-
4
-
-
0000220710
-
-
edited by B. J. Berne et al, World Scientific, Singapore
-
H. Jónsson, G. Mills, and K. W. Jacobsen, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne et al. (World Scientific, Singapore, 1998), p. 385.
-
(1998)
Classical and Quantum Dynamics in Condensed Phase Simulations
, pp. 385
-
-
Jónsson, H.1
Mills, G.2
Jacobsen, K.W.3
-
5
-
-
12844286241
-
-
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); 49, 14 251 (1994);
-
G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); 49, 14 251 (1994);
-
-
-
-
6
-
-
0030190741
-
-
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11 169 (1996).
-
G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11 169 (1996).
-
-
-
-
7
-
-
0000065634
-
-
W. Windl, M. M. Bunea, R. Stumpf, S. T. Dunham, and M. P. Masquelier, Phys. Rev. Lett. 83, 4345 (1999).
-
(1999)
Phys. Rev. Lett
, vol.83
, pp. 4345
-
-
Windl, W.1
Bunea, M.M.2
Stumpf, R.3
Dunham, S.T.4
Masquelier, M.P.5
-
9
-
-
27144535349
-
-
N. G. Stoddard, P. Pichler, G. Duscher and W. Windl, Phys. Rev. Lett. 95, 025901 (2005).
-
(2005)
Phys. Rev. Lett
, vol.95
, pp. 025901
-
-
Stoddard, N.G.1
Pichler, P.2
Duscher, G.3
Windl, W.4
-
10
-
-
79956033850
-
-
C. L. Liu, W. Windl, L. Borucki, S. F. Lu and X. Y. Liu, Appl. Phys. Lett. 80, 52 (2002).
-
(2002)
Appl. Phys. Lett
, vol.80
, pp. 52
-
-
Liu, C.L.1
Windl, W.2
Borucki, L.3
Lu, S.F.4
Liu, X.Y.5
-
11
-
-
0345314095
-
-
X.Y. Liu, W. Windl, K.M. Beardmore and M.P. Masquelier, Appl. Phys. Lett. 82, 1839 (2003).
-
(2003)
Appl. Phys. Lett
, vol.82
, pp. 1839
-
-
Liu, X.Y.1
Windl, W.2
Beardmore, K.M.3
Masquelier, M.P.4
-
12
-
-
0001096552
-
-
B. P. Uberuaga, M. Levskovar, A. P. Smith, H. Jónsson, and M. Olmstead, Phys. Rev. Lett. 84, 2441 (2000).
-
(2000)
Phys. Rev. Lett
, vol.84
, pp. 2441
-
-
Uberuaga, B.P.1
Levskovar, M.2
Smith, A.P.3
Jónsson, H.4
Olmstead, M.5
-
13
-
-
33846979353
-
-
J. D. Plummer, M. D. Deal and P. B. Griffin, Silicon, VLSI Technology (Prentice Hall, 2000).
-
J. D. Plummer, M. D. Deal and P. B. Griffin, Silicon, VLSI Technology (Prentice Hall, 2000).
-
-
-
-
14
-
-
0002427970
-
-
edited by G. E. Murch and A. S. Nowick Academic Press, Orlando
-
W. Frank, U. Gösele, H. Mehrer, and A. Seeger, in Diffusion in Crystalline Solids, edited by G. E. Murch and A. S. Nowick (Academic Press, Orlando, 1984), p. 63.
-
(1984)
Diffusion in Crystalline Solids
, pp. 63
-
-
Frank, W.1
Gösele, U.2
Mehrer, H.3
Seeger, A.4
-
15
-
-
0031383526
-
Defects and Diffusion in Silicon Processing
-
ed. by T. Diaz de la Rubia et al, MRS, Pittsburgh
-
W. A. Harrison, in Defects and Diffusion in Silicon Processing, ed. by T. Diaz de la Rubia et al., MRS Proc. 469 (MRS, Pittsburgh, 1997), p. 211.
