-
1
-
-
0000473247
-
A backpropagation algorithm with optimal use of hidden units
-
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
-
Y. Chauvin, "A backpropagation algorithm with optimal use of hidden units," in Advances in Neural Information Processing Systems 1, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 519-526.
-
(1989)
Advances in Neural Information Processing Systems 1
, pp. 519-526
-
-
Chauvin, Y.1
-
2
-
-
0000991092
-
Comparing biases for minimal network construction with backpropagation
-
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
-
S. J. Hanson and L. Y. Pratt, "Comparing biases for minimal network construction with backpropagation," in Advances in Neural Information Processing Systems 1, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 177-185.
-
(1989)
Advances in Neural Information Processing Systems 1
, pp. 177-185
-
-
Hanson, S.J.1
Pratt, L.Y.2
-
3
-
-
0000539096
-
Generalization by weight-elimination with application to forecasting
-
R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann
-
A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, "Generalization by weight-elimination with application to forecasting," in Advances in Neural Information Processing Systems 3, R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991, pp. 875-882.
-
(1991)
Advances in Neural Information Processing Systems 3
, pp. 875-882
-
-
Weigend, A.S.1
Rumelhart, D.E.2
Huberman, B.A.3
-
4
-
-
32044449925
-
Generalized cross-validation as a method for choosing a good ridge parameter
-
G. H. Golub, M. Heath, and G. Wahba, "Generalized cross-validation as a method for choosing a good ridge parameter," Technometrics, vol. 21, no. 2, pp. 215-223, 1979.
-
(1979)
Technometrics
, vol.21
, Issue.2
, pp. 215-223
-
-
Golub, G.H.1
Heath, M.2
Wahba, G.3
-
5
-
-
0001561263
-
Bayesian backpropagation
-
W. L. Buntine and A. S. Weigend, "Bayesian backpropagation," Complex Syst., vol. 5, pp. 603-643, 1991.
-
(1991)
Complex Syst.
, vol.5
, pp. 603-643
-
-
Buntine, W.L.1
Weigend, A.S.2
-
6
-
-
0001025418
-
Bayesian interpolation
-
May
-
D. J. C. Mackay, "Bayesian interpolation," Neural Computa., vol. 4, no. 3, pp. 415-447, May 1992.
-
(1992)
Neural Computa.
, vol.4
, Issue.3
, pp. 415-447
-
-
Mackay, D.J.C.1
-
7
-
-
0003611509
-
-
Ph.D. dissertation, Dep. Computer Sci., Univ. Toronto, Canada
-
R. M. Neal, "Bayesian learning for neural networks," Ph.D. dissertation, Dep. Computer Sci., Univ. Toronto, Canada, 1995.
-
(1995)
Bayesian Learning for Neural Networks
-
-
Neal, R.M.1
-
8
-
-
0029754435
-
A review of Bayesian neural networks with an application to near infrared spectroscopy
-
H. H. Thodberg, "A review of Bayesian neural networks with an application to near infrared spectroscopy," IEEE Trans. Neural Networks, vol. 7, pp. 56-72, 1996.
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, pp. 56-72
-
-
Thodberg, H.H.1
-
9
-
-
0000673452
-
Bayesian regularization and pruning using a Laplace prior
-
P. M. Williams, "Bayesian regularization and pruning using a Laplace prior," Neural Computa., vol. 7, pp. 117-143, 1995.
-
(1995)
Neural Computa.
, vol.7
, pp. 117-143
-
-
Williams, P.M.1
-
10
-
-
0002704818
-
A practical Bayesian framework for backpropagation networks
-
May
-
D. J. C. MacKay, "A practical Bayesian framework for backpropagation networks," Neural Computa., vol. 4, no. 3, pp. 448-472, May 1992.
-
(1992)
Neural Computa.
, vol.4
, Issue.3
, pp. 448-472
-
-
MacKay, D.J.C.1
-
12
-
-
0026453958
-
Training a 3-node neural network is NP-complete
-
A. L. Blum and R. L. Rivest, "Training a 3-node neural network is NP-complete," Neural Networks, vol. 5, pp. 117-127, 1992.
-
(1992)
Neural Networks
, vol.5
, pp. 117-127
-
-
Blum, A.L.1
Rivest, R.L.2
-
13
-
-
0026152917
-
Complexity results on learning by neural nets
-
J. H. Lin and J. S. Vitter, "Complexity results on learning by neural nets," Machine Learning, vol. 6, pp. 211-230, 1991.
-
(1991)
Machine Learning
, vol.6
, pp. 211-230
-
-
Lin, J.H.1
Vitter, J.S.2
-
14
-
-
0001311386
-
Loading deep networks is hard
-
J. Sima, "Loading deep networks is hard," Neural Computa., vol. 6, pp. 842-850, 1994.
-
(1994)
Neural Computa.
, vol.6
, pp. 842-850
-
-
Sima, J.1
-
15
-
-
0000716606
-
Book review on 'Neural-network design and the complexity of learning,'
-
E. B. Baum, "Book review on 'Neural-network design and the complexity of learning,'" IEEE Trans. Neural Networks, vol. 2, pp. 181-182, 1991.
-
(1991)
IEEE Trans. Neural Networks
, vol.2
, pp. 181-182
-
-
Baum, E.B.1
-
16
-
-
0021518106
-
A theory of the learnable
-
L. G. Valiant, "A theory of the learnable," Commun. ACM, vol. 27, no. 11, pp. 1134-1142, 1984.
-
(1984)
Commun. ACM
, vol.27
, Issue.11
, pp. 1134-1142
-
-
Valiant, L.G.1
-
17
-
-
0000240862
-
A proposal for more powerful learning algorithms
-
E. B. Baum, "A proposal for more powerful learning algorithms," Neural Computa., vol. 1, no. 2, pp. 201-207, 1989.
-
(1989)
Neural Computa.
, vol.1
, Issue.2
, pp. 201-207
-
-
Baum, E.B.1
-
18
-
-
0027662338
-
Pruning algorithms - A survey
-
Sept.
-
R. Reed, "Pruning algorithms - A survey," IEEE Trans. Neural Networks, vol. 4, pp. 740-747, Sept. 1993.
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, pp. 740-747
-
-
Reed, R.1
-
19
-
-
0025447562
-
A simple procedure for pruning backpropagation trained neural networks
-
June
-
E. D. Karnin, "A simple procedure for pruning backpropagation trained neural networks," IEEE Trans. Neural Networks, vol. 1, pp. 239-242, June 1990.
-
(1990)
IEEE Trans. Neural Networks
, vol.1
, pp. 239-242
-
-
Karnin, E.D.1
-
20
-
-
0000900876
-
Skeletonization: A technique for trimming the fat from a network via relevance assessment
-
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
-
M. C. Mozer and P. Smolensky, "Skeletonization: A technique for trimming the fat from a network via relevance assessment," in Advances in Neural Information Processing Systems 1, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 107-115.
