 378, 578-583 (1995).
    • (1995) Nature , vol.378 , pp. 578-583
    • Zheng, Y.1    Wong, M.L.2    Alberts, B.3    Mitchison, T.4
  • 45
    • 32644441131 scopus 로고    scopus 로고
    • Drosophila melanogaster γ-TuRC is dispensable for targeting γ-tubulin to the centrosome and microtubule nucleation
    • Verollet, C. et al. Drosophila melanogaster γ-TuRC is dispensable for targeting γ-tubulin to the centrosome and microtubule nucleation. J. Cell Biol. 172, 517-528 (2006).
    • (2006) J. Cell Biol , vol.172 , pp. 517-528
    • Verollet, C.1
  • 46
    • 33751292143 scopus 로고    scopus 로고
    • Cytoplasmic microtubule organization in fission yeast
    • Sawin, K. E. & Tran, P. T. Cytoplasmic microtubule organization in fission yeast. Yeast 23, 1001-1014 (2006).
    • (2006) Yeast , vol.23 , pp. 1001-1014
    • Sawin, K.E.1    Tran, P.T.2
  • 47
    • 18844427353 scopus 로고    scopus 로고
    • Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function
    • Delgehyr, N., Sillibourne, J. & Bornens, M. Microtubule nucleation and anchoring at the centrosome are independent processes linked by ninein function. J. Cell Sci. 118, 1565-1575 (2005).
    • (2005) J. Cell Sci , vol.118 , pp. 1565-1575
    • Delgehyr, N.1    Sillibourne, J.2    Bornens, M.3
  • 48
    • 33751191831 scopus 로고    scopus 로고
    • Generation of noncentrosomal microtubule arrays
    • Bartolini, F. & Gundersen, G. G. Generation of noncentrosomal microtubule arrays. J. Cell Sci. 119, 4155-4163 (2006).
    • (2006) J. Cell Sci , vol.119 , pp. 4155-4163
    • Bartolini, F.1    Gundersen, G.G.2
  • 49
    • 0035462382 scopus 로고    scopus 로고
    • Re-evaluating centrosome function
    • Doxsey, S. Re-evaluating centrosome function. Nature Rev. Mol. Cell Biol. 2, 688-698 (2001).
    • (2001) Nature Rev. Mol. Cell Biol , vol.2 , pp. 688-698
    • Doxsey, S.1
  • 50
    • 33750618926 scopus 로고    scopus 로고
    • Mitotic phosphatases: No longer silent partners
    • Trinkle-Mulcahy, L. & Lamond, A. I. Mitotic phosphatases: no longer silent partners. Curr. Opin. Cell Biol. 18, 623-631 (2006).
    • (2006) Curr. Opin. Cell Biol , vol.18 , pp. 623-631
    • Trinkle-Mulcahy, L.1    Lamond, A.I.2
  • 51
    • 13244259198 scopus 로고    scopus 로고
    • Polo kinase and progression through M phase in Drosophila: A perspective from the spindle poles
    • Glover, D. M. Polo kinase and progression through M phase in Drosophila: a perspective from the spindle poles. Oncogene 24, 230-237 (2005).
    • (2005) Oncogene , vol.24 , pp. 230-237
    • Glover, D.M.1
  • 52
    • 0037017398 scopus 로고    scopus 로고
    • Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules
    • Giet, R. et al. Drosophila Aurora A kinase is required to localize D-TACC to centrosomes and to regulate astral microtubules. J. Cell Biol. 156, 437-451 (2002).
    • (2002) J. Cell Biol , vol.156 , pp. 437-451
    • Giet, R.1
  • 53
    • 25444485717 scopus 로고    scopus 로고
    • Aurora A activates D-TACC-Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules
    • Barros, T. P., Kinoshita, K., Hyman, A. A. & Raff, J. W. Aurora A activates D-TACC-Msps complexes exclusively at centrosomes to stabilize centrosomal microtubules. J. Cell Biol. 170, 1039-1046 (2005).
    • (2005) J. Cell Biol , vol.170 , pp. 1039-1046
    • Barros, T.P.1    Kinoshita, K.2    Hyman, A.A.3    Raff, J.W.4
  • 54
    • 25444506600 scopus 로고    scopus 로고
    • Function and regulation of Maskin, a TACC family protein, in microtubule growth during mitosis
    • Peset, I. et al. Function and regulation of Maskin, a TACC family protein, in microtubule growth during mitosis. J. Cell Biol. 170, 1057-1066 (2005).
    • (2005) J. Cell Biol , vol.170 , pp. 1057-1066
    • Peset, I.1
  • 55
    • 17844371493 scopus 로고    scopus 로고
    • Mini spindles, the XMAP215 homologue, suppresses pausing of interphase microtubules in Drosophila
    • Brittle, A. L. & Ohkura, H. Mini spindles, the XMAP215 homologue, suppresses pausing of interphase microtubules in Drosophila. EMBO J. 24, 1387-1396 (2005).
    • (2005) EMBO J , vol.24 , pp. 1387-1396
    • Brittle, A.L.1    Ohkura, H.2
  • 56
    • 33646243237 scopus 로고    scopus 로고
    • Identification of domains of BRCA1 critical for the ubiquitin-dependent inhibition of centrosome function
    • Sankaran, S., Starita, L. M., Simons, A. M. & Parvin, J. D. Identification of domains of BRCA1 critical for the ubiquitin-dependent inhibition of centrosome function. Cancer Res. 66, 4100-4107 (2006).
    • (2006) Cancer Res , vol.66 , pp. 4100-4107
    • Sankaran, S.1    Starita, L.M.2    Simons, A.M.3    Parvin, J.D.4
  • 58
    • 1842583754 scopus 로고    scopus 로고
    • Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2
    • Kemp, C. A., Kopish, K. R., Zipperlen, P., Ahringer, J. & O'Connell, K. F. Centrosome maturation and duplication in C. elegans require the coiled-coil protein SPD-2. Dev. Cell 6, 511-523 (2004).
