메뉴 건너뛰기




Volumn 10, Issue 2, 1997, Pages 243-256

An efficient EM-based training algorithm for feedforward neural networks

Author keywords

EM algorithm; fast training; feedforward networks; hidden representation; linear weighted regression; probability model of feedforward networks

Indexed keywords

FEEDFORWARD NEURAL NETWORKS; LEARNING SYSTEMS; MATHEMATICAL MODELS; PROBABILITY; REGRESSION ANALYSIS;

EID: 0031105693     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0893-6080(96)00049-4     Document Type: Article
Times cited : (27)

References (21)
  • 1
    • 0342427309 scopus 로고
    • Information geometry of EM algorithm
    • Aman, S. (1995). Information geometry of EM algorithm. Neural Computation, 7, 13-18.
    • (1995) Neural Computation , vol.7 , pp. 13-18
    • Aman, S.1
  • 3
    • 0027599793 scopus 로고
    • Universal approximation bounds for artificial neural networks
    • Barron, A. (1993). Universal approximation bounds for artificial neural networks. IEEE Transactions on Information Theory, 39, 930-944.
    • (1993) IEEE Transactions on Information Theory , vol.39 , pp. 930-944
    • Barron, A.1
  • 5
    • 0026898265 scopus 로고
    • Alternating minimization and Boltzmann machine learning
    • Byrne, W. (1992). Alternating minimization and Boltzmann machine learning. IEEE Transactions on Neural Networks, 3, 612-620.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , pp. 612-620
    • Byrne, W.1
  • 6
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoid function
    • Cybenko, G. (1989). Approximation by superpositions of a sigmoid function. Mathematics, Control Signals and Systems, 2, 303-314.
    • (1989) Mathematics, Control Signals and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 8
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D. Touretzky (Ed.), San Mateo: Morgan Kaufmann
    • Fahlman, S. E., & Lebiere, C. (1990). The cascade-correlation learning architecture. In: D. Touretzky (Ed.), Advances in neural information processing systems 2 (pp. 524-532). San Mateo: Morgan Kaufmann.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 10
    • 0023740246 scopus 로고
    • A unified framework for connectionist systems
    • Golden, R. M. (1988). A unified framework for connectionist systems. Biological Cybernetics, 59, 109-120.
    • (1988) Biological Cybernetics , vol.59 , pp. 109-120
    • Golden, R.M.1
  • 12
    • 0000262562 scopus 로고
    • Hierarchical mixture of experts and the EM algorithm
    • Jordan, M., & Jacobs, R. A. (1994). Hierarchical mixture of experts and the EM algorithm. Neural Computation, 6, 181-214.
    • (1994) Neural Computation , vol.6 , pp. 181-214
    • Jordan, M.1    Jacobs, R.A.2
  • 13
    • 0000638998 scopus 로고
    • A cost function for internal representations
    • D. Touretzky (Ed.), San Mateo, CA: Morgan Kaufmann
    • Krough, A., Thorberaso, G. I., & Hertz, J. A. (1990). A cost function for internal representations. In: D. Touretzky (Ed.), Advances in neural information processing systems 2 (pp. 733-745). San Mateo, CA: Morgan Kaufmann.
    • (1990) Advances in Neural Information Processing Systems , vol.2 , pp. 733-745
    • Krough, A.1    Thorberaso, G.I.2    Hertz, J.A.3
  • 14
    • 0025508916 scopus 로고
    • A statistical approach to learning and generalization in layered neural network
    • Levin, E., Tishby, N., & Solla, S. A. (1990). A statistical approach to learning and generalization in layered neural network. Proceedings of the IEEE, 78, 1568-1574.
    • (1990) Proceedings of the IEEE , vol.78 , pp. 1568-1574
    • Levin, E.1    Tishby, N.2    Solla, S.A.3
  • 15
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • Mackay, D. J. (1992). A practical Bayesian framework for backpropagation networks. Neural Computation, 4, 448-472.
    • (1992) Neural Computation , vol.4 , pp. 448-472
    • Mackay, D.J.1
  • 16
    • 0029267942 scopus 로고
    • Binary classification by stochastic neural nets
    • Nadas, A. (1995). Binary classification by stochastic neural nets. IEEE Transactions on Neural Networks, 6, 488-491.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 488-491
    • Nadas, A.1
  • 17
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • San Diego, New York: IEEE
    • Nguyen, D., & Widrow, B. (1990). Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights. Proceedings of International Joint Conference on Neural Networks, Vol. 3, San Diego, pp. 21-26. New York: IEEE.
    • (1990) Proceedings of International Joint Conference on Neural Networks , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 18
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart, J. L. McClelland and PDP Reserch Group (Eds.) Foundations. Cambridge, Mass: MIT Press
    • Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal representations by error propagation. In: D. E. Rumelhart, J. L. McClelland and PDP Reserch Group (Eds.) Parallel distributed processing: explorations in the microstructure of cognition. Vol. 1: Foundations. Cambridge, Mass: MIT Press.
    • (1986) Parallel Distributed Processing: Explorations in the Microstructure of Cognition , vol.1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 19
    • 0342427298 scopus 로고
    • Learning by choice of internal representations: An energy minimization approach
    • Saad, D., & Marom, E. (1990). Learning by choice of internal representations: an energy minimization approach. Complex systems, 4, 107-118.
    • (1990) Complex Systems , vol.4 , pp. 107-118
    • Saad, D.1    Marom, E.2
  • 20
    • 0001101724 scopus 로고
    • A dynamic neural network architecture by sequential partitioning of the input space
    • Shadafan, R. S., & Niranjan, M. (1994). A dynamic neural network architecture by sequential partitioning of the input space. Neural Computation, 6, 1203-1222.
    • (1994) Neural Computation , vol.6 , pp. 1203-1222
    • Shadafan, R.S.1    Niranjan, M.2
  • 21
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • White, H. (1989). Learning in artificial neural networks: a statistical perspective. Neural Computation, 1, 425-464.
    • (1989) Neural Computation , vol.1 , pp. 425-464
    • White, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.