-
(1989)
Advances in Neural Information Processing Systems 1
, pp. 107-115
-
-
Mozer, M.C.1
Smolensky, P.2
-
21
-
-
0001234705
-
Second-order derivatives for network pruning: Optimal brain surgeon
-
San Mateo, CA: Morgan Kaufmann
-
B. Hassibi and D. G. Stork, "Second-order derivatives for network pruning: Optimal brain surgeon," in Advances in Neural Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann, 1993, pp. 164-171.
-
(1993)
Advances in Neural Information Processing Systems 5
, pp. 164-171
-
-
Hassibi, B.1
Stork, D.G.2
-
22
-
-
0000494466
-
Optimal brain damage
-
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
-
Y. Le Cun, J. S. Denker, and S. A. Solla, "Optimal brain damage," in Advances in Neural Information Processing Systems 2, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 598-605.
-
(1990)
Advances in Neural Information Processing Systems 2
, pp. 598-605
-
-
Le Cun, Y.1
Denker, J.S.2
Solla, S.A.3
-
23
-
-
0002109783
-
An overview of predictive learning and function approximation
-
From Statistics to Neural Networks: Theory and Pattern Recognition Applications, J. H. Friedman and H. Wechsler, Eds., Subseries F. New York: Springer-Verlag
-
J. H. Friedman, "An overview of predictive learning and function approximation," in From Statistics to Neural Networks: Theory and Pattern Recognition Applications, J. H. Friedman and H. Wechsler, Eds., ASI Proc., Subseries F. New York: Springer-Verlag, 1994.
-
(1994)
ASI Proc.
-
-
Friedman, J.H.1
-
24
-
-
0003526044
-
-
Int. Computer Sci. Inst., Berkeley, CA, Tech. Rep. 91-032, May
-
E. Alpaydin, "GAL: Networks that grow when they learn and shrink when they forget," Int. Computer Sci. Inst., Berkeley, CA, Tech. Rep. 91-032, May 1991.
-
(1991)
GAL: Networks That Grow When They Learn and Shrink When They Forget
-
-
Alpaydin, E.1
-
25
-
-
0025567199
-
Neural units recruitment algorithm for generation of decision trees
-
San Diego, CA, June
-
G. Deffuant, "Neural units recruitment algorithm for generation of decision trees," in Proc. 1990 IEEE Int. Joint Conf. Neural Networks, San Diego, CA, vol. 1, June 1990, pp. 637-642.
-
(1990)
Proc. 1990 IEEE Int. Joint Conf. Neural Networks
, vol.1
, pp. 637-642
-
-
Deffuant, G.1
-
26
-
-
0000783575
-
The upstart algorithm: A method for constructing and training feedforward neural networks
-
M. Frean, "The upstart algorithm: A method for constructing and training feedforward neural networks," Neural Computa., vol. 2, pp. 198-209, 1990.
-
(1990)
Neural Computa.
, vol.2
, pp. 198-209
-
-
Frean, M.1
-
27
-
-
84956226983
-
A convergence theorem for sequential learning in two-layer perceptrons
-
M. Marchand, M. Golea, and P. Ruján, "A convergence theorem for sequential learning in two-layer perceptrons," Europhys. Lett., vol. 11, no. 6, pp. 487-492, 1990.
-
(1990)
Europhys. Lett.
, vol.11
, Issue.6
, pp. 487-492
-
-
Marchand, M.1
Golea, M.2
Ruján, P.3
-
28
-
-
0346377196
-
Topology modifying neural network algorithms
-
M. A. Arbib, Ed. Cambridge, MA: MIT Press
-
T. Ash and G. Cottrell, "Topology modifying neural network algorithms," in Handbook of Brain Theory and Neural Networks, M. A. Arbib, Ed. Cambridge, MA: MIT Press, 1995, pp. 990-993.
-
(1995)
Handbook of Brain Theory and Neural Networks
, pp. 990-993
-
-
Ash, T.1
Cottrell, G.2
-
29
-
-
33747767847
-
-
Computer Sci. Eng., Univ. California, San Diego, Tech. Rep. CS94-348
-
T. Ash and G. W. Cottrell, "A review of learning algorithms that modify network topologies," Computer Sci. Eng., Univ. California, San Diego, Tech. Rep. CS94-348, 1994.
-
(1994)
A Review of Learning Algorithms That Modify Network Topologies
-
-
Ash, T.1
Cottrell, G.W.2
-
30
-
-
0013221771
-
Comparative bibliography of ontogenic neural networks
-
Sorrento, Italy, May
-
E. Fiesler, "Comparative bibliography of ontogenic neural networks," in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, vol. 1, May 1994, pp. 793-796.
-
(1994)
Proc. Int. Conf. Artificial Neural Networks
, vol.1
, pp. 793-796
-
-
Fiesler, E.1
-
31
-
-
33747621614
-
A taxonomy of neural network optimality
-
Dayton, OH, May
-
D. E. Nelson and S. K. Rogers, "A taxonomy of neural network optimality," in Proc. IEEE Nat. Aerospace Electron. Conf., Dayton, OH, vol. 3, May 1992, pp. 894-899.
-
(1992)
Proc. IEEE Nat. Aerospace Electron. Conf.
, vol.3
, pp. 894-899
-
-
Nelson, D.E.1
Rogers, S.K.2
-
32
-
-
0001552995
-
Cross-validation, the jackknife, and the bootstrap: Excess error estimation in forward logistic regression
-
May
-
G. Gong, "Cross-validation, the jackknife, and the bootstrap: Excess error estimation in forward logistic regression," J. Amer. Statist. Assoc., vol. 81, no. 393, pp. 108-113, May 1986.
-
(1986)
J. Amer. Statist. Assoc.
, vol.81
, Issue.393
, pp. 108-113
-
-
Gong, G.1
-
33
-
-
0001325515
-
Approximation and estimation bounds for artificial neural networks
-
A. R. Barron, "Approximation and estimation bounds for artificial neural networks," Machine Learning, vol. 14, pp. 115-133, 1994.
-
(1994)
Machine Learning
, vol.14
, pp. 115-133
-
-
Barron, A.R.1
-
34
-
-
0001942829
-
Neural networks and the bias/variance dilemma
-
S. Geman, E. Bienenstock, and R. Doursat, "Neural networks and the bias/variance dilemma," Neural Computa., vol. 4, pp. 1-58, 1992.
-
(1992)
Neural Computa.
, vol.4
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
35
-
-
85007148367
-
Identification of Volterra systems with a polynomial neural network
-
San Francisco, CA, Mar.
