-
6
-
-
3142740752
-
-
L. M. Phinney, G. Lin, J. Wellman, and A. Garcia, J. Micromech. Microeng. 14, 927 (2004).
-
(2004)
J. Micromech. Microeng.
, vol.14
, pp. 927
-
-
Phinney, L.M.1
Lin, G.2
Wellman, J.3
Garcia, A.4
-
8
-
-
1542604486
-
-
M. P. de Boer, D. L. Luck, W. R. Ashurst, R. Maboudian, A. D. Corwin, J. A. Walraven, and J. M. Redmond, J. Microelectromech. Syst. 13, 63 (2004).
-
(2004)
J. Microelectromech. Syst.
, vol.13
, pp. 63
-
-
De Boer, M.P.1
Luck, D.L.2
Ashurst, W.R.3
Maboudian, R.4
Corwin, A.D.5
Walraven, J.A.6
Redmond, J.M.7
-
10
-
-
0036544442
-
-
W. Y. Wang, Y. L. Wang, H. F. Bao, B. Xiong, and M. H. Bao, Sens. Actuators, A 97, 486 (2002).
-
(2002)
Sens. Actuators, A
, vol.97
, pp. 486
-
-
Wang, W.Y.1
Wang, Y.L.2
Bao, H.F.3
Xiong, B.4
Bao, M.H.5
-
12
-
-
0344642576
-
-
T. Cagin, J. W. Che, M. N. Gardos, A. Fijany, and W. A. Goddard, Nanotechnology 10, 278 (1999).
-
(1999)
Nanotechnology
, vol.10
, pp. 278
-
-
Cagin, T.1
Che, J.W.2
Gardos, M.N.3
Fijany, A.4
Goddard, W.A.5
-
13
-
-
0037831290
-
-
B. N. J. Persson, O. Albohr, F. Mancosu, V. Peveri, V. Samoilov, and I. M. Siveback, Wear 254, 835 (2003).
-
(2003)
Wear
, vol.254
, pp. 835
-
-
Persson, B.N.J.1
Albohr, O.2
Mancosu, F.3
Peveri, V.4
Samoilov, V.5
Siveback, I.M.6
-
17
-
-
0037135147
-
-
N. Maeda, N. H. Chen, M. Tirrell, and J. N. Israelachvili, Science 297. 379 (2002).
-
(2002)
Science
, vol.297
, pp. 379
-
-
Maeda, N.1
Chen, N.H.2
Tirrell, M.3
Israelachvili, J.N.4
-
19
-
-
1642381109
-
-
J. P. Gao, W. D. Luedtke, D. Gourdon, M. Ruths, J. N. Israelachvili, and U. Landman, J. Phys. Chem. B 108, 3410 (2004).
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 3410
-
-
Gao, J.P.1
Luedtke, W.D.2
Gourdon, D.3
Ruths, M.4
Israelachvili, J.N.5
Landman, U.6
-
20
-
-
16444371698
-
-
O. Zwörner, H. Holscher, U. D. Schwarz, and R. Wiesendanger, Appl. Phys. A: Mater. Sci. Process. 66, S263 (1998).
-
(1998)
Appl. Phys. A: Mater. Sci. Process.
, vol.66
-
-
Zwörner, O.1
Holscher, H.2
Schwarz, U.D.3
Wiesendanger, R.4
-
21
-
-
2442505982
-
-
E. Riedo, I. Pallaci, C. Boragno, and H. Brune, J. Phys. Chem. B 108, 5324 (2004).
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 5324
-
-
Riedo, E.1
Pallaci, I.2
Boragno, C.3
Brune, H.4
-
22
-
-
0142008231
-
-
E. Riedo, E. Gnecco, R. Bennewitz, E. Meyer, and H. Brune, Phys. Rev. Lett. 91, 084502 (2003).
-
(2003)
Phys. Rev. Lett.
, vol.91
, pp. 084502
-
-
Riedo, E.1
Gnecco, E.2
Bennewitz, R.3
Meyer, E.4
Brune, H.5
-
24
-
-
0000101210
-
-
E. Gnecco, R. Bennewitz, T. Gyalog, C. Loppacher, M. Bammerlin, E. Meyer, and H. J. Guntherodt, Phys. Rev. Lett. 84, 1172 (2000).
-
(2000)
Phys. Rev. Lett.
, vol.84
, pp. 1172
-
-
Gnecco, E.1
Bennewitz, R.2
Gyalog, T.3
Loppacher, C.4
Bammerlin, M.5
Meyer, E.6
Guntherodt, H.J.7
-
29
-
-
26444561664
-
-
note
-
Tip wear and environmental control over a broad range have also not been addressed.
-
-
-
-
30
-
-
26444585782
-
-
note
-
Modified version with limited maximum voltage up to ±250 V, 50 W.
-
-
-
-
31
-
-
26444478383
-
-
note
-
In principle, for open-loop systems (as described in this article), one can operate the piezo even above its resonance frequency. However, at resonance the amplitudes can become extremely large even for low input signals, which would cause piezo to break. Additionally, at high frequencies, a phase shift between the input signal and the motion of the piezo will occur. This phase shift is negligible at relative low frequencies. In the case of closed-loop operation, the piezos are typically used below 50% of their resonance frequency due to bandwidth limitations of the electronics.
-
-
-
-
32
-
-
26444578008
-
-
note
-
The nominal shear piezo displacement is 5000 nm.
-
-
-
-
33
-
-
26444603602
-
-
note
-
For higher scanning frequencies, due to cutoff of higher-frequency components in the spectrum, the wave form will become distorted. Consequently, from measured frictional signals, the acceleration and deceleration parts were excluded for further analysis, providing satisfactory approximation of linear velocity.
-
-
-
-
34
-
-
0034295724
-
-
K. M. Vaeth, R. J. Jackman, A. J. Black, G. M. Whitesides, and K. F. Jensen, Langmuir 16, 8495 (2000).
-
(2000)
Langmuir
, vol.16
, pp. 8495
-
-
Vaeth, K.M.1
Jackman, R.J.2
Black, A.J.3
Whitesides, G.M.4
Jensen, K.F.5
-
39
-
-
26444472635
-
-
note
-
The friction force data are presented in arbitrary units, relative to the reference sample, due to large errors and different results between currently available lateral calibration methods.
-
-
-
-
45
-
-
0003425844
-
-
Kluwer Academic, Dordrecht
-
U. W. Gedde, Polymer Physics (Kluwer Academic, Dordrecht, 1999).
-
(1999)
Polymer Physics
-
-
Gedde, U.W.1
-
47
-
-
0004051758
-
-
Cambridge University Press, Cambridge, UK
-
B. W. Cherry, Polymer Surfaces (Cambridge University Press, Cambridge, UK, 1981).
-
(1981)
Polymer Surfaces
-
-
Cherry, B.W.1
-
49
-
-
26444557863
-
-
note
-
E.g., for a scan size of 1 μm the pixel size is 2 nm, by increasing the scan size to 100 μm, the resolution decreases 100 times, and the pixel size equals 200 um. In this case, sample homogeneity and roughness may influence the measured friction force data. Moreover for commercial AFM's, the highest scanning frequencies have discrete values and do not change continuously.
-
-
-
-
50
-
-
0028446277
-
-
J. Fisher, D. Dowson, H. Hamdzah, and H. L. Lee, Wear 175, 219 (1994).
-
(1994)
Wear
, vol.175
, pp. 219
-
-
Fisher, J.1
Dowson, D.2
Hamdzah, H.3
Lee, H.L.4
|