메뉴 건너뛰기




Volumn 618, Issue 1-2, 2007, Pages 116-129

Transcription through chromatin by RNA polymerase II: Histone displacement and exchange

Author keywords

Chromatin; Elongation; Exchange; Histones; Nucleosome; Transcription

Indexed keywords

ADENOSINE TRIPHOSPHATE; DNA; HISTONE; RNA POLYMERASE II;

EID: 34147168036     PISSN: 00275107     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mrfmmm.2006.05.040     Document Type: Article
Times cited : (65)

References (111)
  • 1
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 Å resolution
    • Luger K., Mader A.W., Richmond R.K., Sargent D.F., and Richmond T.J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389 (1997) 251-260
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mader, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 2
    • 0037992395 scopus 로고    scopus 로고
    • The structure of DNA in the nucleosome core
    • Richmond T.J., and Davey C.A. The structure of DNA in the nucleosome core. Nature 423 (2003) 145-150
    • (2003) Nature , vol.423 , pp. 145-150
    • Richmond, T.J.1    Davey, C.A.2
  • 4
    • 0032488030 scopus 로고    scopus 로고
    • Chromatin structure: linking structure to function with histone H1
    • Widom J. Chromatin structure: linking structure to function with histone H1. Curr. Biol. 8 (1998) R788-R791
    • (1998) Curr. Biol. , vol.8
    • Widom, J.1
  • 6
    • 85015069067 scopus 로고    scopus 로고
    • Controlling the double helix
    • Felsenfeld G., and Groudine M. Controlling the double helix. Nature 421 (2003) 448-453
    • (2003) Nature , vol.421 , pp. 448-453
    • Felsenfeld, G.1    Groudine, M.2
  • 7
    • 9144274420 scopus 로고    scopus 로고
    • Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo
    • Kristjuhan A., and Svejstrup J.Q. Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo. EMBO J. 23 (2004) 4243-4252
    • (2004) EMBO J. , vol.23 , pp. 4243-4252
    • Kristjuhan, A.1    Svejstrup, J.Q.2
  • 8
    • 3543023310 scopus 로고    scopus 로고
    • Evidence for nucleosome depletion at active regulatory regions genome-wide
    • Lee C.K., Shibata Y., Rao B., Strahl B.D., and Lieb J.D. Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat. Genet. 36 (2004) 900-905
    • (2004) Nat. Genet. , vol.36 , pp. 900-905
    • Lee, C.K.1    Shibata, Y.2    Rao, B.3    Strahl, B.D.4    Lieb, J.D.5
  • 9
    • 8644287437 scopus 로고    scopus 로고
    • Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II
    • Schwabish M.A., and Struhl K. Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol. Cell. Biol. 24 (2004) 10111-10117
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 10111-10117
    • Schwabish, M.A.1    Struhl, K.2
  • 10
    • 0038623298 scopus 로고    scopus 로고
    • Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation
    • Corey L.L., Weirich C.S., Benjamin I.J., and Kingston R.E. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev. 17 (2003) 1392-1401
    • (2003) Genes Dev. , vol.17 , pp. 1392-1401
    • Corey, L.L.1    Weirich, C.S.2    Benjamin, I.J.3    Kingston, R.E.4
  • 11
    • 0029759928 scopus 로고    scopus 로고
    • Activator-dependent regulation of transcriptional pausing on nucleosomal templates
    • Brown S.A., Imbalzano A.N., and Kingston R.E. Activator-dependent regulation of transcriptional pausing on nucleosomal templates. Genes Dev. 10 (1996) 1479-1490
    • (1996) Genes Dev. , vol.10 , pp. 1479-1490
    • Brown, S.A.1    Imbalzano, A.N.2    Kingston, R.E.3
  • 12
    • 24044549376 scopus 로고    scopus 로고
    • Chromatin remodeling by RNA polymerase II
    • Studitsky V.M. Chromatin remodeling by RNA polymerase II. Mol. Biol. 39 (2005) 639-654
    • (2005) Mol. Biol. , vol.39 , pp. 639-654
    • Studitsky, V.M.1
  • 13
    • 5444225805 scopus 로고    scopus 로고
    • Elongation by RNA polymerase II: the short and long of it
    • Sims III R.J., Belotserkovskaya R., and Reinberg D. Elongation by RNA polymerase II: the short and long of it. Genes Dev. 18 (2004) 2437-2468
    • (2004) Genes Dev. , vol.18 , pp. 2437-2468
    • Sims III, R.J.1    Belotserkovskaya, R.2    Reinberg, D.3
  • 14
    • 1542328272 scopus 로고    scopus 로고
    • The RNA polymerase II transcription cycle: cycling through chromatin
    • Svejstrup J.Q. The RNA polymerase II transcription cycle: cycling through chromatin. Biochim. Biophys. Acta 1677 (2004) 64-73
    • (2004) Biochim. Biophys. Acta , vol.1677 , pp. 64-73
    • Svejstrup, J.Q.1
  • 15
    • 33746324216 scopus 로고    scopus 로고
    • A. Shilatifard, Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression, Annu. Rev. Biochem., 2006.