-
R. E. Parker and M. Tummala, "Identification of Volterra systems with a polynomial neural network," in Proc. 1992 IEEE Int. Conf. Acoust., Speech, Signal Processing, San Francisco, CA, vol. 4, Mar. 1992, pp. 561-564.
-
(1992)
Proc. 1992 IEEE Int. Conf. Acoust., Speech, Signal Processing
, vol.4
, pp. 561-564
-
-
Parker, R.E.1
Tummala, M.2
-
36
-
-
0003257214
-
Prediction risk and architecture selection for neural networks
-
From Statistics to Neural Networks: Theory and Pattern Recognition Applications, V. Cherkassky, J. H. Friedman, and H. Wechsler, Eds., New York: Springer-Verlag
-
J. Moody, "Prediction risk and architecture selection for neural networks," in From Statistics to Neural Networks: Theory and Pattern Recognition Applications, V. Cherkassky, J. H. Friedman, and H. Wechsler, Eds., vol. 136 of NATO ASI Series F. New York: Springer-Verlag, 1994, pp. 147-165.
-
(1994)
NATO ASI Series F
, vol.136
, pp. 147-165
-
-
Moody, J.1
-
37
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictions (with discussion)
-
M. Stone, "Cross-validatory choice and assessment of statistical predictions (with discussion)," J. Roy. Statist. Soc. Series B, vol. 36, pp. 111-147, 1974.
-
(1974)
J. Roy. Statist. Soc. Series B
, vol.36
, pp. 111-147
-
-
Stone, M.1
-
39
-
-
1442347115
-
Evaluating neural network predictors by bootstrapping
-
Seoul, Korea, Oct.
-
A. S. Weigend and B. LeBaron, "Evaluating neural network predictors by bootstrapping," in Proc. Int. Conf. Neural Inform. Processing, Seoul, Korea, vol. 2, Oct. 1994, pp. 1207-1212.
-
(1994)
Proc. Int. Conf. Neural Inform. Processing
, vol.2
, pp. 1207-1212
-
-
Weigend, A.S.1
LeBaron, B.2
-
40
-
-
0016355478
-
A new look at the statistical model identification
-
Dec.
-
H. Akaike, "A new look at the statistical model identification," IEEE Trans. Automat. Contr., vol. AC-19, pp. 716-723, Dec. 1974.
-
(1974)
IEEE Trans. Automat. Contr.
, vol.AC-19
, pp. 716-723
-
-
Akaike, H.1
-
41
-
-
0000120766
-
Estimating the dimension of a model
-
G. Schwartz, "Estimating the dimension of a model," Ann. Statist., vol. 6, pp. 461-464, 1978.
-
(1978)
Ann. Statist.
, vol.6
, pp. 461-464
-
-
Schwartz, G.1
-
42
-
-
51249190305
-
Statistical predictor identification
-
H. Akaike, "Statistical predictor identification," Ann. Instit. Statist. Math., vol. 22, pp. 203-217, 1970.
-
(1970)
Ann. Instit. Statist. Math.
, vol.22
, pp. 203-217
-
-
Akaike, H.1
-
43
-
-
34250263445
-
Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
-
P. Craven and G. Wahba, "Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation," Numer. Math., vol. 31, pp. 377-403, 1979.
-
(1979)
Numer. Math.
, vol.31
, pp. 377-403
-
-
Craven, P.1
Wahba, G.2
-
44
-
-
0002167090
-
Predicted squared error: A criterion for automatic model selection
-
S. Farlow, Ed. New York: Marcel Dekker
-
A. Barron, "Predicted squared error: A criterion for automatic model selection," in Self-Organizing Methods in Modeling, S. Farlow, Ed. New York: Marcel Dekker, 1984.
-
(1984)
Self-Organizing Methods in Modeling
-
-
Barron, A.1
-
45
-
-
0018015137
-
Modeling by shortest data description
-
J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, pp. 465-471, 1975.
-
(1975)
Automatica
, vol.14
, pp. 465-471
-
-
Rissanen, J.1
-
46
-
-
0026289079
-
Note on generalization, regularization, and architecture selection in nonlinear learning systems
-
B. H. Juang, S. Y. Kung, and C. A. Kamm, Eds. Princeton, NJ, Sept.
-
J. E. Moody, "Note on generalization, regularization, and architecture selection in nonlinear learning systems," in Proc. 1991 IEEE Wkshp. Neural Networks for Signal Processing, B. H. Juang, S. Y. Kung, and C. A. Kamm, Eds. Princeton, NJ, Sept. 1991, pp. 1-10.
-
(1991)
Proc. 1991 IEEE Wkshp. Neural Networks for Signal Processing
, pp. 1-10
-
-
Moody, J.E.1
-
48
-
-
0002319419
-
Statistical ideas for selecting network architectures
-
B. Kappen and S. Gielen, Eds. New York: Springer-Verlag
-
B. D. Ripley, "Statistical ideas for selecting network architectures," in Neural Networks: Artificial Intelligence and Industrial Applications, B. Kappen and S. Gielen, Eds. New York: Springer-Verlag, 1995, pp. 183-190.
-
(1995)
Neural Networks: Artificial Intelligence and Industrial Applications
, pp. 183-190
-
-
Ripley, B.D.1
-
49
-
-
0025399568
-
Self-organizing network for optimum supervised learning
-
Mar.
-
M. F. Tenorio and W. T. Lee, "Self-organizing network for optimum supervised learning," IEEE Trans. Neural Networks, vol. 1, pp. 100-110, Mar. 1990.
-
(1990)
IEEE Trans. Neural Networks
, vol.1
, pp. 100-110
-
-
Tenorio, M.F.1
Lee, W.T.2
-
50
-
-
0000067815
-
Predicting the future: Advantages of semilocal units
-
E. Hartman and J. D. Keeler, "Predicting the future: Advantages of semilocal units," Neural Computa., vol. 3, pp. 566-578, 1991.
-
(1991)
Neural Computa.
, vol.3
, pp. 566-578
-
-
Hartman, E.1
Keeler, J.D.2
-
52
-
-
0024622440
-
Radial basis function network for speech pattern classification
-
S. Renals, "Radial basis function network for speech pattern classification," Electron. Lett., vol. 25, no. 7, pp. 437-439, 1988.
-
(1988)
Electron. Lett.
, vol.25
, Issue.7
, pp. 437-439
-
-
Renals, S.1
-
53
-
-
0024861871
-
Approximation by superpositions of a sigmoidal function
-
G. Cybenko, "Approximation by superpositions of a sigmoidal function," Math. Contr., Signals, Syst., vol. 2, pp. 303-314, 1989.
-
(1989)
Math. Contr., Signals, Syst.
