메뉴 건너뛰기




Volumn 8, Issue 3, 1997, Pages 630-645

Constructive algorithms for structure learning in feedforward neural networks for regression problems

Author keywords

Cascade correlation; Constructive algorithm; Dynamic node creation; Group method of data handling; Projection pursuit regression; Resource allocating network; State space search; Structure learning

Indexed keywords

COMPUTER ARCHITECTURE; DATA HANDLING; FEEDFORWARD NEURAL NETWORKS; REGRESSION ANALYSIS; STATE SPACE METHODS;

EID: 0031146959     PISSN: 10459227     EISSN: None     Source Type: Journal    
DOI: 10.1109/72.572102     Document Type: Article
Times cited : (426)

References (140)
  • 1
    • 0000473247 scopus 로고
    • A backpropagation algorithm with optimal use of hidden units
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • Y. Chauvin, "A backpropagation algorithm with optimal use of hidden units," in Advances in Neural Information Processing Systems 1, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 519-526.
    • (1989) Advances in Neural Information Processing Systems 1 , pp. 519-526
    • Chauvin, Y.1
  • 2
    • 0000991092 scopus 로고
    • Comparing biases for minimal network construction with backpropagation
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • S. J. Hanson and L. Y. Pratt, "Comparing biases for minimal network construction with backpropagation," in Advances in Neural Information Processing Systems 1, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 177-185.
    • (1989) Advances in Neural Information Processing Systems 1 , pp. 177-185
    • Hanson, S.J.1    Pratt, L.Y.2
  • 3
    • 0000539096 scopus 로고
    • Generalization by weight-elimination with application to forecasting
    • R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann
    • A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, "Generalization by weight-elimination with application to forecasting," in Advances in Neural Information Processing Systems 3, R. Lippmann, J. Moody, and D. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991, pp. 875-882.
    • (1991) Advances in Neural Information Processing Systems 3 , pp. 875-882
    • Weigend, A.S.1    Rumelhart, D.E.2    Huberman, B.A.3
  • 4
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • G. H. Golub, M. Heath, and G. Wahba, "Generalized cross-validation as a method for choosing a good ridge parameter," Technometrics, vol. 21, no. 2, pp. 215-223, 1979.
    • (1979) Technometrics , vol.21 , Issue.2 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 5
    • 0001561263 scopus 로고
    • Bayesian backpropagation
    • W. L. Buntine and A. S. Weigend, "Bayesian backpropagation," Complex Syst., vol. 5, pp. 603-643, 1991.
    • (1991) Complex Syst. , vol.5 , pp. 603-643
    • Buntine, W.L.1    Weigend, A.S.2
  • 6
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • May
    • D. J. C. Mackay, "Bayesian interpolation," Neural Computa., vol. 4, no. 3, pp. 415-447, May 1992.
    • (1992) Neural Computa. , vol.4 , Issue.3 , pp. 415-447
    • Mackay, D.J.C.1
  • 7
    • 0003611509 scopus 로고
    • Ph.D. dissertation, Dep. Computer Sci., Univ. Toronto, Canada
    • R. M. Neal, "Bayesian learning for neural networks," Ph.D. dissertation, Dep. Computer Sci., Univ. Toronto, Canada, 1995.
    • (1995) Bayesian Learning for Neural Networks
    • Neal, R.M.1
  • 8
    • 0029754435 scopus 로고    scopus 로고
    • A review of Bayesian neural networks with an application to near infrared spectroscopy
    • H. H. Thodberg, "A review of Bayesian neural networks with an application to near infrared spectroscopy," IEEE Trans. Neural Networks, vol. 7, pp. 56-72, 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 56-72
    • Thodberg, H.H.1
  • 9
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • P. M. Williams, "Bayesian regularization and pruning using a Laplace prior," Neural Computa., vol. 7, pp. 117-143, 1995.
    • (1995) Neural Computa. , vol.7 , pp. 117-143
    • Williams, P.M.1
  • 10
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • May
    • D. J. C. MacKay, "A practical Bayesian framework for backpropagation networks," Neural Computa., vol. 4, no. 3, pp. 448-472, May 1992.
    • (1992) Neural Computa. , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 12
    • 0026453958 scopus 로고
    • Training a 3-node neural network is NP-complete
    • A. L. Blum and R. L. Rivest, "Training a 3-node neural network is NP-complete," Neural Networks, vol. 5, pp. 117-127, 1992.
    • (1992) Neural Networks , vol.5 , pp. 117-127
    • Blum, A.L.1    Rivest, R.L.2
  • 13
    • 0026152917 scopus 로고
    • Complexity results on learning by neural nets
    • J. H. Lin and J. S. Vitter, "Complexity results on learning by neural nets," Machine Learning, vol. 6, pp. 211-230, 1991.
    • (1991) Machine Learning , vol.6 , pp. 211-230
    • Lin, J.H.1    Vitter, J.S.2
  • 14
    • 0001311386 scopus 로고
    • Loading deep networks is hard
    • J. Sima, "Loading deep networks is hard," Neural Computa., vol. 6, pp. 842-850, 1994.
    • (1994) Neural Computa. , vol.6 , pp. 842-850
    • Sima, J.1
  • 15
    • 0000716606 scopus 로고
    • Book review on 'Neural-network design and the complexity of learning,'
    • E. B. Baum, "Book review on 'Neural-network design and the complexity of learning,'" IEEE Trans. Neural Networks, vol. 2, pp. 181-182, 1991.