  • 16
    • 33644866509 scopus 로고    scopus 로고
    • Leaving a mark: the many footprints of the elongating RNA polymerase II
    • Eissenberg J.C., and Shilatifard A. Leaving a mark: the many footprints of the elongating RNA polymerase II. Curr. Opin. Genet. Dev. 16 (2006) 184-190
    • (2006) Curr. Opin. Genet. Dev. , vol.16 , pp. 184-190
    • Eissenberg, J.C.1    Shilatifard, A.2
  • 17
    • 0026794271 scopus 로고
    • The transcribed template and the transcription loop in Balbiani rings
    • Daneholt B. The transcribed template and the transcription loop in Balbiani rings. Cell. Biol. Int. Rep. 16 (1992) 709-715
    • (1992) Cell. Biol. Int. Rep. , vol.16 , pp. 709-715
    • Daneholt, B.1
  • 18
    • 0027485506 scopus 로고
    • Chromatin transitions during activation and repression of galactose-regulated genes in yeast
    • Cavalli G., and Thoma F. Chromatin transitions during activation and repression of galactose-regulated genes in yeast. EMBO J. 12 (1993) 4603-4613
    • (1993) EMBO J. , vol.12 , pp. 4603-4613
    • Cavalli, G.1    Thoma, F.2
  • 19
    • 33646200267 scopus 로고    scopus 로고
    • Histone H3.3 deposition at E2F-regulated genes is linked to transcription
    • Daury L., Chailleux C., Bonvallet J., and Trouche D. Histone H3.3 deposition at E2F-regulated genes is linked to transcription. EMBO Rep. 7 (2006) 66-71
    • (2006) EMBO Rep. , vol.7 , pp. 66-71
    • Daury, L.1    Chailleux, C.2    Bonvallet, J.3    Trouche, D.4
  • 20
    • 0023948705 scopus 로고
    • Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene
    • Solomon M.J., Larsen P.L., and Varshavsky A. Mapping protein-DNA interactions in vivo with formaldehyde: evidence that histone H4 is retained on a highly transcribed gene. Cell 53 (1988) 937-947
    • (1988) Cell , vol.53 , pp. 937-947
    • Solomon, M.J.1    Larsen, P.L.2    Varshavsky, A.3
  • 22
    • 0022976416 scopus 로고
    • Structure of in-vivo transcribing chromatin as studied in simian virus 40 minichromosomes
    • De Bernardin W., Koller T., and Sogo J.M. Structure of in-vivo transcribing chromatin as studied in simian virus 40 minichromosomes. J. Mol. Biol. 191 (1986) 469-482
    • (1986) J. Mol. Biol. , vol.191 , pp. 469-482
    • De Bernardin, W.1    Koller, T.2    Sogo, J.M.3
  • 23
    • 33644625997 scopus 로고    scopus 로고
    • Dynamic nucleosomes
    • Luger K. Dynamic nucleosomes. Chromosome Res. 14 (2006) 5-16
    • (2006) Chromosome Res. , vol.14 , pp. 5-16
    • Luger, K.1
  • 24
    • 0035954427 scopus 로고    scopus 로고
    • Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B
    • Kimura H., and Cook P.R. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153 (2001) 1341-1353
    • (2001) J. Cell Biol. , vol.153 , pp. 1341-1353
    • Kimura, H.1    Cook, P.R.2
  • 25
    • 15444376394 scopus 로고    scopus 로고
    • Replication-independent core histone dynamics at transcriptionally active loci in vivo
    • Thiriet C., and Hayes J.J. Replication-independent core histone dynamics at transcriptionally active loci in vivo. Genes Dev. 19 (2005) 677-682
    • (2005) Genes Dev. , vol.19 , pp. 677-682
    • Thiriet, C.1    Hayes, J.J.2
  • 26
    • 21644468242 scopus 로고    scopus 로고
    • Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z
    • Farris S.D., Rubio E.D., Moon J.J., Gombert W.M., Nelson B.H., and Krumm A. Transcription-induced chromatin remodeling at the c-myc gene involves the local exchange of histone H2A.Z. J. Biol. Chem. 280 (2005) 25298-25303
    • (2005) J. Biol. Chem. , vol.280 , pp. 25298-25303
    • Farris, S.D.1    Rubio, E.D.2    Moon, J.J.3    Gombert, W.M.4    Nelson, B.H.5    Krumm, A.6
  • 28
    • 0036299092 scopus 로고    scopus 로고
    • The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly
    • Ahmad K., and Henikoff S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 9 (2002) 1191-1200
    • (2002) Mol. Cell , vol.9 , pp. 1191-1200
    • Ahmad, K.1    Henikoff, S.2
  • 29
    • 0030272047 scopus 로고    scopus 로고
    • Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4
    • Verreault A., Kaufman P.D., Kobayashi R., and Stillman B. Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87 (1996) 95-104
    • (1996) Cell , vol.87 , pp. 95-104
    • Verreault, A.1    Kaufman, P.D.2    Kobayashi, R.3    Stillman, B.4
  • 30
    • 0742304304 scopus 로고    scopus 로고
    • Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis
    • Tagami H., Ray-Gallet D., Almouzni G., and Nakatani Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 116 (2004) 51-61
    • (2004) Cell , vol.116 , pp. 51-61
    • Tagami, H.1    Ray-Gallet, D.2    Almouzni, G.3    Nakatani, Y.4