, vol.2
, pp. 303-314
-
-
Cybenko, G.1
-
54
-
-
0024866495
-
On the approximate realization of continous mappings by neural networks
-
K. I. Funahashi, "On the approximate realization of continous mappings by neural networks," Neural Networks, vol. 2, pp. 183-192, 1989.
-
(1989)
Neural Networks
, vol.2
, pp. 183-192
-
-
Funahashi, K.I.1
-
55
-
-
0025751820
-
Approximation capabilities of multilayer feedforward networks
-
K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Networks, vol. 4, pp. 251-257, 1991.
-
(1991)
Neural Networks
, vol.4
, pp. 251-257
-
-
Hornik, K.1
-
56
-
-
0027812765
-
Some new results on neuralnetwork approximation
-
_, "Some new results on neuralnetwork approximation," Neural Networks, vol. 6, pp. 1069-1072, 1993.
-
(1993)
Neural Networks
, vol.6
, pp. 1069-1072
-
-
-
57
-
-
0001683814
-
Layered neural networks with Gaussian hidden units as universal approximations
-
E. Hartman, J. Keeler, and J. Kowalski, "Layered neural networks with Gaussian hidden units as universal approximations," Neural Computa., vol. 2, pp. 210-215, 1990.
-
(1990)
Neural Computa.
, vol.2
, pp. 210-215
-
-
Hartman, E.1
Keeler, J.2
Kowalski, J.3
-
58
-
-
0000106040
-
Universal approximation using radial-basis-function networks
-
J. Park and I. Sandberg, "Universal approximation using radial-basis-function networks," Neural Computa., vol. 3, pp. 246-257, 1991.
-
(1991)
Neural Computa.
, vol.3
, pp. 246-257
-
-
Park, J.1
Sandberg, I.2
-
59
-
-
0001002401
-
Approximation and radial-basis-function networks
-
_, "Approximation and radial-basis-function networks," Neural Computa., vol. 5, pp. 305-316, 1993.
-
(1993)
Neural Computa.
, vol.5
, pp. 305-316
-
-
-
61
-
-
0029307575
-
Nonparametric estimation via empirical risk minimization
-
May
-
G. Lugosi and K. Zeger, "Nonparametric estimation via empirical risk minimization," IEEE Trans. Inform. Theory, vol. 41, pp. 677-687, May 1995.
-
(1995)
IEEE Trans. Inform. Theory
, vol.41
, pp. 677-687
-
-
Lugosi, G.1
Zeger, K.2
-
62
-
-
0027599793
-
Universal approximation bounds for superpositions of a sigmoidal function
-
May
-
A. R. Barron, "Universal approximation bounds for superpositions of a sigmoidal function," IEEE Trans. Inform. Theory, vol. 39, pp. 930-945, May 1993.
-
(1993)
IEEE Trans. Inform. Theory
, vol.39
, pp. 930-945
-
-
Barron, A.R.1
-
63
-
-
0000796112
-
A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
-
L. K. Jones, "A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training," Ann. Statist., vol. 20, no. 1, pp. 608-613, 1992.
-
(1992)
Ann. Statist.
, vol.20
, Issue.1
, pp. 608-613
-
-
Jones, L.K.1
-
65
-
-
0027211408
-
A convergent generator of neural networks
-
P. Courrieu, "A convergent generator of neural networks," Neural Networks, vol. 6, no. 6, pp. 835-844, 1993.
-
(1993)
Neural Networks
, vol.6
, Issue.6
, pp. 835-844
-
-
Courrieu, P.1
-
66
-
-
33747601096
-
A bias architecture with rank-expanding algorithm for neural networks supervised learning problem
-
San Diego, CA, June
-
J. Luo, "A bias architecture with rank-expanding algorithm for neural networks supervised learning problem," in Proc. World Congr. Neural Networks, San Diego, CA, vol. 3, June 1994, pp. 742-747.
-
(1994)
Proc. World Congr. Neural Networks
, vol.3
, pp. 742-747
-
-
Luo, J.1
-
67
-
-
0028573423
-
Neural networks and evolutionary computation - Part 1: Hybrid approaches in artificial intelligence
-
Orlando, FL, June
-
G. Weiss, "Neural networks and evolutionary computation - Part 1: Hybrid approaches in artificial intelligence," in Proc. 1st IEEE Conf. Evolutionary Computa., Orlando, FL, vol. 1, June 1994, pp. 268-272.
-
(1994)
Proc. 1st IEEE Conf. Evolutionary Computa.
, vol.1
, pp. 268-272
-
-
Weiss, G.1
-
68
-
-
0027574256
-
A review of evolutionary artificial neural networks
-
X. Yao, "A review of evolutionary artificial neural networks," Int. J. Intell. Syst., vol. 8, pp. 539-567, 1993.
-
(1993)
Int. J. Intell. Syst.
, vol.8
, pp. 539-567
-
-
Yao, X.1
-
69
-
-
0000072338
-
Designing neural networks using genetic algorithms
-
G. F. Miller, P. M. Todd, and S. U. Hegde, "Designing neural networks using genetic algorithms," in Proc. 3rd Int. Conf. Genetic Algorithms, 1989, pp. 379-384.
-
(1989)
Proc. 3rd Int. Conf. Genetic Algorithms
, pp. 379-384
-
-
Miller, G.F.1
Todd, P.M.2
Hegde, S.U.3
-
70
-
-
0028742244
-
An automated design system for finding the minimal configuration of a feedforward neural network
-
Orlando, FL, June
-
C. C. Teng and B. W. Wah, "An automated design system for finding the minimal configuration of a feedforward neural network," in Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, vol. 3, June 1994, pp. 1295-1300.
-
(1994)
Proc. IEEE Int. Conf. Neural Networks
, vol.3
, pp. 1295-1300
-
-
Teng, C.C.1
Wah, B.W.2
-
71
-
-
0001024110
-
First- and second-order methods for learning: Between steepest descent and Newton's method
-
R. Battiti, "First- and second-order methods for learning: Between steepest descent and Newton's method," Neural Computa., vol. 4, pp. 141-166, 1992.
-
(1992)
Neural Computa.
, vol.4
, pp. 141-166
-
-
Battiti, R.1
-
72
-
-
0141700326
-
-
Cambridge Univ. Eng. Dep., Cambridge, U.K., Rep. CUED/F-INFENG/TR 144
-
T. T. Jervis and W. J. Fitzgerald, "Optimization schemes for neural networks," Cambridge Univ. Eng. Dep., Cambridge, U.K., Rep. CUED/F-INFENG/TR 144, 1993.
-
(1993)
Optimization Schemes for Neural Networks
-
-
Jervis, T.T.1
Fitzgerald, W.J.2
-
73
-
-
0004161838
-
-
New York: Cambridge Univ. Press
-
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C, 2nd ed. New York: Cambridge Univ. Press, 1992.