    • (2004) Dev. Cell , vol.6 , pp. 511-523
    • Kemp, C.A.1    Kopish, K.R.2    Zipperlen, P.3    Ahringer, J.4    O'Connell, K.F.5
  • 60
    • 0018694416 scopus 로고
    • The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line
    • Rieder, C. L., Jensen, C. G. & Jensen, L. C. The resorption of primary cilia during mitosis in a vertebrate (PtK1) cell line. J. Ultrastruct. Res. 68, 173-185 (1979).
    • (1979) J. Ultrastruct. Res , vol.68 , pp. 173-185
    • Rieder, C.L.1    Jensen, C.G.2    Jensen, L.C.3
  • 61
    • 18344396250 scopus 로고    scopus 로고
    • Ishikawa, H., Kubo, A., Tsukita, S. & Tsukita, S. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nature Cell Biol. 7, 517-524 (2005). The authors deleted both alleles of the Odf2 gene in mouse F9 cells and found that Odf2 is indispensable for the formation of distal and subdistal appendages and the generation of primary cilia, providing evidence for the direct involvement of appendages in cilia formation.
    • Ishikawa, H., Kubo, A., Tsukita, S. & Tsukita, S. Odf2-deficient mother centrioles lack distal/subdistal appendages and the ability to generate primary cilia. Nature Cell Biol. 7, 517-524 (2005). The authors deleted both alleles of the Odf2 gene in mouse F9 cells and found that Odf2 is indispensable for the formation of distal and subdistal appendages and the generation of primary cilia, providing evidence for the direct involvement of appendages in cilia formation.
  • 63
    • 27744529234 scopus 로고    scopus 로고
    • Two-way traffic: Centrosomes and the cell cycle
    • Sluder, G. Two-way traffic: centrosomes and the cell cycle. Nature Rev. Mol. Cell Biol. 6, 743-748 (2005).
    • (2005) Nature Rev. Mol. Cell Biol , vol.6 , pp. 743-748
    • Sluder, G.1
  • 64
  • 65
    • 0034678396 scopus 로고    scopus 로고
    • Piel, M., Meyer, P., Khodjakov, A., Rieder, C. L. & Bornens, M. The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J. Cell Biol. 149, 317-330 (2000). Shows that only the maternal centriole retains, and presumably anchors, microtubules. Also shows that daughter centrioles are dynamic and that their movements are coordinated with those of the mother centriole, which suggests a molecular link between them.
    • Piel, M., Meyer, P., Khodjakov, A., Rieder, C. L. & Bornens, M. The respective contributions of the mother and daughter centrioles to centrosome activity and behavior in vertebrate cells. J. Cell Biol. 149, 317-330 (2000). Shows that only the maternal centriole retains, and presumably anchors, microtubules. Also shows that daughter centrioles are dynamic and that their movements are coordinated with those of the mother centriole, which suggests a molecular link between them.
  • 66
    • 0035936920 scopus 로고    scopus 로고
    • Piel, M., Nordberg, J., Euteneuer, U. & Bornens, M. Centrosome-dependent exit of cytokinesis in animal cells. Science 291, 1550-1553 (2001). References 66-68 show that somatic cells can form a spindle in the absence of centrosomes but show defects in cytokinesis and S phase progression.
    • Piel, M., Nordberg, J., Euteneuer, U. & Bornens, M. Centrosome-dependent exit of cytokinesis in animal cells. Science 291, 1550-1553 (2001). References 66-68 show that somatic cells can form a spindle in the absence of centrosomes but show defects in cytokinesis and S phase progression.
  • 67
    • 0035795415 scopus 로고    scopus 로고
    • Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression
    • Khodjakov, A. & Rieder, C. L. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J. Cell Biol. 153, 237-242 (2001).
    • (2001) J. Cell Biol , vol.153 , pp. 237-242
    • Khodjakov, A.1    Rieder, C.L.2
  • 68
    • 0035936898 scopus 로고    scopus 로고
    • Requirement of a centrosomal activity for cell cycle progression through G1 into S phase
    • Hinchcliffe, E. H., Miller, F. J., Cham, M., Khodjakov, A. & Sluder, G. Requirement of a centrosomal activity for cell cycle progression through G1 into S phase. Science 291, 1547-1550 (2001).
    • (2001) Science , vol.291 , pp. 1547-1550
    • Hinchcliffe, E.H.1    Miller, F.J.2    Cham, M.3    Khodjakov, A.4    Sluder, G.5
  • 69
    • 4644247319 scopus 로고    scopus 로고
    • SIN and the art of splitting the fission yeast cell
    • Krapp, A., Gulli, M. P. & Simanis, V. SIN and the art of splitting the fission yeast cell. Curr. Biol. 14, R722-R730 (2004).
    • (2004) Curr. Biol , vol.14
    • Krapp, A.1    Gulli, M.P.2    Simanis, V.3
  • 70
    • 1642289364 scopus 로고    scopus 로고
    • Linked for life: Temporal and spatial coordination of late mitotic events
    • Seshan, A. & Amon, A. Linked for life: temporal and spatial coordination of late mitotic events. Curr. Opin. Cell Biol. 16, 41-48 (2004).
    • (2004) Curr. Opin. Cell Biol , vol.16 , pp. 41-48
    • Seshan, A.1    Amon, A.2
  • 71
    • 33746623967 scopus 로고    scopus 로고
    • Regulation of cytokinesis by spindle-pole bodies
    • Magidson, V., Chang, F. & Khodjakov, A. Regulation of cytokinesis by spindle-pole bodies. Nature Cell Biol. 8, 891-893 (2006).
    • (2006) Nature Cell Biol , vol.8 , pp. 891-893
    • Magidson, V.1    Chang, F.2    Khodjakov, A.3
  • 72
    • 33846432426 scopus 로고    scopus 로고
    • Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells
    • Uetake, Y. et al. Cell cycle progression and de novo centriole assembly after centrosomal removal in untransformed human cells. J. Cell Biol. 176, 173-182 (2007).