  • 31
    • 1242342240 scopus 로고    scopus 로고
    • Histone H3.3 is enriched in covalent modifications associated with active chromatin
    • McKittrick E., Gafken P.R., Ahmad K., and Henikoff S. Histone H3.3 is enriched in covalent modifications associated with active chromatin. Proc. Natl. Acad. Sci. U.S.A. 101 (2004) 1525-1530
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 1525-1530
    • McKittrick, E.1    Gafken, P.R.2    Ahmad, K.3    Henikoff, S.4
  • 33
    • 27144510368 scopus 로고    scopus 로고
    • Genome-scale profiling of histone H3.3 replacement patterns
    • Mito Y., Henikoff J.G., and Henikoff S. Genome-scale profiling of histone H3.3 replacement patterns. Nat. Genet. 37 (2005) 1090-1097
    • (2005) Nat. Genet. , vol.37 , pp. 1090-1097
    • Mito, Y.1    Henikoff, J.G.2    Henikoff, S.3
  • 34
    • 23744460663 scopus 로고    scopus 로고
    • Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias
    • Wirbelauer C., Bell O., and Schubeler D. Variant histone H3.3 is deposited at sites of nucleosomal displacement throughout transcribed genes while active histone modifications show a promoter-proximal bias. Genes Dev. 19 (2005) 1761-1766
    • (2005) Genes Dev. , vol.19 , pp. 1761-1766
    • Wirbelauer, C.1    Bell, O.2    Schubeler, D.3
  • 35
    • 17044394787 scopus 로고    scopus 로고
    • Transcriptional activation triggers deposition and removal of the histone variant H3.3
    • Schwartz B.E., and Ahmad K. Transcriptional activation triggers deposition and removal of the histone variant H3.3. Genes Dev. 19 (2005) 804-814
    • (2005) Genes Dev. , vol.19 , pp. 804-814
    • Schwartz, B.E.1    Ahmad, K.2
  • 37
    • 0019351449 scopus 로고
    • A new method for the isolation of replicative chromatin: selective deposition of histone on both new and old DNA
    • Jackson V., and Chalkley R. A new method for the isolation of replicative chromatin: selective deposition of histone on both new and old DNA. Cell 23 (1981) 121-134
    • (1981) Cell , vol.23 , pp. 121-134
    • Jackson, V.1    Chalkley, R.2
  • 38
    • 0022393483 scopus 로고
    • Histone synthesis and deposition in the G1 and S phases of hepatoma tissue culture cells
    • Jackson V., and Chalkley R. Histone synthesis and deposition in the G1 and S phases of hepatoma tissue culture cells. Biochemistry 24 (1985) 6921-6930
    • (1985) Biochemistry , vol.24 , pp. 6921-6930
    • Jackson, V.1    Chalkley, R.2
  • 39
    • 0021796444 scopus 로고
    • Exchange of histones H1, H2A, and H2B in vivo
    • Louters L., and Chalkley R. Exchange of histones H1, H2A, and H2B in vivo. Biochemistry 24 (1985) 3080-3085
    • (1985) Biochemistry , vol.24 , pp. 3080-3085
    • Louters, L.1    Chalkley, R.2
  • 40
    • 0027743318 scopus 로고
    • Analysis of nucleosome assembly and histone exchange using antibodies specific for acetylated H4
    • Perry C.A., Dadd C.A., Allis C.D., and Annunziato A.T. Analysis of nucleosome assembly and histone exchange using antibodies specific for acetylated H4. Biochemistry 32 (1993) 13605-13614
    • (1993) Biochemistry , vol.32 , pp. 13605-13614
    • Perry, C.A.1    Dadd, C.A.2    Allis, C.D.3    Annunziato, A.T.4
  • 41
    • 0032999258 scopus 로고    scopus 로고
    • Transcriptional activity and chromatin structure of enhancer-deleted rRNA genes in Saccharomyces cerevisiae
    • Banditt M., Koller T., and Sogo J.M. Transcriptional activity and chromatin structure of enhancer-deleted rRNA genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 19 (1999) 4953-4960
    • (1999) Mol. Cell. Biol. , vol.19 , pp. 4953-4960
    • Banditt, M.1    Koller, T.2    Sogo, J.M.3
  • 42
    • 0029112540 scopus 로고
    • Transcription in the yeast rRNA gene locus: distribution of the active gene copies and chromatin structure of their flanking regulatory sequences
    • Dammann R., Lucchini R., Koller T., and Sogo J.M. Transcription in the yeast rRNA gene locus: distribution of the active gene copies and chromatin structure of their flanking regulatory sequences. Mol. Cell. Biol. 15 (1995) 5294-5303
    • (1995) Mol. Cell. Biol. , vol.15 , pp. 5294-5303
    • Dammann, R.1    Lucchini, R.2    Koller, T.3    Sogo, J.M.4
  • 43
    • 0023395729 scopus 로고
    • Rapid and reversible changes in nucleosome structure accompany the activation, repression, and superinduction of murine fibroblast protooncogenes c-fos and c-myc
    • Chen T.A., and Allfrey V.G. Rapid and reversible changes in nucleosome structure accompany the activation, repression, and superinduction of murine fibroblast protooncogenes c-fos and c-myc. Proc. Natl. Acad. Sci. U.S.A. 84 (1987) 5252-5256