-
(1992)
Numerical Recipes in C, 2nd Ed.
-
-
Press, W.H.1
Teukolsky, S.A.2
Vetterling, W.T.3
Flannery, B.P.4
-
74
-
-
0039849065
-
Recent advances on techniques of static feedforward networks with supervised learning
-
L. Xu, S. Klasa, and A. Yuille, "Recent advances on techniques of static feedforward networks with supervised learning," Int. J. Neural Syst., vol. 3, no. 3, pp. 253-290, 1992.
-
(1992)
Int. J. Neural Syst.
, vol.3
, Issue.3
, pp. 253-290
-
-
Xu, L.1
Klasa, S.2
Yuille, A.3
-
77
-
-
0027558397
-
Recursive dynamic node creation in multilayer neural networks
-
Mar.
-
M. R. Azimi-Sadjadi, S. Sheedvash, and F. O. Trujillo, "Recursive dynamic node creation in multilayer neural networks," IEEE Trans. Neural Networks, vol. 4, pp. 242-256, Mar. 1993.
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, pp. 242-256
-
-
Azimi-Sadjadi, M.R.1
Sheedvash, S.2
Trujillo, F.O.3
-
78
-
-
0025539710
-
Recursive least-squares learning algorithms for neural networks
-
P. S. Lewis and J. N. Hwang, "Recursive least-squares learning algorithms for neural networks," in Proc. SPIE Advanced Signal-Processing Algorithms, Architectures, and Implementations, vol. 1348, 1990, pp. 28-39.
-
(1990)
Proc. SPIE Advanced Signal-Processing Algorithms, Architectures, and Implementations
, vol.1348
, pp. 28-39
-
-
Lewis, P.S.1
Hwang, J.N.2
-
79
-
-
0003000735
-
Faster learning variations on backpropagation: An empirical study
-
D. S. Touretzky, G. E. Hinton, and T. J. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann
-
S. E. Fahlman, "Faster learning variations on backpropagation: An empirical study," in Proc. 1988 Connectionist Models Summer School, D. S. Touretzky, G. E. Hinton, and T. J. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann, 1988, pp. 38-51.
-
(1988)
Proc. 1988 Connectionist Models Summer School
, pp. 38-51
-
-
Fahlman, S.E.1
-
80
-
-
0029185114
-
Use of a quasi-Newton method in a feedforward neural network construction algorithm
-
R. Setiono and L. C. K. Hui, "Use of a quasi-Newton method in a feedforward neural network construction algorithm," IEEE Trans. Neural Networks, vol. 6, pp. 273-277, 1995.
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, pp. 273-277
-
-
Setiono, R.1
Hui, L.C.K.2
-
81
-
-
84950941772
-
Projection pursuit regression
-
J. H. Friedman and W. Stuetzle, "Projection pursuit regression," J. Amer. Statist. Assoc., vol. 76, no. 376, pp. 817-823, 1981.
-
(1981)
J. Amer. Statist. Assoc.
, vol.76
, Issue.376
, pp. 817-823
-
-
Friedman, J.H.1
Stuetzle, W.2
-
82
-
-
2542592600
-
-
Ph.D. dissertation, Computer Sci. Dep., Aarhus University, Aarhus, Denmark
-
S. Sjøgaard, "A conceptual approach to generalization in dynamic neural networks," Ph.D. dissertation, Computer Sci. Dep., Aarhus University, Aarhus, Denmark, 1991.
-
(1991)
A Conceptual Approach to Generalization in Dynamic Neural Networks
-
-
Sjøgaard, S.1
-
83
-
-
0000155950
-
The cascade-correlation learning architecture
-
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
-
S. E. Fahlman and C. Lebiere, "The cascade-correlation learning architecture," in Advances in Neural Information Processing Systems 2, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, pp. 524-532, 1990.
-
(1990)
Advances in Neural Information Processing Systems 2
, pp. 524-532
-
-
Fahlman, S.E.1
Lebiere, C.2
-
84
-
-
84945797434
-
Dynamic node creation in backpropagation networks
-
T. Ash, "Dynamic node creation in backpropagation networks," Connection Sci., vol. 1, no. 4, pp. 365-375, 1989.
-
(1989)
Connection Sci.
, vol.1
, Issue.4
, pp. 365-375
-
-
Ash, T.1
-
85
-
-
0028208150
-
Dynamic node architecture learning: An information theoretic approach
-
E. B. Bartlett, "Dynamic node architecture learning: An information theoretic approach," Neural Networks, vol. 7, no. 1, pp. 129-140, 1994.
-
(1994)
Neural Networks
, vol.7
, Issue.1
, pp. 129-140
-
-
Bartlett, E.B.1
-
86
-
-
0025964567
-
Backpropagation algorithm which varies the number of hidden units
-
Y. Hirose, K. Yamashita, and S. Hijiya, "Backpropagation algorithm which varies the number of hidden units," Neural Networks, vol. 4, pp. 61-66, 1991.
-
(1991)
Neural Networks
, vol.4
, pp. 61-66
-
-
Hirose, Y.1
Yamashita, K.2
Hijiya, S.3
-
87
-
-
0028754410
-
Structure adaptation in feedforward neural network
-
Orlando, FL, June
-
K. Khorasani and W. Weng, "Structure adaptation in feedforward neural networks," in Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, vol. 3, June 1994, pp. 1403-1408.
-
(1994)
Proc. IEEE Int. Conf. Neural Networks
, vol.3
, pp. 1403-1408
-
-
Khorasani, K.1
Weng, W.2
-
88
-
-
0028729502
-
An incremental learning algorithm that optimizes network size and sample size in one trial
-
Orlando, FL, June
-
B. T. Zhang, "An incremental learning algorithm that optimizes network size and sample size in one trial," in Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, vol. 1, June 1994, pp. 215-220.
-
(1994)
Proc. IEEE Int. Conf. Neural Networks
, vol.1
, pp. 215-220
-
-
Zhang, B.T.1
-
89
-
-
0025573202
-
Pattern classification using projection pursuit
-
T. E. Flick, L. K. Jones, R. G. Priest, and C. Herman, "Pattern classification using projection pursuit," Pattern Recognition, vol. 23, no. 12, pp. 1367-1376, 1990.
-
(1990)
Pattern Recognition
, vol.23
, Issue.12
, pp. 1367-1376
-
-
Flick, T.E.1
Jones, L.K.2
Priest, R.G.3
Herman, C.4
-
90
-
-
0043008847
-
Multidimensional additive spline approximation
-
June
-
J. H. Friedman, E. Grosse, and W. Stuetzle, "Multidimensional additive spline approximation," SIAM J. Sci. Statist. Computing, vol. 4, no. 2, pp. 291-301, June 1983.
