메뉴 건너뛰기




Volumn 13, Issue 8, 2002, Pages 985-995

The acidity of uracil and uracil analogs in the gas phase: Four surprisingly acidic sites and biological implications

Author keywords

[No Author keywords available]

Indexed keywords

ACIDITY; MASS SPECTROMETRY; MOLECULES; WATER;

EID: 0036674440     PISSN: 10440305     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1044-0305(02)00410-5     Document Type: Article
Times cited : (82)

References (88)
  • 2
    • 0001394051 scopus 로고    scopus 로고
    • Protonation and Deprotonation Enthalpies of Guanine and Adenine and Implications for the Structure and Energy of Their Complexes with Water: Comparison with Uracil, Thymine, and Cytosine
    • Chandra A.K., Nguyen M.T., Uchimaru T., Zeegers-Huyskens T. Protonation and Deprotonation Enthalpies of Guanine and Adenine and Implications for the Structure and Energy of Their Complexes with Water Comparison with Uracil, Thymine, and Cytosine . J. Phys. Chem. A. 103:1999;8853-8860.
    • (1999) J. Phys. Chem. A , vol.103 , pp. 8853-8860
    • Chandra, A.K.1    Nguyen, M.T.2    Uchimaru, T.3    Zeegers-Huyskens, T.4
  • 4
    • 0028224999 scopus 로고
    • Release of 5′-Terminal Deoxyribose-Phosphate Residues from Incised Abasic Sites in DNA by the Escherichia coli RecJ Protein
    • Dianov G., Sedgwick B., Daly G., Olsson M., Lovett S., Lindahl T. Release of 5′-Terminal Deoxyribose-Phosphate Residues from Incised Abasic Sites in DNA by the Escherichia coli RecJ Protein. Nucleic Acids Res. 22:1994;993-998.
    • (1994) Nucleic Acids Res. , vol.22 , pp. 993-998
    • Dianov, G.1    Sedgwick, B.2    Daly, G.3    Olsson, M.4    Lovett, S.5    Lindahl, T.6
  • 5
    • 0028959237 scopus 로고
    • The Structural Basis of Specific Base-Excision Repair by Uracil-DNA Glycosylase
    • Savva R., McAuley-Hecht K., Brown T., Pearl L. The Structural Basis of Specific Base-Excision Repair by Uracil-DNA Glycosylase. Nature. 373:1995;487-493.
    • (1995) Nature , vol.373 , pp. 487-493
    • Savva, R.1    McAuley-Hecht, K.2    Brown, T.3    Pearl, L.4
  • 6
    • 0028918401 scopus 로고
    • A Proficient Enzyme
    • Radzicka A., Wolfenden R. A Proficient Enzyme. Science. 267:1995;90-93.
    • (1995) Science , vol.267 , pp. 90-93
    • Radzicka, A.1    Wolfenden, R.2
  • 7
    • 0030912339 scopus 로고    scopus 로고
    • A Proficient Enzyme Revisited: The Predicted Mechanism for Orotidine Monophosphate Decarboxylase
    • Lee J.K., Houk K.N. A Proficient Enzyme Revisited The Predicted Mechanism for Orotidine Monophosphate Decarboxylase . Science. 276:1997;942-945.
    • (1997) Science , vol.276 , pp. 942-945
    • Lee, J.K.1    Houk, K.N.2
  • 8
    • 0033574207 scopus 로고    scopus 로고
    • Kinetic Mechanism of Uracil Phosphoribosyltransferase from Escherichia coli and Catalytic Importance of the Conserved Proline in the PRPP Binding Site
    • and references therein
    • Lundegaard C., Jensen K.F. Kinetic Mechanism of Uracil Phosphoribosyltransferase from Escherichia coli and Catalytic Importance of the Conserved Proline in the PRPP Binding Site. Biochem. 38:1999;3327-3334., and references therein.
    • (1999) Biochem. , vol.38 , pp. 3327-3334
    • Lundegaard, C.1    Jensen, K.F.2
  • 9
    • 0033580678 scopus 로고    scopus 로고
    • Remarkable Stabilization of Zwitterionic Intermediates May Account for a Billion-fold Rate Acceleration by Thiamin Diphosphate-Dependent Decarboxylases
    • Jordan F., Li H., Brown A. Remarkable Stabilization of Zwitterionic Intermediates May Account for a Billion-fold Rate Acceleration by Thiamin Diphosphate-Dependent Decarboxylases. Biochem. 38:1999;6369-6373.
    • (1999) Biochem. , vol.38 , pp. 6369-6373
    • Jordan, F.1    Li, H.2    Brown, A.3
  • 10
    • 0029833446 scopus 로고    scopus 로고
    • Charge Screening and the Dielectric Constant of Proteins: Insights from Molecular Dynamics
    • Simonson T., Brooks C.L. III. Charge Screening and the Dielectric Constant of Proteins Insights from Molecular Dynamics . J. Am. Chem. Soc. 118:1996;8452-8458.
    • (1996) J. Am. Chem. Soc. , vol.118 , pp. 8452-8458
    • Simonson, T.1    Brooks C.L. III2
  • 11
    • 0022816745 scopus 로고
    • The Dielectric Constant of a Folded Protein
    • Gilson M.K., Honig B.H. The Dielectric Constant of a Folded Protein. Biopolymers. 25:1986;2097-2119.