    • (1991) IEEE Trans. Neural Networks , vol.2 , pp. 181-182
    • Baum, E.B.1
  • 16
    • 0021518106 scopus 로고
    • A theory of the learnable
    • L. G. Valiant, "A theory of the learnable," Commun. ACM, vol. 27, no. 11, pp. 1134-1142, 1984.
    • (1984) Commun. ACM , vol.27 , Issue.11 , pp. 1134-1142
    • Valiant, L.G.1
  • 17
    • 0000240862 scopus 로고
    • A proposal for more powerful learning algorithms
    • E. B. Baum, "A proposal for more powerful learning algorithms," Neural Computa., vol. 1, no. 2, pp. 201-207, 1989.
    • (1989) Neural Computa. , vol.1 , Issue.2 , pp. 201-207
    • Baum, E.B.1
  • 18
    • 0027662338 scopus 로고
    • Pruning algorithms - A survey
    • Sept.
    • R. Reed, "Pruning algorithms - A survey," IEEE Trans. Neural Networks, vol. 4, pp. 740-747, Sept. 1993.
    • (1993) IEEE Trans. Neural Networks , vol.4 , pp. 740-747
    • Reed, R.1
  • 19
    • 0025447562 scopus 로고
    • A simple procedure for pruning backpropagation trained neural networks
    • June
    • E. D. Karnin, "A simple procedure for pruning backpropagation trained neural networks," IEEE Trans. Neural Networks, vol. 1, pp. 239-242, June 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 239-242
    • Karnin, E.D.1
  • 20
    • 0000900876 scopus 로고
    • Skeletonization: A technique for trimming the fat from a network via relevance assessment
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • M. C. Mozer and P. Smolensky, "Skeletonization: A technique for trimming the fat from a network via relevance assessment," in Advances in Neural Information Processing Systems 1, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp. 107-115.
    • (1989) Advances in Neural Information Processing Systems 1 , pp. 107-115
    • Mozer, M.C.1    Smolensky, P.2
  • 21
    • 0001234705 scopus 로고
    • Second-order derivatives for network pruning: Optimal brain surgeon
    • San Mateo, CA: Morgan Kaufmann
    • B. Hassibi and D. G. Stork, "Second-order derivatives for network pruning: Optimal brain surgeon," in Advances in Neural Information Processing Systems 5. San Mateo, CA: Morgan Kaufmann, 1993, pp. 164-171.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 23
    • 0002109783 scopus 로고
    • An overview of predictive learning and function approximation
    • From Statistics to Neural Networks: Theory and Pattern Recognition Applications, J. H. Friedman and H. Wechsler, Eds., Subseries F. New York: Springer-Verlag
    • J. H. Friedman, "An overview of predictive learning and function approximation," in From Statistics to Neural Networks: Theory and Pattern Recognition Applications, J. H. Friedman and H. Wechsler, Eds., ASI Proc., Subseries F. New York: Springer-Verlag, 1994.
    • (1994) ASI Proc.
    • Friedman, J.H.1
  • 25
    • 0025567199 scopus 로고
    • Neural units recruitment algorithm for generation of decision trees
    • San Diego, CA, June
    • G. Deffuant, "Neural units recruitment algorithm for generation of decision trees," in Proc. 1990 IEEE Int. Joint Conf. Neural Networks, San Diego, CA, vol. 1, June 1990, pp. 637-642.
    • (1990) Proc. 1990 IEEE Int. Joint Conf. Neural Networks , vol.1 , pp. 637-642
    • Deffuant, G.1
  • 26
    • 0000783575 scopus 로고
    • The upstart algorithm: A method for constructing and training feedforward neural networks
    • M. Frean, "The upstart algorithm: A method for constructing and training feedforward neural networks," Neural Computa., vol. 2, pp. 198-209, 1990.
    • (1990) Neural Computa. , vol.2 , pp. 198-209
    • Frean, M.1
  • 27
    • 84956226983 scopus 로고
    • A convergence theorem for sequential learning in two-layer perceptrons
    • M. Marchand, M. Golea, and P. Ruján, "A convergence theorem for sequential learning in two-layer perceptrons," Europhys. Lett., vol. 11, no. 6, pp. 487-492, 1990.
    • (1990) Europhys. Lett. , vol.11 , Issue.6 , pp. 487-492
    • Marchand, M.1    Golea, M.2    Ruján, P.3
  • 28
    • 0346377196 scopus 로고
    • Topology modifying neural network algorithms
    • M. A. Arbib, Ed. Cambridge, MA: MIT Press
    • T. Ash and G. Cottrell, "Topology modifying neural network algorithms," in Handbook of Brain Theory and Neural Networks, M. A. Arbib, Ed. Cambridge, MA: MIT Press, 1995, pp. 990-993.
    • (1995) Handbook of Brain Theory and Neural Networks , pp. 990-993
    • Ash, T.1    Cottrell, G.2
  • 30
    • 0013221771 scopus 로고
    • Comparative bibliography of ontogenic neural networks
    • Sorrento, Italy, May
    • E. Fiesler, "Comparative bibliography of ontogenic neural networks," in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, vol. 1, May 1994, pp. 793-796.