-
(1983)
SIAM J. Sci. Statist. Computing
, vol.4
, Issue.2
, pp. 291-301
-
-
Friedman, J.H.1
Grosse, E.2
Stuetzle, W.3
-
91
-
-
0028428443
-
Regression modeling in backpropagation and projection pursuit learning
-
May
-
J. N. Hwang, S. R. Lay, M. Maechler, D. Martin, and J. Schimert, "Regression modeling in backpropagation and projection pursuit learning," IEEE Trans. Neural Networks, vol. 5, pp. 342-353, May 1994.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 342-353
-
-
Hwang, J.N.1
Lay, S.R.2
Maechler, M.3
Martin, D.4
Schimert, J.5
-
92
-
-
0028733738
-
Extensions to projection pursuit learning networks with parametric smoothers
-
Orlando, FL, June
-
S. Lay, J. Hwang, and S. You, "Extensions to projection pursuit learning networks with parametric smoothers," in Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, vol. 3, June 1994, pp. 1325-1330.
-
(1994)
Proc. IEEE Int. Conf. Neural Networks
, vol.3
, pp. 1325-1330
-
-
Lay, S.1
Hwang, J.2
You, S.3
-
93
-
-
0039180597
-
Automatic smoothing spline projection pursuit
-
C. B. Roosen and T. J. Hastie, "Automatic smoothing spline projection pursuit," J. Computa. Graphical Statist., vol. 3, pp. 235-248, 1994.
-
(1994)
J. Computa. Graphical Statist.
, vol.3
, pp. 235-248
-
-
Roosen, C.B.1
Hastie, T.J.2
-
94
-
-
0007489680
-
Approximation, dimension reduction, and nonconvex optimization using linear superpositions of Gaussians
-
Oct.
-
A. Saha, C. L. Wu, and D. S. Tang, "Approximation, dimension reduction, and nonconvex optimization using linear superpositions of Gaussians," IEEE Trans. Computers, vol. 42, pp. 1222-1233, Oct. 1993.
-
(1993)
IEEE Trans. Computers
, vol.42
, pp. 1222-1233
-
-
Saha, A.1
Wu, C.L.2
Tang, D.S.3
-
96
-
-
33747793334
-
Connectionist projection pursuit regression
-
W. Verkooijen and H. Daniels, "Connectionist projection pursuit regression," Computa. Economics, vol. 7, pp. 155-161, 1994.
-
(1994)
Computa. Economics
, vol.7
, pp. 155-161
-
-
Verkooijen, W.1
Daniels, H.2
-
97
-
-
0000729019
-
Forecasting demand for electric power
-
S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann
-
J. L. Yuan and T. L. Fine, "Forecasting demand for electric power," in Advances in Neural Information Processing Systems 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993, pp. 739-746.
-
(1993)
Advances in Neural Information Processing Systems 5
, pp. 739-746
-
-
Yuan, J.L.1
Fine, T.L.2
-
98
-
-
33747593531
-
Some approximation properties of projection pursuit learning networks
-
J. E. Moody, S. J. Hanson, and R. P. Lippman, Eds. San Mateo, CA: Morgan Kaufmann
-
Y. Zhao and C. G. Atkeson, "Some approximation properties of projection pursuit learning networks," in Advances in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippman, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 936-943.
-
(1992)
Advances in Neural Information Processing Systems 4
, pp. 936-943
-
-
Zhao, Y.1
Atkeson, C.G.2
-
100
-
-
0242401012
-
Networks with learned unit response functions
-
J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann
-
J. Moody and N. Yarvin, "Networks with learned unit response functions," in Advances in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 1048-1055.
-
(1992)
Advances in Neural Information Processing Systems 4
, pp. 1048-1055
-
-
Moody, J.1
Yarvin, N.2
-
101
-
-
84950754164
-
Exploratory projection pursuit
-
Mar.
-
J. H. Friedman, "Exploratory projection pursuit," J. Amer. Statist. Assoc., vol. 82, no. 397, pp. 249-266, Mar. 1987.
-
(1987)
J. Amer. Statist. Assoc.
, vol.82
, Issue.397
, pp. 249-266
-
-
Friedman, J.H.1
-
102
-
-
0026375443
-
The pi-sigma network: An efficient higher-order neural network for pattern classification and function approximation
-
Seattle, WA, July
-
Y. Shin and J. Ghosh, "The pi-sigma network: An efficient higher-order neural network for pattern classification and function approximation," in Proc. Int. Joint Conf. Neural Networks, Seattle, WA, vol. 1, July 1991, pp. 13-18.
-
(1991)
Proc. Int. Joint Conf. Neural Networks
, vol.1
, pp. 13-18
-
-
Shin, Y.1
Ghosh, J.2
-
103
-
-
0042214972
-
Combining exploratory projection pursuit and projection pursuit regression with application to neural networks
-
May
-
N. Intrator, "Combining exploratory projection pursuit and projection pursuit regression with application to neural networks," Neural Computa., vol. 5, pp. 443-455, May 1993.
-
(1993)
Neural Computa.
, vol.5
, pp. 443-455
-
-
Intrator, N.1
-
104
-
-
84887106795
-
Bayesian regularization in constructive neural networks, in
-
Bochum, Germany, July
-
T. Y. Kwok and D. Y. Yeung, "Bayesian regularization in constructive neural networks," in Proc. Int. Conf. Artificial Neural Networks, Bochum, Germany, July 1996, pp. 557-562.
-
(1996)
Proc. Int. Conf. Artificial Neural Networks
, pp. 557-562
-
-
Kwok, T.Y.1
Yeung, D.Y.2
-
105
-
-
0001666851
-
Efficient higher-order neural networks for classification and function approximation
-
J. Ghosh and Y. Shin, "Efficient higher-order neural networks for classification and function approximation," Int. J. Neural Syst., vol. 3, no. 4, pp. 323-350, 1992.
-
(1992)
Int. J. Neural Syst.
, vol.3
, Issue.4
, pp. 323-350
-
-
Ghosh, J.1
Shin, Y.2
-
106
-
-
0000523636
-
On a conjecture of Huber concerning the convergence of projection pursuit regression
-
L. K. Jones, "On a conjecture of Huber concerning the convergence of projection pursuit regression," Ann. Statist., vol. 15, no. 2, pp. 880-882, 1987.
-
(1987)
Ann. Statist.
, vol.15
, Issue.2
, pp. 880-882
-
-
Jones, L.K.1
-
107
-
-
0030244218
-
Use of bias term in projection pursuit learning improves approximation and convergence properties
-
T. Y. Kwok and D. Y. Yeung, "Use of bias term in projection pursuit learning improves approximation and convergence properties," IEEE Trans. Neural Networks, vol. 7, pp. 1168-1183, 1996.