    • (1986) Biopolymers , vol.25 , pp. 2097-2119
    • Gilson, M.K.1    Honig, B.H.2
  • 13
    • 0001653828 scopus 로고
    • A Further Study of Extremely Weak Acids
    • McEwen W.K. A Further Study of Extremely Weak Acids. J. Am. Chem. Soc. 58:1936;1124-1129.
    • (1936) J. Am. Chem. Soc. , vol.58 , pp. 1124-1129
    • McEwen, W.K.1
  • 14
    • 0034608909 scopus 로고    scopus 로고
    • The Acidity of Uracil from the Gas Phase to Solution: The Coalescence of the N1 and N3 Sites and Implications for Biological Glycosylation
    • Kurinovich M.A., Lee J.K. The Acidity of Uracil from the Gas Phase to Solution The Coalescence of the N1 and N3 Sites and Implications for Biological Glycosylation . J. Am. Chem. Soc. 122:2000;6258-6262.
    • (2000) J. Am. Chem. Soc. , vol.122 , pp. 6258-6262
    • Kurinovich, M.A.1    Lee, J.K.2
  • 15
    • 0025596909 scopus 로고
    • Gas-Phase Proton Affinity of Deoxyribonucleosides and Related Nucleobases by Fast Atom Bombardment Tandem Mass Spectrometry
    • Greco F., Liguori A., Sindona G., Uccella N. Gas-Phase Proton Affinity of Deoxyribonucleosides and Related Nucleobases by Fast Atom Bombardment Tandem Mass Spectrometry. J. Am. Chem. Soc. 112:1990;9092-9096.
    • (1990) J. Am. Chem. Soc. , vol.112 , pp. 9092-9096
    • Greco, F.1    Liguori, A.2    Sindona, G.3    Uccella, N.4
  • 16
    • 0034582320 scopus 로고    scopus 로고
    • Mononucleotide Gas-Phase Proton Affinities as Determined by the Kinetic Method
    • Green-Church K.B., Limbach P.A. Mononucleotide Gas-Phase Proton Affinities as Determined by the Kinetic Method. J. Am. Soc. Mass Spectrom. 11:2000;24-32.
    • (2000) J. Am. Soc. Mass Spectrom. , vol.11 , pp. 24-32
    • Green-Church, K.B.1    Limbach, P.A.2
  • 17
    • 0016838666 scopus 로고
    • Chemical Ionization Mass Spectrometry of Nucleosides. Mechanisms of Ion Formation and Estimations of Proton Affinity
    • Wilson M.S., McCloskey J.A. Chemical Ionization Mass Spectrometry of Nucleosides. Mechanisms of Ion Formation and Estimations of Proton Affinity. J. Am. Chem. Soc. 97:1975;3436-3444.
    • (1975) J. Am. Chem. Soc. , vol.97 , pp. 3436-3444
    • Wilson, M.S.1    McCloskey, J.A.2
  • 18
    • 33845560983 scopus 로고
    • Ion Thermochemistry of Low-Volatility Compounds in the Gas Phase. 2. Intrinsic Basicities and Hydrogen-Bonded Dimers of Nitrogen Heterocyclics and Nucleic Bases
    • Meot-Ner (Mautner) M. Ion Thermochemistry of Low-Volatility Compounds in the Gas Phase. 2. Intrinsic Basicities and Hydrogen-Bonded Dimers of Nitrogen Heterocyclics and Nucleic Bases. J. Am. Chem. Soc. 101:1979;2396-2403.
    • (1979) J. Am. Chem. Soc. , vol.101 , pp. 2396-2403
    • Meot-Ner, M.1
  • 19
    • 0033551258 scopus 로고    scopus 로고
    • Mutation of an Active Site Residue in Escherichia coli Uracil-DNA Glycosylase: Effect on DNA Binding, Uracil Inhibition and Catalysis
    • Shroyer M.J.N., Bennett S.E., Putnam C.D., Tainer J.A., Mosbaugh D.W. Mutation of an Active Site Residue in Escherichia coli Uracil-DNA Glycosylase: Effect on DNA Binding, Uracil Inhibition and Catalysis. Biochem. 38:1999;4834-4845.
    • (1999) Biochem. , vol.38 , pp. 4834-4845
    • Shroyer, M.J.N.1    Bennett, S.E.2    Putnam, C.D.3    Tainer, J.A.4    Mosbaugh, D.W.5
  • 20
    • 0033554395 scopus 로고    scopus 로고
    • Heteronuclear NMR and Crystallographic Studies of Wild-Type and H187Q Escherichia coli Uracil DNA Glycosylase: Electrophilic Catalysis of Uracil Expulsion by a Neutral Histidine 187
    • Drohat A.C., Xiao G., Tordova M., Jagadeesh J., Pankiewicz K.W., Watanabe K.A., Gilliland G.L., Stivers J.T. Heteronuclear NMR and Crystallographic Studies of Wild-Type and H187Q Escherichia coli Uracil DNA Glycosylase Electrophilic Catalysis of Uracil Expulsion by a Neutral Histidine 187 . Biochem. 38:1999;11876-11886.
    • (1999) Biochem. , vol.38 , pp. 11876-11886
    • Drohat, A.C.1    Xiao, G.2    Tordova, M.3    Jagadeesh, J.4    Pankiewicz, K.W.5    Watanabe, K.A.6    Gilliland, G.L.7    Stivers, J.T.8
  • 21
    • 0033554424 scopus 로고    scopus 로고
    • Role of Electrophilic and General Base Catalysis in the Mechanism of Escherichia coli Uracil DNA Glycosylase
    • Drohat A.C., Jagadeesh J., Ferguson E., Stivers J.T. Role of Electrophilic and General Base Catalysis in the Mechanism of Escherichia coli Uracil DNA Glycosylase. Biochem. 38:1999;11866-11875.