    • (1994) Proc. Int. Conf. Artificial Neural Networks , vol.1 , pp. 793-796
    • Fiesler, E.1
  • 32
    • 0001552995 scopus 로고
    • Cross-validation, the jackknife, and the bootstrap: Excess error estimation in forward logistic regression
    • May
    • G. Gong, "Cross-validation, the jackknife, and the bootstrap: Excess error estimation in forward logistic regression," J. Amer. Statist. Assoc., vol. 81, no. 393, pp. 108-113, May 1986.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , Issue.393 , pp. 108-113
    • Gong, G.1
  • 33
    • 0001325515 scopus 로고
    • Approximation and estimation bounds for artificial neural networks
    • A. R. Barron, "Approximation and estimation bounds for artificial neural networks," Machine Learning, vol. 14, pp. 115-133, 1994.
    • (1994) Machine Learning , vol.14 , pp. 115-133
    • Barron, A.R.1
  • 34
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • S. Geman, E. Bienenstock, and R. Doursat, "Neural networks and the bias/variance dilemma," Neural Computa., vol. 4, pp. 1-58, 1992.
    • (1992) Neural Computa. , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 35
    • 85007148367 scopus 로고
    • Identification of Volterra systems with a polynomial neural network
    • San Francisco, CA, Mar.
    • R. E. Parker and M. Tummala, "Identification of Volterra systems with a polynomial neural network," in Proc. 1992 IEEE Int. Conf. Acoust., Speech, Signal Processing, San Francisco, CA, vol. 4, Mar. 1992, pp. 561-564.
    • (1992) Proc. 1992 IEEE Int. Conf. Acoust., Speech, Signal Processing , vol.4 , pp. 561-564
    • Parker, R.E.1    Tummala, M.2
  • 36
    • 0003257214 scopus 로고
    • Prediction risk and architecture selection for neural networks
    • From Statistics to Neural Networks: Theory and Pattern Recognition Applications, V. Cherkassky, J. H. Friedman, and H. Wechsler, Eds., New York: Springer-Verlag
    • J. Moody, "Prediction risk and architecture selection for neural networks," in From Statistics to Neural Networks: Theory and Pattern Recognition Applications, V. Cherkassky, J. H. Friedman, and H. Wechsler, Eds., vol. 136 of NATO ASI Series F. New York: Springer-Verlag, 1994, pp. 147-165.
    • (1994) NATO ASI Series F , vol.136 , pp. 147-165
    • Moody, J.1
  • 37
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions (with discussion)
    • M. Stone, "Cross-validatory choice and assessment of statistical predictions (with discussion)," J. Roy. Statist. Soc. Series B, vol. 36, pp. 111-147, 1974.
    • (1974) J. Roy. Statist. Soc. Series B , vol.36 , pp. 111-147
    • Stone, M.1
  • 39
    • 1442347115 scopus 로고
    • Evaluating neural network predictors by bootstrapping
    • Seoul, Korea, Oct.
    • A. S. Weigend and B. LeBaron, "Evaluating neural network predictors by bootstrapping," in Proc. Int. Conf. Neural Inform. Processing, Seoul, Korea, vol. 2, Oct. 1994, pp. 1207-1212.
    • (1994) Proc. Int. Conf. Neural Inform. Processing , vol.2 , pp. 1207-1212
    • Weigend, A.S.1    LeBaron, B.2
  • 40
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Dec.
    • H. Akaike, "A new look at the statistical model identification," IEEE Trans. Automat. Contr., vol. AC-19, pp. 716-723, Dec. 1974.
    • (1974) IEEE Trans. Automat. Contr. , vol.AC-19 , pp. 716-723
    • Akaike, H.1
  • 41
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwartz, "Estimating the dimension of a model," Ann. Statist., vol. 6, pp. 461-464, 1978.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 42
    • 51249190305 scopus 로고
    • Statistical predictor identification
    • H. Akaike, "Statistical predictor identification," Ann. Instit. Statist. Math., vol. 22, pp. 203-217, 1970.
    • (1970) Ann. Instit. Statist. Math. , vol.22 , pp. 203-217
    • Akaike, H.1
  • 43
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation
    • P. Craven and G. Wahba, "Smoothing noisy data with spline functions: Estimating the correct degree of smoothing by the method of generalized cross-validation," Numer. Math., vol. 31, pp. 377-403, 1979.
    • (1979) Numer. Math. , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 44
    • 0002167090 scopus 로고
    • Predicted squared error: A criterion for automatic model selection
    • S. Farlow, Ed. New York: Marcel Dekker
    • A. Barron, "Predicted squared error: A criterion for automatic model selection," in Self-Organizing Methods in Modeling, S. Farlow, Ed. New York: Marcel Dekker, 1984.
    • (1984) Self-Organizing Methods in Modeling
    • Barron, A.1
  • 45
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen, "Modeling by shortest data description," Automatica, vol. 14, pp. 465-471, 1975.
    • (1975) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 46
    • 0026289079 scopus 로고
    • Note on generalization, regularization, and architecture selection in nonlinear learning systems
    • B. H. Juang, S. Y. Kung, and C. A. Kamm, Eds. Princeton, NJ, Sept.
    • J. E. Moody, "Note on generalization, regularization, and architecture selection in nonlinear learning systems," in Proc. 1991 IEEE Wkshp. Neural Networks for Signal Processing, B. H. Juang, S. Y. Kung, and C. A. Kamm, Eds. Princeton, NJ, Sept. 1991, pp. 1-10.
    • (1991) Proc. 1991 IEEE Wkshp. Neural Networks for Signal Processing , pp. 1-10
    • Moody, J.E.1
  • 48
    • 0002319419 scopus 로고
    • Statistical ideas for selecting network architectures
    • B. Kappen and S. Gielen, Eds. New York: Springer-Verlag
    • B. D. Ripley, "Statistical ideas for selecting network architectures," in Neural Networks: Artificial Intelligence and Industrial Applications, B. Kappen and S. Gielen, Eds. New York: Springer-Verlag, 1995, pp. 183-190.