    • (2007) J. Cell Biol , vol.176 , pp. 173-182
    • Uetake, Y.1
  • 73
    • 33748102496 scopus 로고    scopus 로고
    • Inhibition of centrosome protein assembly leads to p53-dependent exit from the cell cycle
    • Srsen, V., Gnadt, N., Dammermann, A. & Merdes, A. Inhibition of centrosome protein assembly leads to p53-dependent exit from the cell cycle. J. Cell Biol. 174, 625-630 (2006).
    • (2006) J. Cell Biol , vol.174 , pp. 625-630
    • Srsen, V.1    Gnadt, N.2    Dammermann, A.3    Merdes, A.4
  • 74
    • 4143116782 scopus 로고    scopus 로고
    • E pluribus unum: Towards a universal mechanism for spindle assembly
    • Wadsworth, P. & Khodjakov, A. E pluribus unum: towards a universal mechanism for spindle assembly. Trends Cell Biol. 14, 413-419 (2004).
    • (2004) Trends Cell Biol , vol.14 , pp. 413-419
    • Wadsworth, P.1    Khodjakov, A.2
  • 75
    • 2942633899 scopus 로고    scopus 로고
    • Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: Localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly
    • Matsuura, K., Lefebvre, P. A., Kamiya, R. & Hirono, M. Bld10p, a novel protein essential for basal body assembly in Chlamydomonas: localization to the cartwheel, the first ninefold symmetrical structure appearing during assembly. J. Cell Biol. 165, 663-671 (2004).
    • (2004) J. Cell Biol , vol.165 , pp. 663-671
    • Matsuura, K.1    Lefebvre, P.A.2    Kamiya, R.3    Hirono, M.4
  • 76
    • 0020468680 scopus 로고
    • The centrosome cycle in Ptk2 cells: Asymmetric distribution and structural changes in the pericentriolar material
    • Rieder, C. L. et al. The centrosome cycle in Ptk2 cells: asymmetric distribution and structural changes in the pericentriolar material. Biol. Cell 44, 117-132 (1982).
    • (1982) Biol. Cell , vol.44 , pp. 117-132
    • Rieder, C.L.1
  • 77
    • 0034255733 scopus 로고    scopus 로고
    • Spindle pole body duplication: A model for centrosome duplication?
    • Adams, I. R. & Kilmartin, J. V. Spindle pole body duplication: a model for centrosome duplication? Trends Cell Biol. 10, 329-335 (2000).
    • (2000) Trends Cell Biol , vol.10 , pp. 329-335
    • Adams, I.R.1    Kilmartin, J.V.2
  • 78
    • 0014348214 scopus 로고
    • The development of basal bodies in paramecium
    • Dippell, R. V. The development of basal bodies in paramecium. Proc. Natl Acad. Sci. USA 61, 461-468 (1968).
    • (1968) Proc. Natl Acad. Sci. USA , vol.61 , pp. 461-468
    • Dippell, R.V.1
  • 79
    • 0016143898 scopus 로고
    • Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii
    • Cavalier-Smith, T. Basal body and flagellar development during the vegetative cell cycle and the sexual cycle of Chlamydomonas reinhardii. J. Cell Sci. 16, 529-556 (1974).
    • (1974) J. Cell Sci , vol.16 , pp. 529-556
    • Cavalier-Smith, T.1
  • 80
    • 33845250249 scopus 로고    scopus 로고
    • Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A. & Muller-Reichert, T. Centriole assembly in Caenorhabditis elegans. Nature 30, 619-623 (2006). Reports a structural and molecular pathway for the assembly of a daughter centriole using electron tomography of staged wild-type and mutant C. elegans one-cell embryos and centriole-recruitment assays.
    • Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A. & Muller-Reichert, T. Centriole assembly in Caenorhabditis elegans. Nature 30, 619-623 (2006). Reports a structural and molecular pathway for the assembly of a daughter centriole using electron tomography of staged wild-type and mutant C. elegans one-cell embryos and centriole-recruitment assays.
  • 81
    • 0029027586 scopus 로고
    • Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells
    • Balczon, R. et al. Dissociation of centrosome replication events from cycles of DNA synthesis and mitotic division in hydroxyurea-arrested Chinese hamster ovary cells. J. Cell Biol. 130, 105-115 (1995).
    • (1995) J. Cell Biol , vol.130 , pp. 105-115
    • Balczon, R.1
  • 82
    • 33748440647 scopus 로고    scopus 로고
    • Sequential protein recruitment in C. elegans centriole formation
    • Delattre, M., Canard, C. & Gonczy, P. Sequential protein recruitment in C. elegans centriole formation. Curr. Biol. 16, 1844-1849 (2006).
    • (2006) Curr. Biol , vol.16 , pp. 1844-1849
    • Delattre, M.1    Canard, C.2    Gonczy, P.3
  • 83
    • 33751533784 scopus 로고    scopus 로고
    • Cyclin E-Cdk2 temporally regulates centrosome assembly and establishment of polarity in Caenorhabditis elegans embryos
    • Cowan, C. R. & Hyman, A. A. Cyclin E-Cdk2 temporally regulates centrosome assembly and establishment of polarity in Caenorhabditis elegans embryos. Nature Cell Biol. 8,1441-1447 (2006).
    • (2006) Nature Cell Biol , vol.8 , pp. 1441-1447
    • Cowan, C.R.1    Hyman, A.A.2
  • 84
    • 0035873385 scopus 로고    scopus 로고
    • It takes two to tango: Understanding how centrosome duplication is regulated throughout the cell cycle
    • Hinchcliffe, E. H. & Sluder, G. "It takes two to tango": understanding how centrosome duplication is regulated throughout the cell cycle. Genes Dev. 15, 1167-1181 (2001).