    • (1999) Biochem. , vol.38 , pp. 11866-11875
    • Drohat, A.C.1    Jagadeesh, J.2    Ferguson, E.3    Stivers, J.T.4
  • 22
    • 0034090941 scopus 로고    scopus 로고
    • NMR Evidence for an Unusually Low N1 pKa for Uracil Bound to Uracil DNA Glycosylase: Implications for Catalysis
    • Drohat A.C., Stivers J.T. NMR Evidence for an Unusually Low N1 pKa for Uracil Bound to Uracil DNA Glycosylase Implications for Catalysis . J. Am. Chem. Soc. 122:2000;1840-1841.
    • (2000) J. Am. Chem. Soc. , vol.122 , pp. 1840-1841
    • Drohat, A.C.1    Stivers, J.T.2
  • 23
    • 0033587492 scopus 로고    scopus 로고
    • Specificity and Catalysis of Uracil DNA Glycosylase. A Molecular Dynamics Study of Reactant and Product Complexes with DNA
    • Luo N., Mehler E., Osman R. Specificity and Catalysis of Uracil DNA Glycosylase. A Molecular Dynamics Study of Reactant and Product Complexes with DNA. Biochem. 38:1999;9209-9220.
    • (1999) Biochem. , vol.38 , pp. 9209-9220
    • Luo, N.1    Mehler, E.2    Osman, R.3
  • 24
    • 0019142521 scopus 로고
    • Isolation and Initial Characterization of the Single Polypeptide that Synthesizes Uridine-5′-Monophosphate from Orotate in Ehrlich ascites carcinoma. Purification by Tandem Affinity Chromatography of Uridine-5′-Monophosphate Synthase
    • McClard R.W., Black M.J., Livingstone L.R., Jones M.E. Isolation and Initial Characterization of the Single Polypeptide that Synthesizes Uridine-5′-Monophosphate from Orotate in Ehrlich ascites carcinoma. Purification by Tandem Affinity Chromatography of Uridine-5′-Monophosphate Synthase. Biochem. 19:1980;4699-4706.
    • (1980) Biochem. , vol.19 , pp. 4699-4706
    • McClard, R.W.1    Black, M.J.2    Livingstone, L.R.3    Jones, M.E.4
  • 27
    • 0034703733 scopus 로고    scopus 로고
    • The Rate of Spontaneous Decarboxylation of Amino Acids
    • Snider M.J., Wolfenden R. The Rate of Spontaneous Decarboxylation of Amino Acids. J. Am. Chem. Soc. 122:2000;11507-11508.
    • (2000) J. Am. Chem. Soc. , vol.122 , pp. 11507-11508
    • Snider, M.J.1    Wolfenden, R.2
  • 28
    • 0034625082 scopus 로고    scopus 로고
    • Uracil-DNA Glycosylase-DNA Substrate and Product Structures: Conformational Strain Promotes Catalytic Efficiency by Coupled Stereoelectronic Effects
    • Parikh S.S., Walcher G., Jones G.D., Slupphaug G., Krokan H.E., Blackburn G.M., Tainer J.A. Uracil-DNA Glycosylase-DNA Substrate and Product Structures Conformational Strain Promotes Catalytic Efficiency by Coupled Stereoelectronic Effects . Proc. Natl. Acad. Sci. U.S.A. 97:2000;5083-5088.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 5083-5088
    • Parikh, S.S.1    Walcher, G.2    Jones, G.D.3    Slupphaug, G.4    Krokan, H.E.5    Blackburn, G.M.6    Tainer, J.A.7
  • 29
    • 0033120232 scopus 로고    scopus 로고
    • Crystal Structure of Escherichia coli Uracil DNA Glycosylase and Its Complexes with Uracil and Glycerol: Structure and Glycosylase Mechanism Revisited
    • Xiao G., Tordova M., Jagadeesh J., Drohat A., Stivers J.T., Gilliland G.L. Crystal Structure of Escherichia coli Uracil DNA Glycosylase and Its Complexes with Uracil and Glycerol: Structure and Glycosylase Mechanism Revisited. Proteins Struct. Funct. Genet. 35:1999;13-24.
    • (1999) Proteins Struct. Funct. Genet. , vol.35 , pp. 13-24
    • Xiao, G.1    Tordova, M.2    Jagadeesh, J.3    Drohat, A.4    Stivers, J.T.5    Gilliland, G.L.6
  • 30
    • 0033579953 scopus 로고    scopus 로고
    • Kinetic Mechanism of Damage Site Recognition and Uracil Flipping by Escherichia coli Uracil DNA Glycosylase
    • Stivers J.T., Pankiewicz K.W., Watanabe K.A. Kinetic Mechanism of Damage Site Recognition and Uracil Flipping by Escherichia coli Uracil DNA Glycosylase. Biochem. 38:1999;952-963.
    • (1999) Biochem. , vol.38 , pp. 952-963
    • Stivers, J.T.1    Pankiewicz, K.W.2    Watanabe, K.A.3
  • 31
    • 0034601807 scopus 로고    scopus 로고
    • Escherichia coli Uracil DNA Glycosylase: NMR Characterization of the Short Hydrogen Bond from His187 to Uracil O2
    • Drohat A.C., Stivers J.T. Escherichia coli Uracil DNA Glycosylase NMR Characterization of the Short Hydrogen Bond from His187 to Uracil O2 . Biochem. 39:2000;11865-11875.