    • (1995) Neural Networks: Artificial Intelligence and Industrial Applications , pp. 183-190
    • Ripley, B.D.1
  • 49
    • 0025399568 scopus 로고
    • Self-organizing network for optimum supervised learning
    • Mar.
    • M. F. Tenorio and W. T. Lee, "Self-organizing network for optimum supervised learning," IEEE Trans. Neural Networks, vol. 1, pp. 100-110, Mar. 1990.
    • (1990) IEEE Trans. Neural Networks , vol.1 , pp. 100-110
    • Tenorio, M.F.1    Lee, W.T.2
  • 50
    • 0000067815 scopus 로고
    • Predicting the future: Advantages of semilocal units
    • E. Hartman and J. D. Keeler, "Predicting the future: Advantages of semilocal units," Neural Computa., vol. 3, pp. 566-578, 1991.
    • (1991) Neural Computa. , vol.3 , pp. 566-578
    • Hartman, E.1    Keeler, J.D.2
  • 52
    • 0024622440 scopus 로고
    • Radial basis function network for speech pattern classification
    • S. Renals, "Radial basis function network for speech pattern classification," Electron. Lett., vol. 25, no. 7, pp. 437-439, 1988.
    • (1988) Electron. Lett. , vol.25 , Issue.7 , pp. 437-439
    • Renals, S.1
  • 53
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • G. Cybenko, "Approximation by superpositions of a sigmoidal function," Math. Contr., Signals, Syst., vol. 2, pp. 303-314, 1989.
    • (1989) Math. Contr., Signals, Syst. , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 54
    • 0024866495 scopus 로고
    • On the approximate realization of continous mappings by neural networks
    • K. I. Funahashi, "On the approximate realization of continous mappings by neural networks," Neural Networks, vol. 2, pp. 183-192, 1989.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.I.1
  • 55
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Networks, vol. 4, pp. 251-257, 1991.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 56
    • 0027812765 scopus 로고
    • Some new results on neuralnetwork approximation
    • _, "Some new results on neuralnetwork approximation," Neural Networks, vol. 6, pp. 1069-1072, 1993.
    • (1993) Neural Networks , vol.6 , pp. 1069-1072
  • 57
    • 0001683814 scopus 로고
    • Layered neural networks with Gaussian hidden units as universal approximations
    • E. Hartman, J. Keeler, and J. Kowalski, "Layered neural networks with Gaussian hidden units as universal approximations," Neural Computa., vol. 2, pp. 210-215, 1990.
    • (1990) Neural Computa. , vol.2 , pp. 210-215
    • Hartman, E.1    Keeler, J.2    Kowalski, J.3
  • 58
    • 0000106040 scopus 로고
    • Universal approximation using radial-basis-function networks
    • J. Park and I. Sandberg, "Universal approximation using radial-basis-function networks," Neural Computa., vol. 3, pp. 246-257, 1991.
    • (1991) Neural Computa. , vol.3 , pp. 246-257
    • Park, J.1    Sandberg, I.2
  • 59
    • 0001002401 scopus 로고
    • Approximation and radial-basis-function networks
    • _, "Approximation and radial-basis-function networks," Neural Computa., vol. 5, pp. 305-316, 1993.
    • (1993) Neural Computa. , vol.5 , pp. 305-316
  • 61
    • 0029307575 scopus 로고
    • Nonparametric estimation via empirical risk minimization
    • May
    • G. Lugosi and K. Zeger, "Nonparametric estimation via empirical risk minimization," IEEE Trans. Inform. Theory, vol. 41, pp. 677-687, May 1995.
    • (1995) IEEE Trans. Inform. Theory , vol.41 , pp. 677-687
    • Lugosi, G.1    Zeger, K.2
  • 62
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • May
    • A. R. Barron, "Universal approximation bounds for superpositions of a sigmoidal function," IEEE Trans. Inform. Theory, vol. 39, pp. 930-945, May 1993.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , pp. 930-945
    • Barron, A.R.1
  • 63
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • L. K. Jones, "A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training," Ann. Statist., vol. 20, no. 1, pp. 608-613, 1992.
    • (1992) Ann. Statist. , vol.20 , Issue.1 , pp. 608-613
    • Jones, L.K.1
  • 65
    • 0027211408 scopus 로고
    • A convergent generator of neural networks
    • P. Courrieu, "A convergent generator of neural networks," Neural Networks, vol. 6, no. 6, pp. 835-844, 1993.
    • (1993) Neural Networks , vol.6 , Issue.6 , pp. 835-844
    • Courrieu, P.1
  • 66
    • 33747601096 scopus 로고
    • A bias architecture with rank-expanding algorithm for neural networks supervised learning problem
    • San Diego, CA, June
    • J. Luo, "A bias architecture with rank-expanding algorithm for neural networks supervised learning problem," in Proc. World Congr. Neural Networks, San Diego, CA, vol. 3, June 1994, pp. 742-747.
    • (1994) Proc. World Congr. Neural Networks , vol.3 , pp. 742-747
    • Luo, J.1
  • 67
    • 0028573423 scopus 로고
    • Neural networks and evolutionary computation - Part 1: Hybrid approaches in artificial intelligence
    • Orlando, FL, June
    • G. Weiss, "Neural networks and evolutionary computation - Part 1: Hybrid approaches in artificial intelligence," in Proc. 1st IEEE Conf. Evolutionary Computa., Orlando, FL, vol. 1, June 1994, pp. 268-272.