    • (2001) Genes Dev , vol.15 , pp. 1167-1181
    • Hinchcliffe, E.H.1    Sluder, G.2
  • 85
    • 0342470999 scopus 로고    scopus 로고
    • Vidwans, S. J., Wong, M. L. & O'Farrell, P. H. Mitotic regulators govern progress through steps in the centrosome duplication cycle. J. Cell Biol. 147, 1371-1378 (1999). Shows in D. melanogaster mutants that there must be coordination between the centrosome and chromosome cycles. Different cell-cycle regulators, such as CDC20, mitotic cyclins and CDC25, are important for disengagement, new centriole formation and elongation.
    • Vidwans, S. J., Wong, M. L. & O'Farrell, P. H. Mitotic regulators govern progress through steps in the centrosome duplication cycle. J. Cell Biol. 147, 1371-1378 (1999). Shows in D. melanogaster mutants that there must be coordination between the centrosome and chromosome cycles. Different cell-cycle regulators, such as CDC20, mitotic cyclins and CDC25, are important for disengagement, new centriole formation and elongation.
  • 86
    • 33747814420 scopus 로고    scopus 로고
    • Mechanism limiting centrosome duplication to once per cell cycle
    • Tsou, M. F. & Stearns, T. Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947-951 (2006).
    • (2006) Nature , vol.442 , pp. 947-951
    • Tsou, M.F.1    Stearns, T.2
  • 87
    • 0037237046 scopus 로고    scopus 로고
    • Anomalous centriole configurations are detected in Drosophila wing disc cells upon Cdk1 inactivation
    • Vidwans, S. J., Wong, M. L. & O'Farrell, P. H. Anomalous centriole configurations are detected in Drosophila wing disc cells upon Cdk1 inactivation. J. Cell Sci. 116, 137-143 (2003).
    • (2003) J. Cell Sci , vol.116 , pp. 137-143
    • Vidwans, S.J.1    Wong, M.L.2    O'Farrell, P.H.3
  • 88
    • 0038784469 scopus 로고    scopus 로고
    • Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication
    • Paoletti, A. et al. Fission yeast cdc31p is a component of the half-bridge and controls SPB duplication. Mol. Biol. Cell 14, 2793-2808 (2003).
    • (2003) Mol. Biol. Cell , vol.14 , pp. 2793-2808
    • Paoletti, A.1
  • 89
    • 0027366227 scopus 로고
    • The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body
    • Spang, A., Courtney, I., Fackler, U., Matzner, M. & Schiebel, E. The calcium-binding protein cell division cycle 31 of Saccharomyces cerevisiae is a component of the half bridge of the spindle pole body. J. Cell Biol. 123, 405-416 (1993).
    • (1993) J. Cell Biol , vol.123 , pp. 405-416
    • Spang, A.1    Courtney, I.2    Fackler, U.3    Matzner, M.4    Schiebel, E.5
  • 90
    • 28444485390 scopus 로고    scopus 로고
    • Centrin deficiency in Paramecium affects the geometry of basal-body duplication
    • Ruiz, F., Garreau de Loubresse, N., Klotz, C., Beisson, J. & Koll, F. Centrin deficiency in Paramecium affects the geometry of basal-body duplication. Curr. Biol. 15, 2097-2106 (2005).
    • (2005) Curr. Biol , vol.15 , pp. 2097-2106
    • Ruiz, F.1    Garreau de Loubresse, N.2    Klotz, C.3    Beisson, J.4    Koll, F.5
  • 91
    • 0037031146 scopus 로고    scopus 로고
    • Centrin-2 is required for centriole duplication in mammalian cells
    • Salisbury, J. L., Suino, K. M., Busby, R. & Springett, M. Centrin-2 is required for centriole duplication in mammalian cells. Curr. Biol. 12, 1287-1292 (2002).
    • (2002) Curr. Biol , vol.12 , pp. 1287-1292
    • Salisbury, J.L.1    Suino, K.M.2    Busby, R.3    Springett, M.4
  • 92
    • 0347364717 scopus 로고    scopus 로고
    • Long-lost relatives reappear: Identification of new members of the tubulin superfamily
    • Dutcher, S. K. Long-lost relatives reappear: identification of new members of the tubulin superfamily. Curr. Opin. Microbiol. 6, 634-640 (2003).
    • (2003) Curr. Opin. Microbiol , vol.6 , pp. 634-640
    • Dutcher, S.K.1
  • 93
    • 26444611872 scopus 로고    scopus 로고
    • Rootletin forms centriole-associated filaments and functions in centrosome cohesion
    • Bahe, S., Stierhof, Y. D., Wilkinson, C. J., Leiss, F. & Nigg, E. A. Rootletin forms centriole-associated filaments and functions in centrosome cohesion. J. Cell Biol. 171, 27-33 (2005).
    • (2005) J. Cell Biol , vol.171 , pp. 27-33
    • Bahe, S.1    Stierhof, Y.D.2    Wilkinson, C.J.3    Leiss, F.4    Nigg, E.A.5
  • 94
    • 31944437431 scopus 로고    scopus 로고
    • Rootletin interacts with c-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells
    • Yang, J., Adamian, M. & Li, T. Rootletin interacts with c-Nap1 and may function as a physical linker between the pair of centrioles/basal bodies in cells. Mol. Biol. Cell 17, 1033-1040 (2006).
    • (2006) Mol. Biol. Cell , vol.17 , pp. 1033-1040
    • Yang, J.1    Adamian, M.2    Li, T.3
  • 95
    • 0034753402 scopus 로고    scopus 로고
    • Centrosome cohesion is regulated by a balance of kinase and phosphatase activities
    • Meraldi, P. & Nigg, E. A. Centrosome cohesion is regulated by a balance of kinase and phosphatase activities. J. Cell Sci. 114, 3749-3757 (2001).
    • (2001) J. Cell Sci , vol.114 , pp. 3749-3757
    • Meraldi, P.1    Nigg, E.A.2
  • 96
    • 22144466506 scopus 로고    scopus 로고
    • Centrosome aberrations in hematological malignancies
    • Kramer, A., Neben, K. & Ho, A. D. Centrosome aberrations in hematological malignancies. Cell. Biol. Int. 29, 376-384 (2005).