    • (2000) Biochem. , vol.39 , pp. 11865-11875
    • Drohat, A.C.1    Stivers, J.T.2
  • 32
    • 0033787170 scopus 로고    scopus 로고
    • Raman Spectroscopy of Uracil DNA Glycosylase-DNA Complexes: Insights into DNA Damage Recognition and Catalysis
    • Dong J., Drohat A.C., Stivers J.T., Pankiewicz K.W., Carey P.R. Raman Spectroscopy of Uracil DNA Glycosylase-DNA Complexes Insights into DNA Damage Recognition and Catalysis . Biochem. 39:2000;13241-13250.
    • (2000) Biochem. , vol.39 , pp. 13241-13250
    • Dong, J.1    Drohat, A.C.2    Stivers, J.T.3    Pankiewicz, K.W.4    Carey, P.R.5
  • 33
    • 0034700259 scopus 로고    scopus 로고
    • Kinetic Isotope Effect Studies of the Reaction Catalyzed by Uracil DNA Glycosylase: Evidence for an Oxocarbenium Ion-Uracil Anion Intermediate
    • Werner R.M., Stivers J.T. Kinetic Isotope Effect Studies of the Reaction Catalyzed by Uracil DNA Glycosylase Evidence for an Oxocarbenium Ion-Uracil Anion Intermediate . Biochem. 39:2000;14054-14064.
    • (2000) Biochem. , vol.39 , pp. 14054-14064
    • Werner, R.M.1    Stivers, J.T.2
  • 34
    • 0035954406 scopus 로고    scopus 로고
    • Reconstructing the Substrate for Uracil DNA Glycosylase: Tracking the Transmission of Binding Energy in Catalysis
    • Jiang Y.L., Stivers J.T. Reconstructing the Substrate for Uracil DNA Glycosylase Tracking the Transmission of Binding Energy in Catalysis . Biochem. 40:2001;7710-7719.
    • (2001) Biochem. , vol.40 , pp. 7710-7719
    • Jiang, Y.L.1    Stivers, J.T.2
  • 35
    • 0035909316 scopus 로고    scopus 로고
    • Uracil-DNA Glycosylase Acts by Substrate Autocatalysis
    • Dinner A.R., Blackburn G.M., Karplus M. Uracil-DNA Glycosylase Acts by Substrate Autocatalysis. Nature. 413:2001;752-755.
    • (2001) Nature , vol.413 , pp. 752-755
    • Dinner, A.R.1    Blackburn, G.M.2    Karplus, M.3
  • 36
    • 0017302117 scopus 로고
    • Mechanism of Decarboxylation of 1,3-Dimethylorotic Acid. A Model for Orotidine 5′-Phosphate Decarboxylase
    • Beak P., Siegel B. Mechanism of Decarboxylation of 1,3-Dimethylorotic Acid. A Model for Orotidine 5′-Phosphate Decarboxylase. J. Am. Chem. Soc. 98:1976;3601-3606.
    • (1976) J. Am. Chem. Soc. , vol.98 , pp. 3601-3606
    • Beak, P.1    Siegel, B.2
  • 37
    • 0025272740 scopus 로고
    • Orotidine-5′-Monophosphate Decarboxylase Catalysis: Kinetic Isotope Effects and the State of Hybridization of a Bound Transition-State Analogue
    • Acheson S.A., Bell J.B., Jones M.E., Wolfenden R. Orotidine-5′-Monophosphate Decarboxylase Catalysis Kinetic Isotope Effects and the State of Hybridization of a Bound Transition-State Analogue . Biochem. 29:1990;3198-3202.
    • (1990) Biochem. , vol.29 , pp. 3198-3202
    • Acheson, S.A.1    Bell, J.B.2    Jones, M.E.3    Wolfenden, R.4
  • 38
    • 0019334745 scopus 로고
    • Inhibition of Orotidine-5′-Phosphate Decarboxylase by 1-(5′-Phospho-β-D-Ribofuranosyl)barbituric Acid, 6-Azauridine 5′-Phosphate, and Uridine 5′-Phosphate
    • Levine H.L., Brody R.S., Westheimer F.H. Inhibition of Orotidine-5′-Phosphate Decarboxylase by 1-(5′-Phospho-β-D-Ribofuranosyl)barbituric Acid, 6-Azauridine 5′-Phosphate, and Uridine 5′-Phosphate. Biochem. 19:1980;4993-4999.
    • (1980) Biochem. , vol.19 , pp. 4993-4999
    • Levine, H.L.1    Brody, R.S.2    Westheimer, F.H.3
  • 40
    • 0026622110 scopus 로고
    • A Unique Catalytic and Inhibitor-Binding Role for Lys93 of Yeast Orotidylate Decarboxylase
    • Smiley J.A., Jones M.E. A Unique Catalytic and Inhibitor-Binding Role for Lys93 of Yeast Orotidylate Decarboxylase. Biochem. 31:1992;12162-12168.
    • (1992) Biochem. , vol.31 , pp. 12162-12168
    • Smiley, J.A.1    Jones, M.E.2
  • 41
    • 0028068780 scopus 로고
    • Selection of Catalytic Antibodies for a Biosynthetic Reaction from a Combinatorial cDNA Library by Complementation of an Auxotrophic Escherichia coli: Antibodies for Orotate Decarboxylation
    • Smiley J.A., Benkovic S.J. Selection of Catalytic Antibodies for a Biosynthetic Reaction from a Combinatorial cDNA Library by Complementation of an Auxotrophic Escherichia coli: Antibodies for Orotate Decarboxylation. Proc. Natl. Acad. Sci. U.S.A. 91:1994;8319-8323.