    • (1994) Proc. 1st IEEE Conf. Evolutionary Computa. , vol.1 , pp. 268-272
    • Weiss, G.1
  • 68
    • 0027574256 scopus 로고
    • A review of evolutionary artificial neural networks
    • X. Yao, "A review of evolutionary artificial neural networks," Int. J. Intell. Syst., vol. 8, pp. 539-567, 1993.
    • (1993) Int. J. Intell. Syst. , vol.8 , pp. 539-567
    • Yao, X.1
  • 70
    • 0028742244 scopus 로고
    • An automated design system for finding the minimal configuration of a feedforward neural network
    • Orlando, FL, June
    • C. C. Teng and B. W. Wah, "An automated design system for finding the minimal configuration of a feedforward neural network," in Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, vol. 3, June 1994, pp. 1295-1300.
    • (1994) Proc. IEEE Int. Conf. Neural Networks , vol.3 , pp. 1295-1300
    • Teng, C.C.1    Wah, B.W.2
  • 71
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: Between steepest descent and Newton's method
    • R. Battiti, "First- and second-order methods for learning: Between steepest descent and Newton's method," Neural Computa., vol. 4, pp. 141-166, 1992.
    • (1992) Neural Computa. , vol.4 , pp. 141-166
    • Battiti, R.1
  • 74
    • 0039849065 scopus 로고
    • Recent advances on techniques of static feedforward networks with supervised learning
    • L. Xu, S. Klasa, and A. Yuille, "Recent advances on techniques of static feedforward networks with supervised learning," Int. J. Neural Syst., vol. 3, no. 3, pp. 253-290, 1992.
    • (1992) Int. J. Neural Syst. , vol.3 , Issue.3 , pp. 253-290
    • Xu, L.1    Klasa, S.2    Yuille, A.3
  • 79
    • 0003000735 scopus 로고
    • Faster learning variations on backpropagation: An empirical study
    • D. S. Touretzky, G. E. Hinton, and T. J. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann
    • S. E. Fahlman, "Faster learning variations on backpropagation: An empirical study," in Proc. 1988 Connectionist Models Summer School, D. S. Touretzky, G. E. Hinton, and T. J. Sejnowski, Eds. San Mateo, CA: Morgan Kaufmann, 1988, pp. 38-51.
    • (1988) Proc. 1988 Connectionist Models Summer School , pp. 38-51
    • Fahlman, S.E.1
  • 80
    • 0029185114 scopus 로고
    • Use of a quasi-Newton method in a feedforward neural network construction algorithm
    • R. Setiono and L. C. K. Hui, "Use of a quasi-Newton method in a feedforward neural network construction algorithm," IEEE Trans. Neural Networks, vol. 6, pp. 273-277, 1995.
    • (1995) IEEE Trans. Neural Networks , vol.6 , pp. 273-277
    • Setiono, R.1    Hui, L.C.K.2
  • 81
    • 84950941772 scopus 로고
    • Projection pursuit regression
    • J. H. Friedman and W. Stuetzle, "Projection pursuit regression," J. Amer. Statist. Assoc., vol. 76, no. 376, pp. 817-823, 1981.
    • (1981) J. Amer. Statist. Assoc. , vol.76 , Issue.376 , pp. 817-823
    • Friedman, J.H.1    Stuetzle, W.2
  • 83
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann
    • S. E. Fahlman and C. Lebiere, "The cascade-correlation learning architecture," in Advances in Neural Information Processing Systems 2, D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, pp. 524-532, 1990.
    • (1990) Advances in Neural Information Processing Systems 2 , pp. 524-532
    • Fahlman, S.E.1    Lebiere, C.2
  • 84
    • 84945797434 scopus 로고
    • Dynamic node creation in backpropagation networks
    • T. Ash, "Dynamic node creation in backpropagation networks," Connection Sci., vol. 1, no. 4, pp. 365-375, 1989.
    • (1989) Connection Sci. , vol.1 , Issue.4 , pp. 365-375
    • Ash, T.1
  • 85
    • 0028208150 scopus 로고
    • Dynamic node architecture learning: An information theoretic approach
    • E. B. Bartlett, "Dynamic node architecture learning: An information theoretic approach," Neural Networks, vol. 7, no. 1, pp. 129-140, 1994.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 129-140
    • Bartlett, E.B.1
  • 86
    • 0025964567 scopus 로고
    • Backpropagation algorithm which varies the number of hidden units
    • Y. Hirose, K. Yamashita, and S. Hijiya, "Backpropagation algorithm which varies the number of hidden units," Neural Networks, vol. 4, pp. 61-66, 1991.
    • (1991) Neural Networks , vol.4 , pp. 61-66
    • Hirose, Y.1    Yamashita, K.2    Hijiya, S.3
  • 87
    • 0028754410 scopus 로고
    • Structure adaptation in feedforward neural network
    • Orlando, FL, June
    • K. Khorasani and W. Weng, "Structure adaptation in feedforward neural networks," in Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, vol. 3, June 1994, pp. 1403-1408.
    • (1994) Proc. IEEE Int. Conf. Neural Networks , vol.3 , pp. 1403-1408
    • Khorasani, K.1    Weng, W.2
  • 88
    • 0028729502 scopus 로고
    • An incremental learning algorithm that optimizes network size and sample size in one trial
    • Orlando, FL, June
    • B. T. Zhang, "An incremental learning algorithm that optimizes network size and sample size in one trial," in Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, vol. 1, June 1994, pp. 215-220.