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, pp. 1168-1183
-
-
Kwok, T.Y.1
Yeung, D.Y.2
-
108
-
-
0028751384
-
Network complexity and learning efficiency of constructive learning algorithms
-
Orlando, FL, June
-
W. Fang and R. C. Lacher, "Network complexity and learning efficiency of constructive learning algorithms," in Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, vol. 1, June 1994, pp. 366-369.
-
(1994)
Proc. IEEE Int. Conf. Neural Networks
, vol.1
, pp. 366-369
-
-
Fang, W.1
Lacher, R.C.2
-
109
-
-
0013312016
-
Cascade LLM networks
-
Brighton, U.K., Sept.
-
E. Littmann and H. Ritter, "Cascade LLM networks," in Proc. Int. Conf. Artificial Neural Networks, Brighton, U.K., vol. 1, Sept. 1992, pp. 253-257.
-
(1992)
Proc. Int. Conf. Artificial Neural Networks
, vol.1
, pp. 253-257
-
-
Littmann, E.1
Ritter, H.2
-
110
-
-
0007723295
-
Cascade network architectures
-
Baltimore, MD, June
-
_, "Cascade network architectures," in Proc. Int. Joint Conf. Neural Networks, Baltimore, MD, vol. 2, June 1992, pp. 398-404.
-
(1992)
Proc. Int. Joint Conf. Neural Networks
, vol.2
, pp. 398-404
-
-
-
111
-
-
0028538768
-
Connectivity and performance tradeoffs in the cascade correlation learning architecture
-
Nov.
-
D. S. Phatak and I. Koren, "Connectivity and performance tradeoffs in the cascade correlation learning architecture," IEEE Trans. Neural Networks, vol. 5, pp. 930-935, Nov. 1994.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 930-935
-
-
Phatak, D.S.1
Koren, I.2
-
112
-
-
0345064339
-
Variations on the cascade-correlation learning architecture for fast convergence in robot control
-
Nimes, France, Nov.
-
N. Simon, H. Corporaal, and E. Kerckhoffs, "Variations on the cascade-correlation learning architecture for fast convergence in robot control," in Proc. 5th Int. Conf. Neural Networks Applicat., Nimes, France, Nov. 1992, pp. 454-464.
-
(1992)
Proc. 5th Int. Conf. Neural Networks Applicat.
, pp. 454-464
-
-
Simon, N.1
Corporaal, H.2
Kerckhoffs, E.3
-
113
-
-
84995290498
-
Generalization in cascade-correlation networks
-
Helsingoer, Denmark, Sept.
-
S. Sjøgaard, "Generalization in cascade-correlation networks," in Proc. IEEE - SP Wkshp. Neural Networks for Signal Processing II, Helsingoer, Denmark, Sept. 1992, pp. 59-68.
-
(1992)
Proc. IEEE - SP Wkshp. Neural Networks for Signal Processing II
, pp. 59-68
-
-
Sjøgaard, S.1
-
114
-
-
0039398666
-
Self organizing modular neural networks
-
Seattle, WA, July
-
I. G. Smotroff, D. H. Friedman, and D. Connolly, "Self organizing modular neural networks," in Proc. Int. Joint Conf. Neural Networks, Seattle, WA, July 1991.
-
(1991)
Proc. Int. Joint Conf. Neural Networks
-
-
Smotroff, I.G.1
Friedman, D.H.2
Connolly, D.3
-
115
-
-
0029032235
-
Parallelizing the cascade-correlation algorithm using time warp
-
P. L. Springer and S. Gulati, "Parallelizing the cascade-correlation algorithm using time warp," Neural Networks, vol. 8, no. 4, pp. 571-577, 1995.
-
(1995)
Neural Networks
, vol.8
, Issue.4
, pp. 571-577
-
-
Springer, P.L.1
Gulati, S.2
-
116
-
-
33747395700
-
A neural network approach to constructive induction
-
Evanston, IL
-
D. Y. Yeung, "A neural network approach to constructive induction," in Proc. 8th Int. Wkshp. Machine Learning, Evanston, IL, 1991.
-
(1991)
Proc. 8th Int. Wkshp. Machine Learning
-
-
Yeung, D.Y.1
-
117
-
-
0001278373
-
Controlled growth of cascade correlation nets
-
Sorrento, Italy, May
-
L. K. Hansen and M. W. Pedersen, "Controlled growth of cascade correlation nets," in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, vol. 1, May 1994, pp. 797-800.
-
(1994)
Proc. Int. Conf. Artificial Neural Networks
, vol.1
, pp. 797-800
-
-
Hansen, L.K.1
Pedersen, M.W.2
-
118
-
-
0026928226
-
Optimization of the hidden unit function in feedforward neural networks
-
O. Fujita, "Optimization of the hidden unit function in feedforward neural networks," Neural Networks, vol. 5, pp. 755-764, 1992.
-
(1992)
Neural Networks
, vol.5
, pp. 755-764
-
-
Fujita, O.1
-
119
-
-
0000319172
-
Incremental approximation by one-hidden-layer neural networks
-
Paris, France, Oct.
-
V. Kurková and B. Beliczynski, "Incremental approximation by one-hidden-layer neural networks," in Proc. Int. Conf. Artificial Neural Networks, Paris, France, vol. 1, Oct. 1995, pp. 5505-5510.
-
(1995)
Proc. Int. Conf. Artificial Neural Networks
, vol.1
, pp. 5505-5510
-
-
Kurková, V.1
Beliczynski, B.2
-
120
-
-
0031236099
-
Objective functions for training new hidden units in constructive neural networks
-
submitted
-
T. Y. Kwok and D. Y. Yeung, "Objective functions for training new hidden units in constructive neural networks," submitted to IEEE Trans. Neural Networks.
-
IEEE Trans. Neural Networks
-
-
Kwok, T.Y.1
Yeung, D.Y.2
-
121
-
-
0011849212
-
Convergence properties of cascade correlation in function approximation
-
G. P. Drago and S. Ridella, "Convergence properties of cascade correlation in function approximation," Neural Comput. Applicat., vol. 2, pp. 142-147, 1994.
-
(1994)
Neural Comput. Applicat.
, vol.2
, pp. 142-147
-
-
Drago, G.P.1
Ridella, S.2
-
122
-
-
5844369608
-
Coarse coding resource-allocating network
-
G. Deco and J. Ebmeyer, "Coarse coding resource-allocating network," Neural Computa., vol. 5, pp. 105-114, 1993.
-
(1993)
Neural Computa.
, vol.5
, pp. 105-114
-
-
Deco, G.1
Ebmeyer, J.2
-
123
-
-
0028748949
-
Growing cell structures - A self-organizing network for unsupervised and supervised learning
-
B. Fritzke, "Growing cell structures - A self-organizing network for unsupervised and supervised learning," Neural Networks, vol. 7, no. 9, pp. 1441-1460, 1994.