    • (1994) Proc. Natl. Acad. Sci. U.S.A. , vol.91 , pp. 8319-8323
    • Smiley, J.A.1    Benkovic, S.J.2
  • 42
    • 0028938397 scopus 로고
    • Expression of an Orotate Decarboxylating Catalytic Antibody Confers 5-Fluoroorotate Sensitivity to a Pyrimidine Auxotrophic Escherichia coli: An Example of Intracellular Prodrug Activation
    • Smiley J.A., Benkovic S.J. Expression of an Orotate Decarboxylating Catalytic Antibody Confers 5-Fluoroorotate Sensitivity to a Pyrimidine Auxotrophic Escherichia coli An Example of Intracellular Prodrug Activation . J. Am. Chem. Soc. 117:1995;3877-3878.
    • (1995) J. Am. Chem. Soc. , vol.117 , pp. 3877-3878
    • Smiley, J.A.1    Benkovic, S.J.2
  • 43
    • 0035574727 scopus 로고    scopus 로고
    • A Reexamination of the Substrate Utilization of 2-Thioorotidine-5′-Monophosphate by Yeast Orotidine-5′-Monophosphate Decarboxylase
    • Smiley J.A., Hay K.M., Levison B.S. A Reexamination of the Substrate Utilization of 2-Thioorotidine-5′-Monophosphate by Yeast Orotidine-5′-Monophosphate Decarboxylase. Bioorg. Chem. 29:2001;96-106.
    • (2001) Bioorg. Chem. , vol.29 , pp. 96-106
    • Smiley, J.A.1    Hay, K.M.2    Levison, B.S.3
  • 44
    • 0001748157 scopus 로고
    • Model Chemistry for a Covalent Mechanism of Action of Orotidine 5′-Phosphate Decarboxylase
    • Silverman R.B., Groziak M.P. Model Chemistry for a Covalent Mechanism of Action of Orotidine 5′-Phosphate Decarboxylase. J. Am. Chem. Soc. 104:1982;6434-6439.
    • (1982) J. Am. Chem. Soc. , vol.104 , pp. 6434-6439
    • Silverman, R.B.1    Groziak, M.P.2
  • 45
  • 47
    • 0032572908 scopus 로고    scopus 로고
    • Mechanism of Decarboxylation of 1,3-Dimethylorotic Acid Revisited: Trapping of the Reaction Intermediate
    • Nakanishi M.P., Wu W. Mechanism of Decarboxylation of 1,3-Dimethylorotic Acid Revisited Trapping of the Reaction Intermediate . Tetrahedron Lett. 39:1998;6271-6272.
    • (1998) Tetrahedron Lett. , vol.39 , pp. 6271-6272
    • Nakanishi, M.P.1    Wu, W.2
  • 48
    • 0030696947 scopus 로고    scopus 로고
    • Decarboxylation of 1,3-Dimethylorotic Acid Revisited: Determining the Role of N-1
    • Wu W., Ley-han A., Wong F.M., Austin T.J., Miller S.M. Decarboxylation of 1,3-Dimethylorotic Acid Revisited Determining the Role of N-1 . Bioorg. Med. Chem. Lett. 7:1997;2623-2628.
    • (1997) Bioorg. Med. Chem. Lett. , vol.7 , pp. 2623-2628
    • Wu, W.1    Ley-han, A.2    Wong, F.M.3    Austin, T.J.4    Miller, S.M.5
  • 50
  • 51
    • 0034681950 scopus 로고    scopus 로고
    • Structural Basis for the Catalytic Mechanism of a Proficient Enzyme: Orotidine 5′-Monophosphate Decarboxylase
    • Harris P., Poulsen J.-C.N., Jensen K.F., Larsen S. Structural Basis for the Catalytic Mechanism of a Proficient Enzyme Orotidine 5′-Monophosphate Decarboxylase . Biochem. 39:2000;4217-4224.
    • (2000) Biochem. , vol.39 , pp. 4217-4224
    • Harris, P.1    Poulsen, J.-C.N.2    Jensen, K.F.3    Larsen, S.4
  • 52
    • 0034682613 scopus 로고    scopus 로고
    • Contribution of Enzyme-Phosphoribosyl Contacts to Catalysis by Orotidine 5′-Phosphate Decarboxylase
    • Miller B.G., Snider M.J., Short S.A., Wolfenden R. Contribution of Enzyme-Phosphoribosyl Contacts to Catalysis by Orotidine 5′-Phosphate Decarboxylase. Biochem. 39:2000;8113-8118.