    • (1987) Proc. Natl. Acad. Sci. U.S.A. , vol.84 , pp. 5252-5256
    • Chen, T.A.1    Allfrey, V.G.2
  • 44
    • 0025806535 scopus 로고
    • Nucleosome fractionation by mercury affinity chromatography. Contrasting distribution of transcriptionally active DNA sequences and acetylated histones in nucleosome fractions of wild-type yeast cells and cells expressing a histone H3 gene altered to encode a cysteine 110 residue
    • Chen T.A., Smith M.M., Le S.Y., Sternglanz R., and Allfrey V.G. Nucleosome fractionation by mercury affinity chromatography. Contrasting distribution of transcriptionally active DNA sequences and acetylated histones in nucleosome fractions of wild-type yeast cells and cells expressing a histone H3 gene altered to encode a cysteine 110 residue. J. Biol. Chem. 266 (1991) 6489-6498
    • (1991) J. Biol. Chem. , vol.266 , pp. 6489-6498
    • Chen, T.A.1    Smith, M.M.2    Le, S.Y.3    Sternglanz, R.4    Allfrey, V.G.5
  • 45
    • 7344238492 scopus 로고    scopus 로고
    • Histone acetylation is required to maintain the unfolded nucleosome structure associated with transcribing DNA
    • Walia H., Chen H.Y., Sun J.M., Holth L.T., and Davie J.R. Histone acetylation is required to maintain the unfolded nucleosome structure associated with transcribing DNA. J. Biol. Chem. 273 (1998) 14516-14522
    • (1998) J. Biol. Chem. , vol.273 , pp. 14516-14522
    • Walia, H.1    Chen, H.Y.2    Sun, J.M.3    Holth, L.T.4    Davie, J.R.5
  • 47
    • 0031451329 scopus 로고    scopus 로고
    • Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase
    • Studitsky V.M., Kassavetis G.A., Geiduschek E.P., and Felsenfeld G. Mechanism of transcription through the nucleosome by eukaryotic RNA polymerase. Science 278 (1997) 1960-1963
    • (1997) Science , vol.278 , pp. 1960-1963
    • Studitsky, V.M.1    Kassavetis, G.A.2    Geiduschek, E.P.3    Felsenfeld, G.4
  • 48
    • 0033197561 scopus 로고    scopus 로고
    • The nature of the nucleosomal barrier to transcription: direct observation of paused intermediates by electron cryomicroscopy
    • Bednar J., Studitsky V.M., Grigoryev S.A., Felsenfeld G., and Woodcock C.L. The nature of the nucleosomal barrier to transcription: direct observation of paused intermediates by electron cryomicroscopy. Mol. Cell 4 (1999) 377-386
    • (1999) Mol. Cell , vol.4 , pp. 377-386
    • Bednar, J.1    Studitsky, V.M.2    Grigoryev, S.A.3    Felsenfeld, G.4    Woodcock, C.L.5
  • 49
    • 0035800808 scopus 로고    scopus 로고
    • Facilitated transcription through the nucleosome at high ionic strength occurs via a histone octamer transfer mechanism
    • Walter W., and Studitsky V.M. Facilitated transcription through the nucleosome at high ionic strength occurs via a histone octamer transfer mechanism. J. Biol. Chem. 276 (2001) 29104-29110
    • (2001) J. Biol. Chem. , vol.276 , pp. 29104-29110
    • Walter, W.1    Studitsky, V.M.2
  • 50
    • 0036203807 scopus 로고    scopus 로고
    • Nucleosome remodeling induced by RNA polymerase II. Loss of the H2A/H2B dimer during transcription
    • Kireeva M.L., Walter W., Tchernajenko V., Bondarenko V., Kashlev M., and Studitsky V.M. Nucleosome remodeling induced by RNA polymerase II. Loss of the H2A/H2B dimer during transcription. Mol. Cell 9 (2002) 541-552
    • (2002) Mol. Cell , vol.9 , pp. 541-552
    • Kireeva, M.L.1    Walter, W.2    Tchernajenko, V.3    Bondarenko, V.4    Kashlev, M.5    Studitsky, V.M.6
  • 52
    • 0141704307 scopus 로고    scopus 로고
    • Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes
    • Walter W., Kireeva M.L., Studitsky V.M., and Kashlev M. Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes. J. Biol. Chem. 278 (2003) 36148-36156
    • (2003) J. Biol. Chem. , vol.278 , pp. 36148-36156
    • Walter, W.1    Kireeva, M.L.2    Studitsky, V.M.3    Kashlev, M.4
  • 53
    • 0345695246 scopus 로고
    • Transcription through chromatin
    • Oxford University Press, New York pp. 104-122
    • Luse D., and Felsenfeld G. Transcription through chromatin. Chromatin Structure and Gene Expression (1995), Oxford University Press, New York pp. 104-122
    • (1995) Chromatin Structure and Gene Expression
    • Luse, D.1    Felsenfeld, G.2
  • 54
    • 0035287576 scopus 로고    scopus 로고
    • Transcription through chromatin
    • Studitsky V.M. Transcription through chromatin. Mol. Biol. (Mosk) 35 (2001) 235-247
    • (2001) Mol. Biol. (Mosk) , vol.35 , pp. 235-247
    • Studitsky, V.M.1
  • 55
    • 0032113494 scopus 로고    scopus 로고
    • Crucial role of the RNA:DNA hybrid in the processivity of transcription