-
(1994)
Neural Networks
, vol.7
, Issue.9
, pp. 1441-1460
-
-
Fritzke, B.1
-
124
-
-
0025839504
-
A Gaussian potential function network with hierarchically self-organizing learning
-
S. Lee and R. M. Kil, "A Gaussian potential function network with hierarchically self-organizing learning," Neural Networks, vol. 4, pp. 207-224, 1991.
-
(1991)
Neural Networks
, vol.4
, pp. 207-224
-
-
Lee, S.1
Kil, R.M.2
-
125
-
-
0001071040
-
A resource-allocating network for function interpolation
-
J. Platt, "A resource-allocating network for function interpolation," Neural Computa., vol. 3, pp. 213-225, 1991.
-
(1991)
Neural Computa.
, vol.3
, pp. 213-225
-
-
Platt, J.1
-
127
-
-
0001553560
-
A function estimation approach to sequential learning with neural networks
-
V. Kadirkamanathan and M. Niranjan, "A function estimation approach to sequential learning with neural networks," Neural Computa., vol. 5, no. 6, pp. 954-975, 1993.
-
(1993)
Neural Computa.
, vol.5
, Issue.6
, pp. 954-975
-
-
Kadirkamanathan, V.1
Niranjan, M.2
-
128
-
-
0001614845
-
A probabilistic resource allocating network for novelty detection
-
Mar.
-
S. Roberts and L. Tarassenko, "A probabilistic resource allocating network for novelty detection," Neural Computa., vol. 6, no. 2, pp. 270-284, Mar. 1994.
-
(1994)
Neural Computa.
, vol.6
, Issue.2
, pp. 270-284
-
-
Roberts, S.1
Tarassenko, L.2
-
129
-
-
0004096959
-
Self-Organizing Methods in Modeling: GMDH Type Algorithms
-
S. J. Farlow, Ed., New York: Marcel Dekker
-
S. J. Farlow, Ed., Self-Organizing Methods in Modeling: GMDH Type Algorithms, vol. 54 of Statistics: Textbooks and Monographs. New York: Marcel Dekker, 1984.
-
(1984)
Statistics: Textbooks and Monographs
, vol.54
-
-
-
130
-
-
0028255785
-
Toward generating neural network structures for function approximation
-
T. M. Nabhan and A. Y. Zomaya, "Toward generating neural network structures for function approximation," Neural Networks, vol. 7, no. 1, pp. 89-90, 1994.
-
(1994)
Neural Networks
, vol.7
, Issue.1
, pp. 89-90
-
-
Nabhan, T.M.1
Zomaya, A.Y.2
-
131
-
-
33747584142
-
-
Siemens Corporate Res., Inc., Princeton, NJ, Tech. Rep., Apr.
-
C. Darken, M. Donahue, L. Gurvits, and E. Sontag, "Rate of approximation results motivated by robust neural network learning," Siemens Corporate Res., Inc., Princeton, NJ, Tech. Rep., Apr. 1994.
-
(1994)
Rate of Approximation Results Motivated by Robust Neural Network Learning
-
-
Darken, C.1
Donahue, M.2
Gurvits, L.3
Sontag, E.4
-
132
-
-
0001307541
-
Degree of approximation results for feedforward networks approximating unknown mappings and their derivations
-
K. Hornik, M. Stinchcombe, H. White, and P. Auer, "Degree of approximation results for feedforward networks approximating unknown mappings and their derivations," Neural Computa., vol. 6, pp. 1262-1275, 1994.
-
(1994)
Neural Computa.
, vol.6
, pp. 1262-1275
-
-
Hornik, K.1
Stinchcombe, M.2
White, H.3
Auer, P.4
-
133
-
-
0028341934
-
On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size
-
L. Xu, A. Krzyzak, and A. Yuille, "On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size," Neural Networks, vol. 7, no. 4, pp. 609-628, 1994.
-
(1994)
Neural Networks
, vol.7
, Issue.4
, pp. 609-628
-
-
Xu, L.1
Krzyzak, A.2
Yuille, A.3
-
134
-
-
0003073642
-
Statistical learning networks: A unifying view
-
E. Wegman, Ed. Washington, D.C.: Amer. Statist. Assoc.
-
A. R. Barron and R. L. Barron, "Statistical learning networks: A unifying view," in Proc. 20th Symp. Interface Computing Sci. Statist., E. Wegman, Ed. Washington, D.C.: Amer. Statist. Assoc., 1988, pp. 192-203.
-
(1988)
Proc. 20th Symp. Interface Computing Sci. Statist.
, pp. 192-203
-
-
Barron, A.R.1
Barron, R.L.2
-
135
-
-
84972539015
-
Neural networks: A review from a statistical perspective (with discussion)
-
B. Cheng and D. M. Titterington, "Neural networks: A review from a statistical perspective (with discussion)," Statist. Sci., vol. 9, no. 1, pp. 2-54, 1994.
-
(1994)
Statist. Sci.
, vol.9
, Issue.1
, pp. 2-54
-
-
Cheng, B.1
Titterington, D.M.2
-
136
-
-
33747772325
-
Neural networks and nonparametric regression
-
Helsingoer, Denmark, Aug.
-
V. Cherkassky, "Neural networks and nonparametric regression," in Proc. IEEE-SP Wkshp., Helsingoer, Denmark, Aug. 1992, pp. 511-521.
-
(1992)
Proc. IEEE-SP Wkshp.
, pp. 511-521
-
-
Cherkassky, V.1
-
137
-
-
0002983776
-
Statistical aspects of neural networks
-
O. E. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall, Eds. London: Chapman and Hall
-
B. D. Ripley, "Statistical aspects of neural networks," in Networks and Chaos - Statistical and Probabilistic Aspects, O. E. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall, Eds. London: Chapman and Hall, 1993, pp. 40-123.
-
(1993)
Networks and Chaos - Statistical and Probabilistic Aspects
, pp. 40-123
-
-
Ripley, B.D.1
-
138
-
-
0000696616
-
Neural networks and related methods for classification
-
B. D. Ripley, "Neural networks and related methods for classification (with discussion)," J. Roy. Statist. Soc. Series B, vol. 56, 1994.
-
(1994)
J. Roy. Statist. Soc. Series B
, vol.56
-
-
Ripley, B.D.1
-
140
-
-
0001441372
-
Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
-
Aug.
-
D. J. C. MacKay, "Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks," Network: Computa. Neural Syst., vol. 6, no. 3, pp. 469-505, Aug. 1995.
-
(1995)
Network: Computa. Neural Syst.
, vol.6
, Issue.3
, pp. 469-505
-
-
MacKay, D.J.C.1
|