    • (2000) Biochem. , vol.39 , pp. 8113-8118
    • Miller, B.G.1    Snider, M.J.2    Short, S.A.3    Wolfenden, R.4
  • 53
    • 0034104285 scopus 로고    scopus 로고
    • Anatomy of a Proficient Enzyme: The Structure of Orotidine 5′-Monophosphate Decarboxylase in the Presence and Absence of a Potential Transition State Analog
    • Miller B.G., Hassell A.M., Wolfenden R., Milburn M.V., Short S.A. Anatomy of a Proficient Enzyme The Structure of Orotidine 5′-Monophosphate Decarboxylase in the Presence and Absence of a Potential Transition State Analog . Proc. Natl. Acad. Sci. U.S.A. 97:2000;2011-2016.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 2011-2016
    • Miller, B.G.1    Hassell, A.M.2    Wolfenden, R.3    Milburn, M.V.4    Short, S.A.5
  • 54
    • 0034102419 scopus 로고    scopus 로고
    • Electrostatic Stress in Catalysis: Structure and Mechanism of the Enzyme Orotidine Monophosphate Decarboxylase
    • Wu N., Mo Y., Gao J., Pai E.F. Electrostatic Stress in Catalysis Structure and Mechanism of the Enzyme Orotidine Monophosphate Decarboxylase . Proc. Natl. Acad. Sci. U.S.A. 97:2000;2017-2022.
    • (2000) Proc. Natl. Acad. Sci. U.S.A. , vol.97 , pp. 2017-2022
    • Wu, N.1    Mo, Y.2    Gao, J.3    Pai, E.F.4
  • 55
    • 0034610398 scopus 로고    scopus 로고
    • Remarkable Rate Enhancement of Orotidine 5′-Monophosphate Decarboxylase is Due to Transition-State Stabilization Rather than to Ground-State Destabilization
    • Warshel A., Strajbl M., Villa J., Florian J. Remarkable Rate Enhancement of Orotidine 5′-Monophosphate Decarboxylase is Due to Transition-State Stabilization Rather than to Ground-State Destabilization. Biochem. 39:2000;14728-14738.
    • (2000) Biochem. , vol.39 , pp. 14728-14738
    • Warshel, A.1    Strajbl, M.2    Villa, J.3    Florian, J.4
  • 56
    • 0035793649 scopus 로고    scopus 로고
    • Circe Effect versus Enzyme Preorganization: What Can Be Learned from the Structure of the Most Proficient Enzyme?
    • Warshel A., Florian J., Strajbl M., Villa J. Circe Effect versus Enzyme Preorganization What Can Be Learned from the Structure of the Most Proficient Enzyme? Chem. Bio. Chem. 2:2001;109-111.
    • (2001) Chem. Bio. Chem. , vol.2 , pp. 109-111
    • Warshel, A.1    Florian, J.2    Strajbl, M.3    Villa, J.4
  • 57
    • 0034524410 scopus 로고    scopus 로고
    • The Structural Basis for the Remarkable Catalytic Proficiency of Orotidine 5′-Monophosphate Decarboxylase
    • Begley T.P., Appleby T.C., Ealick S.E. The Structural Basis for the Remarkable Catalytic Proficiency of Orotidine 5′-Monophosphate Decarboxylase. Curr. Opin. Struct. Biol. 10:2000;711-718.
    • (2000) Curr. Opin. Struct. Biol. , vol.10 , pp. 711-718
    • Begley, T.P.1    Appleby, T.C.2    Ealick, S.E.3
  • 58
    • 0035793646 scopus 로고    scopus 로고
    • Crystal Structures of Orotidine 5′-Monophosphate Decarboxylase: Does the Structure Reveal the Mechanism of the Most Proficient Enzyme?
    • Houk K.N., Lee J.K., Tantillo D.J., Bahmanyar S., Hietbrink B.N. Crystal Structures of Orotidine 5′-Monophosphate Decarboxylase Does the Structure Reveal the Mechanism of the Most Proficient Enzyme? Chem. Bio. Chem. 2:2001;113-118.
    • (2001) Chem. Bio. Chem. , vol.2 , pp. 113-118
    • Houk, K.N.1    Lee, J.K.2    Tantillo, D.J.3    Bahmanyar, S.4    Hietbrink, B.N.5
  • 59
    • 0038998655 scopus 로고    scopus 로고
    • Determination of the Mechanism of Orotidine 5′-Monophosphate Decarboxylase by Isotope Effects
    • Rishavy M.A., Cleland W.W. Determination of the Mechanism of Orotidine 5′-Monophosphate Decarboxylase by Isotope Effects. Biochem. 39:2000;4569-4574.
    • (2000) Biochem. , vol.39 , pp. 4569-4574
    • Rishavy, M.A.1    Cleland, W.W.2
  • 60
    • 0035814395 scopus 로고    scopus 로고
    • Theoretical Studies of Mechanisms and Kinetic Isotope Effects on the Decarboxylation of Orotic Acid and Derivatives
    • Phillips L.M., Lee J.K. Theoretical Studies of Mechanisms and Kinetic Isotope Effects on the Decarboxylation of Orotic Acid and Derivatives. J. Am. Chem. Soc. 123:2001;12067-12073.
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 12067-12073
    • Phillips, L.M.1    Lee, J.K.2
  • 61
    • 0001800948 scopus 로고
    • Ultraviolet Spectra of N-Heterocyclic Systems. I. The Anions of Uracils
    • Nakanishi K., Suzuki N., Yamazaki F. Ultraviolet Spectra of N-Heterocyclic Systems. I. The Anions of Uracils. Bull. Chem. Soc. Jpn. 34:1961;53-57.
    • (1961) Bull. Chem. Soc. Jpn. , vol.34 , pp. 53-57
    • Nakanishi, K.1    Suzuki, N.2    Yamazaki, F.3
  • 62
    • 0030669204 scopus 로고    scopus 로고
    • Facile and Selective Electrostatic Stabilization of Uracil N(1)-Anion by a Proximate Protonated Amine: A Chemical Implication for Why Uracil N(1) is Chosen for Glycosylation Site
    • Kimura E., Kitamura H., Koike T., Shiro M. Facile and Selective Electrostatic Stabilization of Uracil N(1)-Anion by a Proximate Protonated Amine A Chemical Implication for Why Uracil N(1) is Chosen for Glycosylation Site . J. Am. Chem. Soc. 119:1997;10909-10919.