-
(1997)
MRS Proc
, vol.469
, pp. 211
-
-
Harrison, W.A.1
-
18
-
-
0343732881
-
-
H. P. Hjalmarson, P. Vogl, D. J. Wolford, and J. D. Dow, Phys. Rev. Lett. 44, 810 (1980).
-
(1980)
Phys. Rev. Lett
, vol.44
, pp. 810
-
-
Hjalmarson, H.P.1
Vogl, P.2
Wolford, D.J.3
Dow, J.D.4
-
22
-
-
0000074641
-
-
ed. by G. R. Srinivasan, C. S. Murthy, and S.T. Dunham Electrochemical Society, Pennington, NJ
-
U. Gösele, A. Plössl, and Y. T. Tan, in Process Physics and Modeling in Semiconductor Technology, ed. by G. R. Srinivasan, C. S. Murthy, and S.T. Dunham (Electrochemical Society, Pennington, NJ, 1996), p. 309.
-
(1996)
Process Physics and Modeling in Semiconductor Technology
, pp. 309
-
-
Gösele, U.1
Plössl, A.2
Tan, Y.T.3
-
23
-
-
33846942857
-
-
W. Windl, M. S. Daw, N. N. Carlson, and M. Laudon, in Advances in Materials Theory and Modeling - Bridg-ing over Multiple Lenth and Time Scales, ed. by V. Bulatov et al., MRS Proc. 677 (MRS, Pittsburgh, 2001), p. AA9.4.1-6.
-
W. Windl, M. S. Daw, N. N. Carlson, and M. Laudon, in Advances in Materials Theory and Modeling - Bridg-ing over Multiple Lenth and Time Scales, ed. by V. Bulatov et al., MRS Proc. 677 (MRS, Pittsburgh, 2001), p. AA9.4.1-6.
-
-
-
-
24
-
-
0036733988
-
-
B. P. Uberuaga, G. Henkelman, H. Jónsson, S. T. Dunham, W. Windl, and R. Stumpf Phys. Stat. Sol. B 233, 24 (2002).
-
(2002)
Phys. Stat. Sol. B
, vol.233
, pp. 24
-
-
Uberuaga, B.P.1
Henkelman, G.2
Jónsson, H.3
Dunham, S.T.4
Windl, W.5
Stumpf, R.6
-
26
-
-
0001230254
-
-
ed. K. A. Jackson and W. Schroeter, Wiley & Sons, New York
-
T. Y. Tan and U. Gösele, in Handbook of Semiconductor Technology-Electronic Structure and Properties of Semiconductors, ed. K. A. Jackson and W. Schroeter, vol. 1 (Wiley & Sons, New York, 2000), p. 231.
-
(2000)
Handbook of Semiconductor Technology-Electronic Structure and Properties of Semiconductors
, vol.1
, pp. 231
-
-
Tan, T.Y.1
Gösele, U.2
-
27
-
-
0001059762
-
-
M. Puska, S. Pöykkö, M. Pesola, and R. Nieminen, Phys. Rev. B 58, 1318 (1998).
-
(1998)
Phys. Rev. B
, vol.58
, pp. 1318
-
-
Puska, M.1
Pöykkö, S.2
Pesola, M.3
Nieminen, R.4
-
28
-
-
3342965087
-
-
W.-K. Leung, R. J. Needs, G. Rajagopal, S. Itoh, and S. Diara, Phys. Rev. Lett. 83, 2351 (1999).
-
(1999)
Phys. Rev. Lett
, vol.83
, pp. 2351
-
-
Leung, W.-K.1
Needs, R.J.2
Rajagopal, G.3
Itoh, S.4
Diara, S.5
-
29
-
-
0000168380
-
-
H. D. Fuchs, W. Walukiewicz,E. E. Haller, W. Dondl, R. Schorer, G. Abstreiter, A. I. Rudnev, A. V. Tikhomirov, V. I. Ozhogin Phys. Rev. B 51, 16817 (1995).