    • (1994) Proc. IEEE Int. Conf. Neural Networks , vol.1 , pp. 215-220
    • Zhang, B.T.1
  • 89
    • 0025573202 scopus 로고
    • Pattern classification using projection pursuit
    • T. E. Flick, L. K. Jones, R. G. Priest, and C. Herman, "Pattern classification using projection pursuit," Pattern Recognition, vol. 23, no. 12, pp. 1367-1376, 1990.
    • (1990) Pattern Recognition , vol.23 , Issue.12 , pp. 1367-1376
    • Flick, T.E.1    Jones, L.K.2    Priest, R.G.3    Herman, C.4
  • 90
  • 92
    • 0028733738 scopus 로고
    • Extensions to projection pursuit learning networks with parametric smoothers
    • Orlando, FL, June
    • S. Lay, J. Hwang, and S. You, "Extensions to projection pursuit learning networks with parametric smoothers," in Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, vol. 3, June 1994, pp. 1325-1330.
    • (1994) Proc. IEEE Int. Conf. Neural Networks , vol.3 , pp. 1325-1330
    • Lay, S.1    Hwang, J.2    You, S.3
  • 93
    • 0039180597 scopus 로고
    • Automatic smoothing spline projection pursuit
    • C. B. Roosen and T. J. Hastie, "Automatic smoothing spline projection pursuit," J. Computa. Graphical Statist., vol. 3, pp. 235-248, 1994.
    • (1994) J. Computa. Graphical Statist. , vol.3 , pp. 235-248
    • Roosen, C.B.1    Hastie, T.J.2
  • 94
    • 0007489680 scopus 로고
    • Approximation, dimension reduction, and nonconvex optimization using linear superpositions of Gaussians
    • Oct.
    • A. Saha, C. L. Wu, and D. S. Tang, "Approximation, dimension reduction, and nonconvex optimization using linear superpositions of Gaussians," IEEE Trans. Computers, vol. 42, pp. 1222-1233, Oct. 1993.
    • (1993) IEEE Trans. Computers , vol.42 , pp. 1222-1233
    • Saha, A.1    Wu, C.L.2    Tang, D.S.3
  • 96
    • 33747793334 scopus 로고
    • Connectionist projection pursuit regression
    • W. Verkooijen and H. Daniels, "Connectionist projection pursuit regression," Computa. Economics, vol. 7, pp. 155-161, 1994.
    • (1994) Computa. Economics , vol.7 , pp. 155-161
    • Verkooijen, W.1    Daniels, H.2
  • 97
    • 0000729019 scopus 로고
    • Forecasting demand for electric power
    • S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann
    • J. L. Yuan and T. L. Fine, "Forecasting demand for electric power," in Advances in Neural Information Processing Systems 5, S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds. San Mateo, CA: Morgan Kaufmann, 1993, pp. 739-746.
    • (1993) Advances in Neural Information Processing Systems 5 , pp. 739-746
    • Yuan, J.L.1    Fine, T.L.2
  • 98
    • 33747593531 scopus 로고
    • Some approximation properties of projection pursuit learning networks
    • J. E. Moody, S. J. Hanson, and R. P. Lippman, Eds. San Mateo, CA: Morgan Kaufmann
    • Y. Zhao and C. G. Atkeson, "Some approximation properties of projection pursuit learning networks," in Advances in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippman, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 936-943.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 936-943
    • Zhao, Y.1    Atkeson, C.G.2
  • 100
    • 0242401012 scopus 로고
    • Networks with learned unit response functions
    • J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann
    • J. Moody and N. Yarvin, "Networks with learned unit response functions," in Advances in Neural Information Processing Systems 4, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992, pp. 1048-1055.
    • (1992) Advances in Neural Information Processing Systems 4 , pp. 1048-1055
    • Moody, J.1    Yarvin, N.2
  • 101
    • 84950754164 scopus 로고
    • Exploratory projection pursuit
    • Mar.
    • J. H. Friedman, "Exploratory projection pursuit," J. Amer. Statist. Assoc., vol. 82, no. 397, pp. 249-266, Mar. 1987.
    • (1987) J. Amer. Statist. Assoc. , vol.82 , Issue.397 , pp. 249-266
    • Friedman, J.H.1
  • 102
    • 0026375443 scopus 로고
    • The pi-sigma network: An efficient higher-order neural network for pattern classification and function approximation
    • Seattle, WA, July
    • Y. Shin and J. Ghosh, "The pi-sigma network: An efficient higher-order neural network for pattern classification and function approximation," in Proc. Int. Joint Conf. Neural Networks, Seattle, WA, vol. 1, July 1991, pp. 13-18.
    • (1991) Proc. Int. Joint Conf. Neural Networks , vol.1 , pp. 13-18
    • Shin, Y.1    Ghosh, J.2
  • 103
    • 0042214972 scopus 로고
    • Combining exploratory projection pursuit and projection pursuit regression with application to neural networks
    • May
    • N. Intrator, "Combining exploratory projection pursuit and projection pursuit regression with application to neural networks," Neural Computa., vol. 5, pp. 443-455, May 1993.