    • (1997) J. Am. Chem. Soc. , vol.119 , pp. 10909-10919
    • Kimura, E.1    Kitamura, H.2    Koike, T.3    Shiro, M.4
  • 63
    • 0030461690 scopus 로고    scopus 로고
    • Fourier Transform Mass Spectrometry
    • and references therein
    • Amster I.J. Fourier Transform Mass Spectrometry. J. Mass. Spec. 31:1996;1325-1337., and references therein.
    • (1996) J. Mass. Spec. , vol.31 , pp. 1325-1337
    • Amster, I.J.1
  • 64
    • 0000143445 scopus 로고
    • Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: The Teenage Years
    • and references therein
    • Marshall A.G., Grosshans P.B. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry The Teenage Years . Anal. Chem. 63:1991;215A-229A., and references therein.
    • (1991) Anal. Chem. , vol.63
    • Marshall, A.G.1    Grosshans, P.B.2
  • 66
    • 0001621480 scopus 로고
    • Gas-Phase Formation of the Enolate Monoanion of Acetic Acid by Proton Abstraction
    • Grabowski J.J., Cheng X. Gas-Phase Formation of the Enolate Monoanion of Acetic Acid by Proton Abstraction. J. Am. Chem. Soc. 111:1989;3106-3108.
    • (1989) J. Am. Chem. Soc. , vol.111 , pp. 3106-3108
    • Grabowski, J.J.1    Cheng, X.2
  • 67
    • 9744224621 scopus 로고
    • Biradical Thermochemistry from Collision-Induced Dissociation Threshold Energy Measurements. Absolute Heats of Formation of ortho-, meta-, and para-Benzyne
    • Wenthold P.G., Squires R.R. Biradical Thermochemistry from Collision-Induced Dissociation Threshold Energy Measurements. Absolute Heats of Formation of ortho-, meta-, and para-Benzyne. J. Am. Chem. Soc. 116:1994;6401-6412.
    • (1994) J. Am. Chem. Soc. , vol.116 , pp. 6401-6412
    • Wenthold, P.G.1    Squires, R.R.2
  • 68
    • 0000550123 scopus 로고
    • The Absolute Heats of Formation of o-, m-, and p-Benzyne
    • Wenthold P.G., Paulino J.A., Squires R.R. The Absolute Heats of Formation of o-, m-, and p-Benzyne. J. Am. Chem. Soc. 113:1991;7414-7415.
    • (1991) J. Am. Chem. Soc. , vol.113 , pp. 7414-7415
    • Wenthold, P.G.1    Paulino, J.A.2    Squires, R.R.3
  • 69
    • 0028888665 scopus 로고
    • Determination of the Gas Phase Acidities of Halogen-Substituted Aromatic Compounds Using the Silane-Cleavage Method
    • Wenthold P.G., Squires R.R. Determination of the Gas Phase Acidities of Halogen-Substituted Aromatic Compounds Using the Silane-Cleavage Method. J. Mass. Spec. 30:1995;17-24.
    • (1995) J. Mass. Spec. , vol.30 , pp. 17-24
    • Wenthold, P.G.1    Squires, R.R.2
  • 70
    • 0035860212 scopus 로고    scopus 로고
    • Acetamide Enolate: Formation, Reactivity, and Proton Affinity
    • Hare M.C., Marimanikkuppam S.S., Kass S.R. Acetamide Enolate Formation, Reactivity, and Proton Affinity . Int. J. Mass Spectrom. 210/211:2001;153-163.
    • (2001) Int. J. Mass Spectrom. , vol.210-211 , pp. 153-163
    • Hare, M.C.1    Marimanikkuppam, S.S.2    Kass, S.R.3
  • 71
  • 72
    • 0001351147 scopus 로고
    • Vinyl Anion Synthesis in the Gas Phase
    • Anderson K.K., Kass S.R. Vinyl Anion Synthesis in the Gas Phase. Tetrahedron Lett. 30:1989;3045-3048.
    • (1989) Tetrahedron Lett. , vol.30 , pp. 3045-3048
    • Anderson, K.K.1    Kass, S.R.2
  • 73
    • 84979249458 scopus 로고
    • (E) and (Z) Vinyl Anions. The Formation and Characterization of Regio- and Stereoisomers in the Gas Phase
    • Chou P.K., Kass S.R. (E) and (Z) Vinyl Anions. The Formation and Characterization of Regio- and Stereoisomers in the Gas Phase. J. Am. Chem. Soc. 113:1991;4357-4359.
    • (1991) J. Am. Chem. Soc. , vol.113 , pp. 4357-4359
    • Chou, P.K.1    Kass, S.R.2
  • 74
    • 2942617947 scopus 로고
    • 3-Carbomethoxycyclopropen-3-yl Anion. Formation and Characterization of an Antiaromatic Ion
    • Sachs R.K., Kass S.R. 3-Carbomethoxycyclopropen-3-yl Anion. Formation and Characterization of an Antiaromatic Ion. J. Am. Chem. Soc. 116:1994;783-784.