    • (2005) Cell. Biol. Int , vol.29 , pp. 376-384
    • Kramer, A.1    Neben, K.2    Ho, A.D.3
  • 97
    • 21744436814 scopus 로고    scopus 로고
    • Centrosome aberrations - hen or egg in cancer initiation and progression?
    • Kramer, A. Centrosome aberrations - hen or egg in cancer initiation and progression? Leukemia 9, 1142-1144 (2005).
    • (2005) Leukemia , vol.9 , pp. 1142-1144
    • Kramer, A.1
  • 98
    • 0033145516 scopus 로고    scopus 로고
    • Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A
    • Meraldi, P., Lukas, J., Fry, A. M., Bartek, J. & Nigg, E. A. Centrosome duplication in mammalian somatic cells requires E2F and Cdk2-cyclin A. Nature Cell Biol. 1, 88-93 (1999).
    • (1999) Nature Cell Biol , vol.1 , pp. 88-93
    • Meraldi, P.1    Lukas, J.2    Fry, A.M.3    Bartek, J.4    Nigg, E.A.5
  • 99
    • 0033525007 scopus 로고    scopus 로고
    • Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts
    • Hinchcliffe, E. H., Li, C., Thompson, E. A., Maller, J. L. & Sluder, G. Requirement of Cdk2-cyclin E activity for repeated centrosome reproduction in Xenopus egg extracts. Science 283, 851-854 (1999).
    • (1999) Science , vol.283 , pp. 851-854
    • Hinchcliffe, E.H.1    Li, C.2    Thompson, E.A.3    Maller, J.L.4    Sluder, G.5
  • 100
    • 33646710394 scopus 로고    scopus 로고
    • Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication
    • Duensing, A. et al. Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene 25, 2943-2949 (2006).
    • (2006) Oncogene , vol.25 , pp. 2943-2949
    • Duensing, A.1
  • 101
    • 23144451917 scopus 로고    scopus 로고
    • Cdc2-cyclin E complexes regulate the G1-S phase transition
    • Aleem, E., Kiyokawa, H. & Kaldis, P. Cdc2-cyclin E complexes regulate the G1-S phase transition. Nature Cell Biol. 7, 831-836 (2005).
    • (2005) Nature Cell Biol , vol.7 , pp. 831-836
    • Aleem, E.1    Kiyokawa, H.2    Kaldis, P.3
  • 102
    • 0038142191 scopus 로고    scopus 로고
    • Wong, C. & Stearns, T. Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nature Cell Biol. 5, 539-544 (2003). The authors provide evidence for a centrosome-intrinsic block to reduplication so that centrosomes that have already duplicated cannot duplicate again in the same cell cycle.
    • Wong, C. & Stearns, T. Centrosome number is controlled by a centrosome-intrinsic block to reduplication. Nature Cell Biol. 5, 539-544 (2003). The authors provide evidence for a centrosome-intrinsic block to reduplication so that centrosomes that have already duplicated cannot duplicate again in the same cell cycle.
  • 103
    • 0014938777 scopus 로고
    • Mammalian cell fusion: Studies on the regulation of DNA synthesis and mitosis
    • Rao, P. N. & Johnson, R. T. Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225, 159-164 (1970).
    • (1970) Nature , vol.225 , pp. 159-164
    • Rao, P.N.1    Johnson, R.T.2
  • 104
    • 27844562705 scopus 로고    scopus 로고
    • Depletion of licensing inhibitor geminin causes centrosome overduplication and mitotic defects
    • 1052-1057
    • Tachibana, K. E., Gonzalez, M. A., Guarguaglini, G., Nigg, E. A. & Laskey, R. A. Depletion of licensing inhibitor geminin causes centrosome overduplication and mitotic defects. EMBO Rep. 6, 1052-1057 (2005).
    • (2005) EMBO Rep , vol.6
    • Tachibana, K.E.1    Gonzalez, M.A.2    Guarguaglini, G.3    Nigg, E.A.4    Laskey, R.A.5
  • 105
    • 0034699332 scopus 로고    scopus 로고
    • The SCF ubiquitin ligase protein slimb regulates centrosome duplication in Drosophila
    • Wojcik, E. J., Glover, D. M. & Hays, T. S. The SCF ubiquitin ligase protein slimb regulates centrosome duplication in Drosophila. Curr. Biol. 10, 1131-1134 (2000).
    • (2000) Curr. Biol , vol.10 , pp. 1131-1134
    • Wojcik, E.J.1    Glover, D.M.2    Hays, T.S.3
  • 106
    • 0038348490 scopus 로고    scopus 로고
    • Drosophila skpA, a component of SCF ubiquitin ligases, regulates centrosome duplication independently of cyclin E accumulation
    • Murphy, T. D. Drosophila skpA, a component of SCF ubiquitin ligases, regulates centrosome duplication independently of cyclin E accumulation. J. Cell Sci. 116, 2321-2332 (2003).
    • (2003) J. Cell Sci , vol.116 , pp. 2321-2332
    • Murphy, T.D.1
  • 107
    • 0037623356 scopus 로고    scopus 로고
    • A p53-dependent checkpoint pathway prevents rereplication
    • Vaziri, C. et al. A p53-dependent checkpoint pathway prevents rereplication. Mol. Cell 11, 997-1008 (2003).
    • (2003) Mol. Cell , vol.11 , pp. 997-1008
    • Vaziri, C.1
  • 108
    • 14844330079 scopus 로고    scopus 로고
    • Cellular checkpoint mechanisms monitoring proper initiation of DNA replication
    • Machida, Y. J. & Dutta, A. Cellular checkpoint mechanisms monitoring proper initiation of DNA replication. J. Biol. Chem. 280, 6253-6256 (2005).