    • (1993) Neural Computa. , vol.5 , pp. 443-455
    • Intrator, N.1
  • 104
    • 84887106795 scopus 로고    scopus 로고
    • Bayesian regularization in constructive neural networks, in
    • Bochum, Germany, July
    • T. Y. Kwok and D. Y. Yeung, "Bayesian regularization in constructive neural networks," in Proc. Int. Conf. Artificial Neural Networks, Bochum, Germany, July 1996, pp. 557-562.
    • (1996) Proc. Int. Conf. Artificial Neural Networks , pp. 557-562
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 105
    • 0001666851 scopus 로고
    • Efficient higher-order neural networks for classification and function approximation
    • J. Ghosh and Y. Shin, "Efficient higher-order neural networks for classification and function approximation," Int. J. Neural Syst., vol. 3, no. 4, pp. 323-350, 1992.
    • (1992) Int. J. Neural Syst. , vol.3 , Issue.4 , pp. 323-350
    • Ghosh, J.1    Shin, Y.2
  • 106
    • 0000523636 scopus 로고
    • On a conjecture of Huber concerning the convergence of projection pursuit regression
    • L. K. Jones, "On a conjecture of Huber concerning the convergence of projection pursuit regression," Ann. Statist., vol. 15, no. 2, pp. 880-882, 1987.
    • (1987) Ann. Statist. , vol.15 , Issue.2 , pp. 880-882
    • Jones, L.K.1
  • 107
    • 0030244218 scopus 로고    scopus 로고
    • Use of bias term in projection pursuit learning improves approximation and convergence properties
    • T. Y. Kwok and D. Y. Yeung, "Use of bias term in projection pursuit learning improves approximation and convergence properties," IEEE Trans. Neural Networks, vol. 7, pp. 1168-1183, 1996.
    • (1996) IEEE Trans. Neural Networks , vol.7 , pp. 1168-1183
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 108
    • 0028751384 scopus 로고
    • Network complexity and learning efficiency of constructive learning algorithms
    • Orlando, FL, June
    • W. Fang and R. C. Lacher, "Network complexity and learning efficiency of constructive learning algorithms," in Proc. IEEE Int. Conf. Neural Networks, Orlando, FL, vol. 1, June 1994, pp. 366-369.
    • (1994) Proc. IEEE Int. Conf. Neural Networks , vol.1 , pp. 366-369
    • Fang, W.1    Lacher, R.C.2
  • 110
    • 0007723295 scopus 로고
    • Cascade network architectures
    • Baltimore, MD, June
    • _, "Cascade network architectures," in Proc. Int. Joint Conf. Neural Networks, Baltimore, MD, vol. 2, June 1992, pp. 398-404.
    • (1992) Proc. Int. Joint Conf. Neural Networks , vol.2 , pp. 398-404
  • 111
    • 0028538768 scopus 로고
    • Connectivity and performance tradeoffs in the cascade correlation learning architecture
    • Nov.
    • D. S. Phatak and I. Koren, "Connectivity and performance tradeoffs in the cascade correlation learning architecture," IEEE Trans. Neural Networks, vol. 5, pp. 930-935, Nov. 1994.
    • (1994) IEEE Trans. Neural Networks , vol.5 , pp. 930-935
    • Phatak, D.S.1    Koren, I.2
  • 112
    • 0345064339 scopus 로고
    • Variations on the cascade-correlation learning architecture for fast convergence in robot control
    • Nimes, France, Nov.
    • N. Simon, H. Corporaal, and E. Kerckhoffs, "Variations on the cascade-correlation learning architecture for fast convergence in robot control," in Proc. 5th Int. Conf. Neural Networks Applicat., Nimes, France, Nov. 1992, pp. 454-464.
    • (1992) Proc. 5th Int. Conf. Neural Networks Applicat. , pp. 454-464
    • Simon, N.1    Corporaal, H.2    Kerckhoffs, E.3
  • 115
    • 0029032235 scopus 로고
    • Parallelizing the cascade-correlation algorithm using time warp
    • P. L. Springer and S. Gulati, "Parallelizing the cascade-correlation algorithm using time warp," Neural Networks, vol. 8, no. 4, pp. 571-577, 1995.
    • (1995) Neural Networks , vol.8 , Issue.4 , pp. 571-577
    • Springer, P.L.1    Gulati, S.2
  • 116
    • 33747395700 scopus 로고
    • A neural network approach to constructive induction
    • Evanston, IL
    • D. Y. Yeung, "A neural network approach to constructive induction," in Proc. 8th Int. Wkshp. Machine Learning, Evanston, IL, 1991.
    • (1991) Proc. 8th Int. Wkshp. Machine Learning
    • Yeung, D.Y.1
  • 117
    • 0001278373 scopus 로고
    • Controlled growth of cascade correlation nets
    • Sorrento, Italy, May
    • L. K. Hansen and M. W. Pedersen, "Controlled growth of cascade correlation nets," in Proc. Int. Conf. Artificial Neural Networks, Sorrento, Italy, vol. 1, May 1994, pp. 797-800.
    • (1994) Proc. Int. Conf. Artificial Neural Networks , vol.1 , pp. 797-800
    • Hansen, L.K.1    Pedersen, M.W.2
  • 118
    • 0026928226 scopus 로고
    • Optimization of the hidden unit function in feedforward neural networks
    • O. Fujita, "Optimization of the hidden unit function in feedforward neural networks," Neural Networks, vol. 5, pp. 755-764, 1992.
    • (1992) Neural Networks , vol.5 , pp. 755-764
    • Fujita, O.1
  • 119
    • 0000319172 scopus 로고
    • Incremental approximation by one-hidden-layer neural networks
    • Paris, France, Oct.