    • Sidorenkov I., Komissarova N., and Kashlev M. Crucial role of the RNA:DNA hybrid in the processivity of transcription. Mol. Cell 2 (1998) 55-64
    • (1998) Mol. Cell , vol.2 , pp. 55-64
    • Sidorenkov, I.1    Komissarova, N.2    Kashlev, M.3
  • 56
    • 0034051171 scopus 로고    scopus 로고
    • The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex
    • Kireeva M.L., Komissarova N., Waugh D.S., and Kashlev M. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem. 275 (2000) 6530-6536
    • (2000) J. Biol. Chem. , vol.275 , pp. 6530-6536
    • Kireeva, M.L.1    Komissarova, N.2    Waugh, D.S.3    Kashlev, M.4
  • 57
    • 0025877255 scopus 로고
    • Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing
    • Izban M.G., and Luse D.S. Transcription on nucleosomal templates by RNA polymerase II in vitro: inhibition of elongation with enhancement of sequence-specific pausing. Genes Dev. 5 (1991) 683-696
    • (1991) Genes Dev. , vol.5 , pp. 683-696
    • Izban, M.G.1    Luse, D.S.2
  • 58
    • 0026629273 scopus 로고
    • Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates
    • Izban M.G., and Luse D.S. Factor-stimulated RNA polymerase II transcribes at physiological elongation rates on naked DNA but very poorly on chromatin templates. J. Biol. Chem. 267 (1992) 13647-13655
    • (1992) J. Biol. Chem. , vol.267 , pp. 13647-13655
    • Izban, M.G.1    Luse, D.S.2
  • 59
    • 0028125847 scopus 로고
    • A histone octamer can step around a transcribing polymerase without leaving the template
    • Studitsky V.M., Clark D.J., and Felsenfeld G. A histone octamer can step around a transcribing polymerase without leaving the template. Cell 76 (1994) 371-382
    • (1994) Cell , vol.76 , pp. 371-382
    • Studitsky, V.M.1    Clark, D.J.2    Felsenfeld, G.3
  • 60
    • 0035827332 scopus 로고    scopus 로고
    • Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution
    • Gnatt A.L., Cramer P., Fu J., Bushnell D.A., and Kornberg R.D. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 Å resolution. Science 292 (2001) 1876-1882
    • (2001) Science , vol.292 , pp. 1876-1882
    • Gnatt, A.L.1    Cramer, P.2    Fu, J.3    Bushnell, D.A.4    Kornberg, R.D.5
  • 61
    • 1142310578 scopus 로고    scopus 로고
    • Structural basis of transcription: separation of RNA from DNA by RNA polymerase II
    • Westover K.D., Bushnell D.A., and Kornberg R.D. Structural basis of transcription: separation of RNA from DNA by RNA polymerase II. Science 303 (2004) 1014-1016
    • (2004) Science , vol.303 , pp. 1014-1016
    • Westover, K.D.1    Bushnell, D.A.2    Kornberg, R.D.3
  • 63
    • 0027220943 scopus 로고
    • Lifetime of the histone octamer studied by continuous-flow quasielastic light scattering: test of a model for nucleosome transcription
    • Feng H.P., Scherl D.S., and Widom J. Lifetime of the histone octamer studied by continuous-flow quasielastic light scattering: test of a model for nucleosome transcription. Biochemistry 32 (1993) 7824-7831
    • (1993) Biochemistry , vol.32 , pp. 7824-7831
    • Feng, H.P.1    Scherl, D.S.2    Widom, J.3
  • 64
    • 0030713405 scopus 로고    scopus 로고
    • Disruption of downstream chromatin directed by a transcriptional activator
    • Brown S.A., and Kingston R.E. Disruption of downstream chromatin directed by a transcriptional activator. Genes Dev. 11 (1997) 3116-3121
    • (1997) Genes Dev. , vol.11 , pp. 3116-3121
    • Brown, S.A.1    Kingston, R.E.2
  • 65
    • 0032101064 scopus 로고    scopus 로고
    • Transcriptional activation domains stimulate initiation and elongation at different times and via different residues
    • Brown S.A., Weirich C.S., Newton E.M., and Kingston R.E. Transcriptional activation domains stimulate initiation and elongation at different times and via different residues. EMBO J. 17 (1998) 3146-3154
    • (1998) EMBO J. , vol.17 , pp. 3146-3154
    • Brown, S.A.1    Weirich, C.S.2    Newton, E.M.3    Kingston, R.E.4
  • 66
    • 0034897667 scopus 로고    scopus 로고
    • Transcriptional activation domains of human heat shock factor 1 recruit human SWI/SNF
    • Sullivan E.K., Weirich C.S., Guyon J.R., Sif S., and Kingston R.E. Transcriptional activation domains of human heat shock factor 1 recruit human SWI/SNF. Mol. Cell. Biol. 21 (2001) 5826-5837
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 5826-5837
    • Sullivan, E.K.1    Weirich, C.S.2    Guyon, J.R.3    Sif, S.4    Kingston, R.E.5
  • 67
    • 0028837312 scopus 로고
    • The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced
    • Tennyson C.N., Klamut H.J., and Worton R.G. The human dystrophin gene requires 16 hours to be transcribed and is cotranscriptionally spliced. Nat. Genet. 9 (1995) 184-190