    • (2005) J. Biol. Chem , vol.280 , pp. 6253-6256
    • Machida, Y.J.1    Dutta, A.2
  • 109
    • 0029743890 scopus 로고    scopus 로고
    • Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation
    • Fode, C., Binkert, C. & Dennis, J. W. Constitutive expression of murine Sak-a suppresses cell growth and induces multinucleation. Mol. Cell Biol. 16, 4665-4672 (1996).
    • (1996) Mol. Cell Biol , vol.16 , pp. 4665-4672
    • Fode, C.1    Binkert, C.2    Dennis, J.W.3
  • 110
    • 27744569412 scopus 로고    scopus 로고
    • Loading and unloading: Orchestrating centrosome duplication and spindle assembly by Ran/Crm1
    • Budhu, A. S. & Wang, X. W. Loading and unloading: orchestrating centrosome duplication and spindle assembly by Ran/Crm1. Cell Cycle 4, 1510-1514 (2005).
    • (2005) Cell Cycle , vol.4 , pp. 1510-1514
    • Budhu, A.S.1    Wang, X.W.2
  • 111
    • 31144472765 scopus 로고    scopus 로고
    • Geminin regulates multiple steps of the chromosome inheritance cycle
    • Tachibana, K. E. & Nigg, E. A. Geminin regulates multiple steps of the chromosome inheritance cycle. Cell Cycle 5, 151-154 (2006).
    • (2006) Cell Cycle , vol.5 , pp. 151-154
    • Tachibana, K.E.1    Nigg, E.A.2
  • 112
  • 113
    • 34247887536 scopus 로고    scopus 로고
    • Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication
    • Shinmura, K., Bennett, R. A., Tarapore, P. & Fukasawa, K. Direct evidence for the role of centrosomally localized p53 in the regulation of centrosome duplication. Oncogene 26, 2939-2944 (2007).
    • (2007) Oncogene , vol.26 , pp. 2939-2944
    • Shinmura, K.1    Bennett, R.A.2    Tarapore, P.3    Fukasawa, K.4
  • 114
    • 18644372124 scopus 로고    scopus 로고
    • SAK, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing
    • Li, J. et al. SAK, a new polo-like kinase, is transcriptionally repressed by p53 and induces apoptosis upon RNAi silencing. Neoplasia 7, 312-323 (2005).
    • (2005) Neoplasia , vol.7 , pp. 312-323
    • Li, J.1
  • 115
    • 0038332016 scopus 로고    scopus 로고
    • Centrosomes as DNA damage regulators
    • Sibon, O. C. Centrosomes as DNA damage regulators. Nature Genet. 34, 6-7 (2003).
    • (2003) Nature Genet , vol.34 , pp. 6-7
    • Sibon, O.C.1
  • 116
    • 0027962325 scopus 로고
    • The centrosome and its mode of inheritance: The reduction of the centrosome during gametogenesis and its restoration during fertilization
    • Schatten, G. The centrosome and its mode of inheritance: the reduction of the centrosome during gametogenesis and its restoration during fertilization. Dev. Biol. 165, 299-335 (1994).
    • (1994) Dev. Biol , vol.165 , pp. 299-335
    • Schatten, G.1
  • 117
    • 0021991238 scopus 로고
    • Fate of microtubule-organizing centers during myogenesis in vitro
    • Tassin, A. M., Maro, B. & Bornens, M. Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol. 100, 35-46 (1985).
    • (1985) J. Cell Biol , vol.100 , pp. 35-46
    • Tassin, A.M.1    Maro, B.2    Bornens, M.3
  • 119
    • 2942521612 scopus 로고    scopus 로고
    • Cilia and flagella revealed: From flagellar assembly in Chlamydomonas to human obesity disorders
    • Snell, W. J., Pan, J. & Wang, Q. Cilia and flagella revealed: from flagellar assembly in Chlamydomonas to human obesity disorders. Cell 117, 693-697 (2004).
    • (2004) Cell , vol.117 , pp. 693-697
    • Snell, W.J.1    Pan, J.2    Wang, Q.3
  • 120
    • 33748537983 scopus 로고    scopus 로고
    • Cell cycle regulators control centrosome elimination during oogenesis in Caenorhabditis elegans
    • Kim, D. Y. & Roy, R. Cell cycle regulators control centrosome elimination during oogenesis in Caenorhabditis elegans. J. Cell Biol. 174, 751-757 (2006).
    • (2006) J. Cell Biol , vol.174 , pp. 751-757
    • Kim, D.Y.1    Roy, R.2
  • 121
    • 0014291368 scopus 로고
    • Reconstructions of centriole formation and ciliogenesis in mammalian lungs
    • Sorokin, S. P. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207-230 (1968).
    • (1968) J. Cell Sci , vol.3 , pp. 207-230
    • Sorokin, S.P.1
  • 122
    • 0015141393 scopus 로고
    • Centriole morphogenesis in developing ciliated epithelium of the mouse oviduct
    • Dirksen, E. R. Centriole morphogenesis in developing ciliated epithelium of the mouse oviduct. J. Cell Biol. 51, 286-302 (1971).
    • (1971) J. Cell Biol , vol.51 , pp. 286-302
    • Dirksen, E.R.1
  • 123
    • 0026051642 scopus 로고
    • Centriole and basal body formation during ciliogenesis revisited
    • Dirksen, E. R. Centriole and basal body formation during ciliogenesis revisited. Biol. Cell 72, 31-38 (1991).
    • (1991) Biol. Cell , vol.72 , pp. 31-38
    • Dirksen, E.R.1
  • 124
    • 0015096359 scopus 로고
    • The formation of basal bodies (centrioles) in the Rhesus monkey oviduct
    • Anderson, R. G. & Brenner, R. M. The formation of basal bodies (centrioles) in the Rhesus monkey oviduct. J. Cell Biol. 50, 10-34 (1971).