    • (1994) J. Am. Chem. Soc. , vol.116 , pp. 783-784
    • Sachs, R.K.1    Kass, S.R.2
  • 75
    • 0000683470 scopus 로고
    • Stereospecificity in the Gas Phase. Formation and Characterization of Configurationally Stable Cyclopropyl Anions
    • Baschky M.C., Peterson K.C., Kass S.R. Stereospecificity in the Gas Phase. Formation and Characterization of Configurationally Stable Cyclopropyl Anions. J. Am. Chem. Soc. 116:1994;7218-7224.
    • (1994) J. Am. Chem. Soc. , vol.116 , pp. 7218-7224
    • Baschky, M.C.1    Peterson, K.C.2    Kass, S.R.3
  • 77
    • 0034048577 scopus 로고    scopus 로고
    • An Experimental Determination of the α and β C-H Bond Dissociation Energies in Naphthalene
    • Reed D.R., Kass S.R. An Experimental Determination of the α and β C-H Bond Dissociation Energies in Naphthalene. J. Mass. Spec. 35:2000;534-539.
    • (2000) J. Mass. Spec. , vol.35 , pp. 534-539
    • Reed, D.R.1    Kass, S.R.2
  • 78
    • 0011845665 scopus 로고
    • On the Dipole Stabilized Carbanions Derived from Methyl Formate and N, N-Dimethylformamide
    • Ingemann S., Nibbering N.M.M. On the Dipole Stabilized Carbanions Derived from Methyl Formate and N, N-Dimethylformamide. J. Org. Chem. 50:1985;682-689.
    • (1985) J. Org. Chem. , vol.50 , pp. 682-689
    • Ingemann, S.1    Nibbering, N.M.M.2
  • 81
    • 17144450229 scopus 로고    scopus 로고
    • The Gas Phase Acid/Base Properties of 1,3-Dimethyluracil, 1-Methyl-2-pyridone, and 1-Methyl-4-pyridone: Relevance to the Mechanism of Orotidine 5′-Monophosphate Decarboxylase
    • Gronert S., Feng W.Y., Chew F., Wu W. The Gas Phase Acid/Base Properties of 1,3-Dimethyluracil, 1-Methyl-2-pyridone, and 1-Methyl-4-pyridone Relevance to the Mechanism of Orotidine 5′-Monophosphate Decarboxylase . Int. J. Mass Spectrom. 196:2000;251-258.
    • (2000) Int. J. Mass Spectrom. , vol.196 , pp. 251-258
    • Gronert, S.1    Feng, W.Y.2    Chew, F.3    Wu, W.4
  • 82
    • 0037543934 scopus 로고    scopus 로고
    • Determination of the Gas-Phase Acidities of Uracil and 5-Fluorouracil by FT-ICR Mass Spectrometry
    • May, Portland, Oregon
    • Li W., Santos I., Marshall A.G. Determination of the Gas-Phase Acidities of Uracil and 5-Fluorouracil by FT-ICR Mass Spectrometry. 1996 ASMS Abstracts. Portland, Oregon: May, 1996.
    • (1996) 1996 ASMS Abstracts
    • Li, W.1    Santos, I.2    Marshall, A.G.3
  • 83
    • 0001320016 scopus 로고    scopus 로고
    • Theoretical Study of the Interaction Between Thymine and Water. Protonation and Deprotonation Enthalpies and Comparison with Uracil
    • Chandra A.K., Nguyen M.T., Zeegers-Huyskens T. Theoretical Study of the Interaction Between Thymine and Water. Protonation and Deprotonation Enthalpies and Comparison with Uracil. J. Phys. Chem. A. 102:1998;6010-6016.
    • (1998) J. Phys. Chem. A , vol.102 , pp. 6010-6016
    • Chandra, A.K.1    Nguyen, M.T.2    Zeegers-Huyskens, T.3
  • 84
    • 0037543933 scopus 로고
    • FT-IR Spectroscopic Study of Uracil Derivatives and their Hydrogen-Bonded Complexes with Model Proton Donors. Part 6. Proton Transfer in Uracil·HCl Complexes Isolated in Concentrated or Strongly Annealed Argon Matrices
    • Graindourze M., Smets J., Zeegers-Huyskens T., Maes G. FT-IR Spectroscopic Study of Uracil Derivatives and their Hydrogen-Bonded Complexes with Model Proton Donors. Part 6. Proton Transfer in Uracil·HCl Complexes Isolated in Concentrated or Strongly Annealed Argon Matrices. J. Mol. Struct. (THEOCHEM). 318:1994;55-64.
    • (1994) J. Mol. Struct. (THEOCHEM) , vol.318 , pp. 55-64
    • Graindourze, M.1    Smets, J.2    Zeegers-Huyskens, T.3    Maes, G.4
  • 85
    • 0041867815 scopus 로고
    • FT-IR Spectroscopic Study of Uracil Derivatives and their Hydrogen-Bonded Complexes with Model Proton Donors. Part 5. Complexes of Uracils with Hydrogen Chloride in Argon Matrices
    • Smets J., Graindourze M., Zeegers-Huyskens T., Maes G. FT-IR Spectroscopic Study of Uracil Derivatives and their Hydrogen-Bonded Complexes with Model Proton Donors. Part 5. Complexes of Uracils with Hydrogen Chloride in Argon Matrices. J. Mol. Struct. (THEOCHEM). 318:1994;37-53.
    • (1994) J. Mol. Struct. (THEOCHEM) , vol.318 , pp. 37-53
    • Smets, J.1    Graindourze, M.2    Zeegers-Huyskens, T.3    Maes, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.