    • (1995) Nat. Genet. , vol.9 , pp. 184-190
    • Tennyson, C.N.1    Klamut, H.J.2    Worton, R.G.3
  • 68
    • 15244358670 scopus 로고    scopus 로고
    • Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo
    • Mason P.B., and Struhl K. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol. Cell 17 (2005) 831-840
    • (2005) Mol. Cell , vol.17 , pp. 831-840
    • Mason, P.B.1    Struhl, K.2
  • 69
    • 0032498273 scopus 로고    scopus 로고
    • FACT, a factor that facilitates transcript elongation through nucleosomes
    • Orphanides G., LeRoy G., Chang C.H., Luse D.S., and Reinberg D. FACT, a factor that facilitates transcript elongation through nucleosomes. Cell 92 (1998) 105-116
    • (1998) Cell , vol.92 , pp. 105-116
    • Orphanides, G.1    LeRoy, G.2    Chang, C.H.3    Luse, D.S.4    Reinberg, D.5
  • 71
    • 0242579933 scopus 로고    scopus 로고
    • The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo
    • Mason P.B., and Struhl K. The FACT complex travels with elongating RNA polymerase II and is important for the fidelity of transcriptional initiation in vivo. Mol. Cell. Biol. 23 (2003) 8323-8333
    • (2003) Mol. Cell. Biol. , vol.23 , pp. 8323-8333
    • Mason, P.B.1    Struhl, K.2
  • 72
    • 0033566129 scopus 로고    scopus 로고
    • The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins
    • Orphanides G., Wu W.H., Lane W.S., Hampsey M., and Reinberg D. The chromatin-specific transcription elongation factor FACT comprises human SPT16 and SSRP1 proteins. Nature 400 (1999) 284-288
    • (1999) Nature , vol.400 , pp. 284-288
    • Orphanides, G.1    Wu, W.H.2    Lane, W.S.3    Hampsey, M.4    Reinberg, D.5
  • 74
    • 0036964090 scopus 로고    scopus 로고
    • Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure
    • Formosa T., Ruone S., Adams M.D., Olsen A.E., Eriksson P., Yu Y., Rhoades A.R., Kaufman P.D., and Stillman D.J. Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae cause dependence on the Hir/Hpc pathway: polymerase passage may degrade chromatin structure. Genetics 162 (2002) 1557-1571
    • (2002) Genetics , vol.162 , pp. 1557-1571
    • Formosa, T.1    Ruone, S.2    Adams, M.D.3    Olsen, A.E.4    Eriksson, P.5    Yu, Y.6    Rhoades, A.R.7    Kaufman, P.D.8    Stillman, D.J.9
  • 75
    • 0041828953 scopus 로고    scopus 로고
    • Transcription elongation factors repress transcription initiation from cryptic sites
    • Kaplan C.D., Laprade L., and Winston F. Transcription elongation factors repress transcription initiation from cryptic sites. Science 301 (2003) 1096-1099
    • (2003) Science , vol.301 , pp. 1096-1099
    • Kaplan, C.D.1    Laprade, L.2    Winston, F.3
  • 76
    • 0345698603 scopus 로고    scopus 로고
    • Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes
    • Simic R., Lindstrom D.L., Tran H.G., Roinick K.L., Costa P.J., Johnson A.D., Hartzog G.A., and Arndt K.M. Chromatin remodeling protein Chd1 interacts with transcription elongation factors and localizes to transcribed genes. EMBO J. 22 (2003) 1846-1856
    • (2003) EMBO J. , vol.22 , pp. 1846-1856
    • Simic, R.1    Lindstrom, D.L.2    Tran, H.G.3    Roinick, K.L.4    Costa, P.J.5    Johnson, A.D.6    Hartzog, G.A.7    Arndt, K.M.8
  • 77
    • 0037073048 scopus 로고    scopus 로고
    • Promoting elongation with transcript cleavage stimulatory factors
    • Fish R.N., and Kane C.M. Promoting elongation with transcript cleavage stimulatory factors. Biochim. Biophys. Acta 1577 (2002) 287-307
    • (2002) Biochim. Biophys. Acta , vol.1577 , pp. 287-307
    • Fish, R.N.1    Kane, C.M.2
  • 78
    • 0031059249 scopus 로고    scopus 로고
    • Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′-end of the RNA intact and extruded
    • Komissarova N., and Kashlev M. Transcriptional arrest: Escherichia coli RNA polymerase translocates backward, leaving the 3′-end of the RNA intact and extruded. Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 1755-1760
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 1755-1760
    • Komissarova, N.1    Kashlev, M.2
  • 79
    • 0032479279 scopus 로고    scopus 로고
    • Recognition of a human arrest site is conserved between RNA polymerase II and prokaryotic RNA polymerases
    • Mote Jr. J., and Reines D. Recognition of a human arrest site is conserved between RNA polymerase II and prokaryotic RNA polymerases. J. Biol. Chem. 273 (1998) 16843-16852
    • (1998) J. Biol. Chem. , vol.273 , pp. 16843-16852
    • Mote Jr., J.1    Reines, D.2
  • 80
    • 0036241663 scopus 로고    scopus 로고
    • Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo
    • Pokholok D.K., Hannett N.M., and Young R.A. Exchange of RNA polymerase II initiation and elongation factors during gene expression in vivo. Mol. Cell 9 (2002) 799-809
    • (2002) Mol. Cell , vol.9 , pp. 799-809
    • Pokholok, D.K.1    Hannett, N.M.2    Young, R.A.3
  • 81
    • 11344268432 scopus 로고    scopus 로고
    • Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS
    • Adelman K., Marr M.T., Werner J., Saunders A., Ni Z., Andrulis E.D., and Lis J.T. Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS. Mol. Cell 17 (2005) 103-112
    • (2005) Mol. Cell , vol.17 , pp. 103-112
    • Adelman, K.1    Marr, M.T.2    Werner, J.3    Saunders, A.4    Ni, Z.5    Andrulis, E.D.6    Lis, J.T.7
  • 82
    • 0034974850 scopus 로고    scopus 로고
    • TFIIS enhances transcriptional elongation through an artificial arrest site in vivo
    • Kulish D., and Struhl K. TFIIS enhances transcriptional elongation through an artificial arrest site in vivo. Mol. Cell. Biol. 21 (2001) 4162-4168
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 4162-4168
    • Kulish, D.1    Struhl, K.2
  • 83
    • 20444375490 scopus 로고    scopus 로고
    • Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription
    • Morillon A., Karabetsou N., Nair A., and Mellor J. Dynamic lysine methylation on histone H3 defines the regulatory phase of gene transcription. Mol. Cell 18 (2005) 723-734
    • (2005) Mol. Cell , vol.18 , pp. 723-734
    • Morillon, A.1    Karabetsou, N.2    Nair, A.3    Mellor, J.4
  • 85
    • 33646066806 scopus 로고    scopus 로고
    • Synergistic functions of SII and p300 in productive activator-dependent transcription of chromatin templates
    • Guermah M., Palhan V.B., Tackett A.J., Chait B.T., and Roeder R.G. Synergistic functions of SII and p300 in productive activator-dependent transcription of chromatin templates. Cell 125 (2006) 275-286
    • (2006) Cell , vol.125 , pp. 275-286
    • Guermah, M.1    Palhan, V.B.2    Tackett, A.J.3    Chait, B.T.4    Roeder, R.G.5
  • 86
    • 0029890667 scopus 로고    scopus 로고
    • Evidence that Spt6p controls chromatin structure by a direct interaction with histones
    • Bortvin A., and Winston F. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272 (1996) 1473-1476
    • (1996) Science , vol.272 , pp. 1473-1476
    • Bortvin, A.1    Winston, F.2
  • 87
    • 31544446038 scopus 로고    scopus 로고
    • Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions
    • Adkins M.W., and Tyler J.K. Transcriptional activators are dispensable for transcription in the absence of Spt6-mediated chromatin reassembly of promoter regions. Mol. Cell 21 (2006) 405-416
    • (2006) Mol. Cell , vol.21 , pp. 405-416
    • Adkins, M.W.1    Tyler, J.K.2
  • 88
    • 0032004953 scopus 로고    scopus 로고
    • Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae
    • Hartzog G.A., Wada T., Handa H., and Winston F. Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. Genes Dev. 12 (1998) 357-369
    • (1998) Genes Dev. , vol.12 , pp. 357-369
    • Hartzog, G.A.1    Wada, T.2    Handa, H.3    Winston, F.4
  • 90
    • 0034667949 scopus 로고    scopus 로고
    • High-resolution localization of Drosophila spt5 and spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation
    • Andrulis E.D., Guzman E., Doring P., Werner J., and Lis J.T. High-resolution localization of Drosophila spt5 and spt6 at heat shock genes in vivo: roles in promoter proximal pausing and transcription elongation. Genes Dev. 14 (2000) 2635-2649
    • (2000) Genes Dev. , vol.14 , pp. 2635-2649
    • Andrulis, E.D.1    Guzman, E.2    Doring, P.3    Werner, J.4    Lis, J.T.5
  • 91
    • 0034667805 scopus 로고    scopus 로고
    • Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster
    • Kaplan C.D., Morris J.R., Wu C., and Winston F. Spt5 and spt6 are associated with active transcription and have characteristics of general elongation factors in D. melanogaster. Genes Dev. 14 (2000) 2623-2634
    • (2000) Genes Dev. , vol.14 , pp. 2623-2634
    • Kaplan, C.D.1    Morris, J.R.2    Wu, C.3    Winston, F.4
  • 95
    • 32044445075 scopus 로고    scopus 로고
    • Evidence that Spt2/Sin1, an HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in Saccharomyces cerevisiae
    • Nourani A., Robert F., and Winston F. Evidence that Spt2/Sin1, an HMG-like factor, plays roles in transcription elongation, chromatin structure, and genome stability in Saccharomyces cerevisiae. Mol. Cell. Biol. 26 (2006) 1496-1509
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 1496-1509
    • Nourani, A.1    Robert, F.2    Winston, F.3
  • 96
    • 1542328273 scopus 로고    scopus 로고
    • Nucleosome remodeling: one mechanism, many phenomena?