    • (1971) J. Cell Biol , vol.50 , pp. 10-34
    • Anderson, R.G.1    Brenner, R.M.2
  • 125
    • 0033615982 scopus 로고    scopus 로고
    • Centriolar satellites: Molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis
    • Kubo, A., Sasaki, H., Yuba-Kubo, A., Tsukita, S. & Shiina, N. Centriolar satellites: molecular characterization, ATP-dependent movement toward centrioles and possible involvement in ciliogenesis. J. Cell Biol. 147, 969-980 (1999).
    • (1999) J. Cell Biol , vol.147 , pp. 969-980
    • Kubo, A.1    Sasaki, H.2    Yuba-Kubo, A.3    Tsukita, S.4    Shiina, N.5
  • 126
    • 2342429306 scopus 로고    scopus 로고
    • The arithmetic of centrosome biogenesis
    • Delattre, M. & Gonczy, P. The arithmetic of centrosome biogenesis. J. Cell Sci. 117, 1619-1630 (2004).
    • (2004) J. Cell Sci , vol.117 , pp. 1619-1630
    • Delattre, M.1    Gonczy, P.2
  • 127
    • 0037144840 scopus 로고    scopus 로고
    • De novo formation of centrosomes in vertebrate cells arrested during S phase
    • Khodjakov, A. et al. De novo formation of centrosomes in vertebrate cells arrested during S phase. J. Cell Biol. 158, 1171-1181 (2002).
    • (2002) J. Cell Biol , vol.158 , pp. 1171-1181
    • Khodjakov, A.1
  • 128
    • 8344221351 scopus 로고    scopus 로고
    • Asymmetric cell division in C. elegans: Cortical polarity and spindle positioning
    • Cowan, C. R. & Hyman, A. A. Asymmetric cell division in C. elegans: cortical polarity and spindle positioning. Annu. Rev. Cell Dev. Biol. 20, 427-453 (2004).
    • (2004) Annu. Rev. Cell Dev. Biol , vol.20 , pp. 427-453
    • Cowan, C.R.1    Hyman, A.A.2
  • 129
    • 0037225725 scopus 로고    scopus 로고
    • Basal body/centriole assembly and continuity
    • Beisson, J. & Wright, M. Basal body/centriole assembly and continuity. Curr. Opin. Cell Biol. 15, 96-104 (2003).
    • (2003) Curr. Opin. Cell Biol , vol.15 , pp. 96-104
    • Beisson, J.1    Wright, M.2
  • 130
    • 0031750102 scopus 로고    scopus 로고
    • Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry
    • Wigge, P. A. et al. Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. J. Cell Biol. 141, 967-977 (1998).
    • (1998) J. Cell Biol , vol.141 , pp. 967-977
    • Wigge, P.A.1
  • 131
    • 33644858832 scopus 로고    scopus 로고
    • Flagellar motility is required for the viability of the bloodstream trypanosome
    • Broadhead, R. et al. Flagellar motility is required for the viability of the bloodstream trypanosome. Nature 440, 224-227 (2006).
    • (2006) Nature , vol.440 , pp. 224-227
    • Broadhead, R.1
  • 132
    • 33644845476 scopus 로고    scopus 로고
    • Identification of novel centrosomal proteins in Dictyostelium discoideum by comparative proteomic approaches
    • Reinders, Y., Schulz, I., Graf, R. & Sickmann, A. Identification of novel centrosomal proteins in Dictyostelium discoideum by comparative proteomic approaches. J. Proteome Res. 5, 589-598 (2006).
    • (2006) J. Proteome Res , vol.5 , pp. 589-598
    • Reinders, Y.1    Schulz, I.2    Graf, R.3    Sickmann, A.4
  • 134
    • 0036208071 scopus 로고    scopus 로고
    • The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa
    • Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297-354 (2002).
    • (2002) Int. J. Syst. Evol. Microbiol , vol.52 , pp. 297-354
    • Cavalier-Smith, T.1
  • 135
    • 0031563155 scopus 로고    scopus 로고
    • Centriole and centrosome dynamics during the embryonic cell cycles that follow the formation of the cellular blastoderm in Drosophila
    • Callaini, G., Whitfield, W. G. & Riparbelli, M. G. Centriole and centrosome dynamics during the embryonic cell cycles that follow the formation of the cellular blastoderm in Drosophila. Exp. Cell Res. 234, 183-190 (1997).
    • (1997) Exp. Cell Res , vol.234 , pp. 183-190
    • Callaini, G.1    Whitfield, W.G.2    Riparbelli, M.G.3
  • 136
    • 0031756738 scopus 로고    scopus 로고
    • Centrosomes and microtubule organisation during Drosophila development
    • Gonzalez, C., Tavosanis, G. & Mollinari, C. Centrosomes and microtubule organisation during Drosophila development. J. Cell Sci. 111, 2697-2706 (1998).
    • (1998) J. Cell Sci , vol.111 , pp. 2697-2706
    • Gonzalez, C.1    Tavosanis, G.2    Mollinari, C.3
  • 137
    • 33947384151 scopus 로고    scopus 로고
    • Overview of structure and function of mammalian cilia
    • Satir, P. & Christensen, S. T. Overview of structure and function of mammalian cilia. Annu. Rev. Physiol. 69, 377-400 (2006).
    • (2006) Annu. Rev. Physiol , vol.69 , pp. 377-400
    • Satir, P.1    Christensen, S.T.2
  • 139
    • 3242885644 scopus 로고    scopus 로고
    • The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: Identification of an early marker of radial asymmetry inherent in the basal body
    • Geimer, S. & Melkonian, M. The ultrastructure of the Chlamydomonas reinhardtii basal apparatus: identification of an early marker of radial asymmetry inherent in the basal body. J. Cell Sci. 117, 2663-2674 (2004).
    • (2004) J. Cell Sci , vol.117 , pp. 2663-2674
    • Geimer, S.1    Melkonian, M.2
  • 140
    • 0029149745 scopus 로고
    • A molecular marker for centriole maturation in the mammalian cell cycle
    • Lange, B. M. & Gull, K. A molecular marker for centriole maturation in the mammalian cell cycle. J. Cell Biol. 130, 919-927 (1995).