-
(1995)
Phys. Rev. B
, vol.51
, pp. 16817
-
-
Fuchs, H.D.1
Walukiewicz, W.2
Haller, E.E.3
Dondl, W.4
Schorer, R.5
Abstreiter, G.6
Rudnev, A.I.7
Tikhomirov, A.V.8
Ozhogin, V.I.9
-
30
-
-
0001340121
-
-
N. A. Stolwijk, W. Frank, J. Hölzl, S. J. Pearton, and E. E. Haller, J. Appl. Phys. 57, 5211 (1985).
-
(1985)
J. Appl. Phys
, vol.57
, pp. 5211
-
-
Stolwijk, N.A.1
Frank, W.2
Hölzl, J.3
Pearton, S.J.4
Haller, E.E.5
-
33
-
-
0037942971
-
-
P. E. Blöchl, E. Smargiassi, R. Car, D. B. Laks, W. Andreoni, and S. T. Pantelides, Phys. Rev. Lett. 70, 2435 (1993).
-
(1993)
Phys. Rev. Lett
, vol.70
, pp. 2435
-
-
Blöchl, P.E.1
Smargiassi, E.2
Car, R.3
Laks, D.B.4
Andreoni, W.5
Pantelides, S.T.6
-
37
-
-
33846963062
-
-
B. P. Uberuaga, Ph. D. thesis, University of Washington (2000). The PW91 predicted activation energy for diffusion in Si is 4.57 eV for CE, 4.04 eV for I, and 3.83 eV for V. The cohesive energy of Si is 4.57 eV with PW91, compared with an experimental value of 4.62 eV.
-
B. P. Uberuaga, Ph. D. thesis, University of Washington (2000). The PW91 predicted activation energy for diffusion in Si is 4.57 eV for CE, 4.04 eV for I, and 3.83 eV for V. The cohesive energy of Si is 4.57 eV with PW91, compared with an experimental value of 4.62 eV.
-
-
-
-
39
-
-
33846993967
-
-
unpublished
-
W. Windl (unpublished).
-
-
-
Windl, W.1
-
42
-
-
20544463457
-
-
D. Vanderbilt, Physical Review B 41, 7892 (1990); [20] G. Kresse and J. Hafner, J. Phys: Cond. Matter 6, 8245 (1994).
-
D. Vanderbilt, Physical Review B 41, 7892 (1990); [20] G. Kresse and J. Hafner, J. Phys: Cond. Matter 6, 8245 (1994).
-
-
-
-
44
-
-
0001388602
-
-
A. Seidl, A. Gorling, P. Vogl, J. A. Majewski, and M. Levy, Phys. Rev. B 53, 3764 (1996).
-
(1996)
Phys. Rev. B
, vol.53
, pp. 3764
-
-
Seidl, A.1
Gorling, A.2
Vogl, P.3
Majewski, J.A.4
Levy, M.5
-
46
-
-
84914188028
-
-
ed. J. N. Sherwood, et al, Gordon and Breach, London
-
A. D. LeClaire in Diffusion Processes, ed. J. N. Sherwood, et al. (Gordon and Breach, London, 1971).
-
(1971)
Diffusion Processes
-
-
LeClaire in, A.D.1
-
47
-
-
1242329035
-
-
G. Henkelman, B. P. Uberuaga and H. Jönsson, J. Chem. Phys. 113, 9901 (2000); 113, 9978 (2000).
-
G. Henkelman, B. P. Uberuaga and H. Jönsson, J. Chem. Phys. 113, 9901 (2000); 113, 9978 (2000).
-
-
-
-
49
-
-
33846960640
-
-
We use an exponential function here just for convenience. The cluster size dependence must converge to some limiting value and an exponential is the simplest function with such a shape
-
We use an exponential function here just for convenience. The cluster size dependence must converge to some limiting value and an exponential is the simplest function with such a shape.
-
-
-
-
51
-
-
0033344455
-
-
We note that previous LDA calculations including only the Γ-point gave even lower defect formation energy than PW91, see A. Janotti et al, Physica B 273-274, 575 1999
-
We note that previous LDA calculations including only the Γ-point gave even lower defect formation energy than PW91, see A. Janotti et al., Physica B 273-274, 575 (1999).
-
-
-
|