    • Langst G., and Becker P.B. Nucleosome remodeling: one mechanism, many phenomena?. Biochim. Biophys. Acta 1677 (2004) 58-63
    • (2004) Biochim. Biophys. Acta , vol.1677 , pp. 58-63
    • Langst, G.1    Becker, P.B.2
  • 97
    • 0033854297 scopus 로고    scopus 로고
    • Genetic interactions between TFIIS and the SWI-SNF chromatin-remodeling complex
    • Davie J.K., and Kane C.M. Genetic interactions between TFIIS and the SWI-SNF chromatin-remodeling complex. Mol. Cell. Biol. 20 (2000) 5960-5973
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 5960-5973
    • Davie, J.K.1    Kane, C.M.2
  • 98
    • 0030033699 scopus 로고    scopus 로고
    • RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling
    • Wilson C.J., Chao D.M., Imbalzano A.N., Schnitzler G.R., Kingston R.E., and Young R.A. RNA polymerase II holoenzyme contains SWI/SNF regulators involved in chromatin remodeling. Cell 84 (1996) 235-244
    • (1996) Cell , vol.84 , pp. 235-244
    • Wilson, C.J.1    Chao, D.M.2    Imbalzano, A.N.3    Schnitzler, G.R.4    Kingston, R.E.5    Young, R.A.6
  • 100
    • 0034657071 scopus 로고    scopus 로고
    • The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor
    • Tran H.G., Steger D.J., Iyer V.R., and Johnson A.D. The chromo domain protein chd1p from budding yeast is an ATP-dependent chromatin-modifying factor. EMBO J. 19 (2000) 2323-2331
    • (2000) EMBO J. , vol.19 , pp. 2323-2331
    • Tran, H.G.1    Steger, D.J.2    Iyer, V.R.3    Johnson, A.D.4
  • 101
    • 0029901861 scopus 로고    scopus 로고
    • CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes
    • Stokes D.G., Tartof K.D., and Perry R.P. CHD1 is concentrated in interbands and puffed regions of Drosophila polytene chromosomes. Proc. Natl. Acad. Sci. U.S.A. 93 (1996) 7137-7142
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 7137-7142
    • Stokes, D.G.1    Tartof, K.D.2    Perry, R.P.3
  • 102
    • 0033558873 scopus 로고    scopus 로고
    • Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae
    • Tsukiyama T., Palmer J., Landel C.C., Shiloach J., and Wu C. Characterization of the imitation switch subfamily of ATP-dependent chromatin-remodeling factors in Saccharomyces cerevisiae. Genes Dev. 13 (1999) 686-697
    • (1999) Genes Dev. , vol.13 , pp. 686-697
    • Tsukiyama, T.1    Palmer, J.2    Landel, C.C.3    Shiloach, J.4    Wu, C.5
  • 104
    • 29644433964 scopus 로고    scopus 로고
    • Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains
    • Sims III R.J., Chen C.F., Santos-Rosa H., Kouzarides T., Patel S.S., and Reinberg D. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem. 280 (2005) 41789-41792
    • (2005) J. Biol. Chem. , vol.280 , pp. 41789-41792
    • Sims III, R.J.1    Chen, C.F.2    Santos-Rosa, H.3    Kouzarides, T.4    Patel, S.S.5    Reinberg, D.6
  • 105
    • 0033290173 scopus 로고    scopus 로고
    • Preparation and analysis of positioned nucleosomes
    • Studitsky V.M. Preparation and analysis of positioned nucleosomes. Methods Mol. Biol. 119 (1999) 17-26
    • (1999) Methods Mol. Biol. , vol.119 , pp. 17-26
    • Studitsky, V.M.1
  • 106
    • 0033598808 scopus 로고    scopus 로고
    • Chromatin modification by DNA tracking
    • Travers A. Chromatin modification by DNA tracking. Proc. Natl. Acad. Sci. U.S.A. 96 (1999) 13634-13637
    • (1999) Proc. Natl. Acad. Sci. U.S.A. , vol.96 , pp. 13634-13637
    • Travers, A.1
  • 107
    • 0033853988 scopus 로고    scopus 로고
    • Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus
    • Gribnau J., Diderich K., Pruzina S., Calzolari R., and Fraser P. Intergenic transcription and developmental remodeling of chromatin subdomains in the human beta-globin locus. Mol. Cell 5 (2000) 377-386
    • (2000) Mol. Cell , vol.5 , pp. 377-386
    • Gribnau, J.1    Diderich, K.2    Pruzina, S.3    Calzolari, R.4    Fraser, P.5
  • 108
    • 13444292904 scopus 로고    scopus 로고
    • Histone modifications defining active genes persist after transcriptional and mitotic inactivation
    • Kouskouti A., and Talianidis I. Histone modifications defining active genes persist after transcriptional and mitotic inactivation. EMBO J. 24 (2005) 347-357
    • (2005) EMBO J. , vol.24 , pp. 347-357
    • Kouskouti, A.1    Talianidis, I.2
  • 109
    • 22344451854 scopus 로고    scopus 로고
    • Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation
    • Navarro P., Pichard S., Ciaudo C., Avner P., and Rougeulle C. Tsix transcription across the Xist gene alters chromatin conformation without affecting Xist transcription: implications for X-chromosome inactivation. Genes Dev. 19 (2005) 1474-1484
    • (2005) Genes Dev. , vol.19 , pp. 1474-1484
    • Navarro, P.1    Pichard, S.2    Ciaudo, C.3    Avner, P.4    Rougeulle, C.5
  • 110
    • 0032836135 scopus 로고    scopus 로고
    • Transcription elongation and human disease
    • Conaway J.W., and Conaway R.C. Transcription elongation and human disease. Annu. Rev. Biochem. 68 (1999) 301-319
    • (1999) Annu. Rev. Biochem. , vol.68 , pp. 301-319
    • Conaway, J.W.1    Conaway, R.C.2
  • 111
    • 17044399754 scopus 로고    scopus 로고
    • Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit
    • Radonjic M., Andrau J.C., Lijnzaad P., Kemmeren P., Kockelkorn T.T., van Leenen D., van Berkum N.L., and Holstege F.C. Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. Mol. Cell 18 (2005) 171-183
    • (2005) Mol. Cell , vol.18 , pp. 171-183
    • Radonjic, M.1    Andrau, J.C.2    Lijnzaad, P.3    Kemmeren, P.4    Kockelkorn, T.T.5    van Leenen, D.6    van Berkum, N.L.7    Holstege, F.C.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.