    • (1995) J. Cell Biol , vol.130 , pp. 919-927
    • Lange, B.M.1    Gull, K.2
  • 141
    • 0035907012 scopus 로고    scopus 로고
    • The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo
    • O'Connell, K. F. et al. The C. elegans zyg-1 gene encodes a regulator of centrosome duplication with distinct maternal and paternal roles in the embryo. Cell 105, 547-558 (2001).
    • (2001) Cell , vol.105 , pp. 547-558
    • O'Connell, K.F.1
  • 142
    • 0038783297 scopus 로고    scopus 로고
    • Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation
    • Koblenz, B., Schoppmeier, J., Grunow, A. & Lechtreck, K. F. Centrin deficiency in Chlamydomonas causes defects in basal body replication, segregation and maturation. J. Cell Sci. 116, 2635-2646 (2003).
    • (2003) J. Cell Sci , vol.116 , pp. 2635-2646
    • Koblenz, B.1    Schoppmeier, J.2    Grunow, A.3    Lechtreck, K.F.4
  • 143
    • 33745281934 scopus 로고    scopus 로고
    • Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication
    • Li, S. et al. Structural role of Sfi1p-centrin filaments in budding yeast spindle pole body duplication. J. Cell Biol. 173, 867-877 (2006).
    • (2006) J. Cell Biol , vol.173 , pp. 867-877
    • Li, S.1
  • 144
    • 0141864663 scopus 로고    scopus 로고
    • Kilmartin, J. V. Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J. Cell Biol. 162, 1211-1221 (2003).
    • Kilmartin, J. V. Sfi1p has conserved centrin-binding sites and an essential function in budding yeast spindle pole body duplication. J. Cell Biol. 162, 1211-1221 (2003).
  • 145
    • 0036745763 scopus 로고    scopus 로고
    • Chen, Z., Indjeian, V. B., McManus, M., Wang, L. & Dynlacht, B. D. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev. Cell 3, 339-350 (2002).
    • Chen, Z., Indjeian, V. B., McManus, M., Wang, L. & Dynlacht, B. D. CP110, a cell cycle-dependent CDK substrate, regulates centrosome duplication in human cells. Dev. Cell 3, 339-350 (2002).
  • 146
    • 32644447023 scopus 로고    scopus 로고
    • NEDD1-dependent recruitment of the γ-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly
    • Haren, L. et al. NEDD1-dependent recruitment of the γ-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J. Cell Biol. 172, 505-515 (2006).
    • (2006) J. Cell Biol , vol.172 , pp. 505-515
    • Haren, L.1
  • 147
    • 0032905628 scopus 로고    scopus 로고
    • Basal body duplication in Paramecium requires γ-tubulin
    • Ruiz, F., Beisson, J., Rossier, J. & Dupuis-Williams, P. Basal body duplication in Paramecium requires γ-tubulin. Curr. Biol. 9, 43-46 (1999).
    • (1999) Curr. Biol , vol.9 , pp. 43-46
    • Ruiz, F.1    Beisson, J.2    Rossier, J.3    Dupuis-Williams, P.4
  • 148
    • 10944248962 scopus 로고    scopus 로고
    • Elongation of centriolar microtubule triplets contributes to the formation of the mitotic spindle in γ-tubulin-depleted cells
    • Raynaud-Messina, B., Mazzolini, L., Moisand, A., Cirinesi, A. M. & Wright, M. Elongation of centriolar microtubule triplets contributes to the formation of the mitotic spindle in γ-tubulin-depleted cells. J. Cell Sci. 117, 5497-5507 (2004).
    • (2004) J. Cell Sci , vol.117 , pp. 5497-5507
    • Raynaud-Messina, B.1    Mazzolini, L.2    Moisand, A.3    Cirinesi, A.M.4    Wright, M.5
  • 149
    • 0037228254 scopus 로고    scopus 로고
    • ε-tubulin is required for centriole duplication and microtubule organization
    • Chang, P., Giddings, T. H. Jr., Winey, M. & Stearns, T. ε-tubulin is required for centriole duplication and microtubule organization. Nature Cell Biol. 5, 71-76 (2003).
    • (2003) Nature Cell Biol , vol.5 , pp. 71-76
    • Chang, P.1    Giddings Jr., T.H.2    Winey, M.3    Stearns, T.4
  • 150
    • 0037033788 scopus 로고    scopus 로고
    • Characterization of Cep135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells
    • Ohta, T. et al. Characterization of Cep135, a novel coiled-coil centrosomal protein involved in microtubule organization in mammalian cells. J. Cell Biol. 156, 87-99 (2002).
    • (2002) J. Cell Biol , vol.156 , pp. 87-99
    • Ohta, T.1
  • 151
    • 1942502180 scopus 로고    scopus 로고
    • The many faces of β-TrCP E3 ubiquitin ligases: Reflections in the magic mirror of cancer
    • Fuchs, S. Y., Spiegelman, V. S. & Kumar, K. G. The many faces of β-TrCP E3 ubiquitin ligases: reflections in the magic mirror of cancer. Oncogene 23, 2028-2036 (2004).
    • (2004) Oncogene , vol.23 , pp. 2028-2036
    • Fuchs, S.Y.1    Spiegelman, V.S.2    Kumar, K.G.3
  • 153
    • 34247880376 scopus 로고    scopus 로고
    • Overexpression of centriole replication proteins in vivo induces centriole over-replication and de novo centriole formation
    • 3 May, doi:10.1016/j.cub.2007.04.036
    • Peel, N., Stevens, N. R., Basto. R. & Raff, J. W. Overexpression of centriole replication proteins in vivo induces centriole over-replication and de novo centriole formation. Curr. Biol. 3 May 2007 (doi:10.1016/j.cub.2007.04.036).
    • (2007) Curr. Biol
    • Peel, N.1    Stevens, N.R.2    Basto, R.3    Raff, J.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.