    • V. Kurková and B. Beliczynski, "Incremental approximation by one-hidden-layer neural networks," in Proc. Int. Conf. Artificial Neural Networks, Paris, France, vol. 1, Oct. 1995, pp. 5505-5510.
    • (1995) Proc. Int. Conf. Artificial Neural Networks , vol.1 , pp. 5505-5510
    • Kurková, V.1    Beliczynski, B.2
  • 120
    • 0031236099 scopus 로고    scopus 로고
    • Objective functions for training new hidden units in constructive neural networks
    • submitted
    • T. Y. Kwok and D. Y. Yeung, "Objective functions for training new hidden units in constructive neural networks," submitted to IEEE Trans. Neural Networks.
    • IEEE Trans. Neural Networks
    • Kwok, T.Y.1    Yeung, D.Y.2
  • 121
    • 0011849212 scopus 로고
    • Convergence properties of cascade correlation in function approximation
    • G. P. Drago and S. Ridella, "Convergence properties of cascade correlation in function approximation," Neural Comput. Applicat., vol. 2, pp. 142-147, 1994.
    • (1994) Neural Comput. Applicat. , vol.2 , pp. 142-147
    • Drago, G.P.1    Ridella, S.2
  • 122
    • 5844369608 scopus 로고
    • Coarse coding resource-allocating network
    • G. Deco and J. Ebmeyer, "Coarse coding resource-allocating network," Neural Computa., vol. 5, pp. 105-114, 1993.
    • (1993) Neural Computa. , vol.5 , pp. 105-114
    • Deco, G.1    Ebmeyer, J.2
  • 123
    • 0028748949 scopus 로고
    • Growing cell structures - A self-organizing network for unsupervised and supervised learning
    • B. Fritzke, "Growing cell structures - A self-organizing network for unsupervised and supervised learning," Neural Networks, vol. 7, no. 9, pp. 1441-1460, 1994.
    • (1994) Neural Networks , vol.7 , Issue.9 , pp. 1441-1460
    • Fritzke, B.1
  • 124
    • 0025839504 scopus 로고
    • A Gaussian potential function network with hierarchically self-organizing learning
    • S. Lee and R. M. Kil, "A Gaussian potential function network with hierarchically self-organizing learning," Neural Networks, vol. 4, pp. 207-224, 1991.
    • (1991) Neural Networks , vol.4 , pp. 207-224
    • Lee, S.1    Kil, R.M.2
  • 125
    • 0001071040 scopus 로고
    • A resource-allocating network for function interpolation
    • J. Platt, "A resource-allocating network for function interpolation," Neural Computa., vol. 3, pp. 213-225, 1991.
    • (1991) Neural Computa. , vol.3 , pp. 213-225
    • Platt, J.1
  • 127
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • V. Kadirkamanathan and M. Niranjan, "A function estimation approach to sequential learning with neural networks," Neural Computa., vol. 5, no. 6, pp. 954-975, 1993.
    • (1993) Neural Computa. , vol.5 , Issue.6 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 128
    • 0001614845 scopus 로고
    • A probabilistic resource allocating network for novelty detection
    • Mar.
    • S. Roberts and L. Tarassenko, "A probabilistic resource allocating network for novelty detection," Neural Computa., vol. 6, no. 2, pp. 270-284, Mar. 1994.
    • (1994) Neural Computa. , vol.6 , Issue.2 , pp. 270-284
    • Roberts, S.1    Tarassenko, L.2
  • 129
    • 0004096959 scopus 로고
    • Self-Organizing Methods in Modeling: GMDH Type Algorithms
    • S. J. Farlow, Ed., New York: Marcel Dekker
    • S. J. Farlow, Ed., Self-Organizing Methods in Modeling: GMDH Type Algorithms, vol. 54 of Statistics: Textbooks and Monographs. New York: Marcel Dekker, 1984.
    • (1984) Statistics: Textbooks and Monographs , vol.54
  • 130
    • 0028255785 scopus 로고
    • Toward generating neural network structures for function approximation
    • T. M. Nabhan and A. Y. Zomaya, "Toward generating neural network structures for function approximation," Neural Networks, vol. 7, no. 1, pp. 89-90, 1994.
    • (1994) Neural Networks , vol.7 , Issue.1 , pp. 89-90
    • Nabhan, T.M.1    Zomaya, A.Y.2
  • 132
    • 0001307541 scopus 로고
    • Degree of approximation results for feedforward networks approximating unknown mappings and their derivations
    • K. Hornik, M. Stinchcombe, H. White, and P. Auer, "Degree of approximation results for feedforward networks approximating unknown mappings and their derivations," Neural Computa., vol. 6, pp. 1262-1275, 1994.
    • (1994) Neural Computa. , vol.6 , pp. 1262-1275
    • Hornik, K.1    Stinchcombe, M.2    White, H.3    Auer, P.4
  • 133
    • 0028341934 scopus 로고
    • On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size
    • L. Xu, A. Krzyzak, and A. Yuille, "On radial basis function nets and kernel regression: Statistical consistency, convergence rates, and receptive field size," Neural Networks, vol. 7, no. 4, pp. 609-628, 1994.
    • (1994) Neural Networks , vol.7 , Issue.4 , pp. 609-628
    • Xu, L.1    Krzyzak, A.2    Yuille, A.3
  • 134
    • 0003073642 scopus 로고
    • Statistical learning networks: A unifying view
    • E. Wegman, Ed. Washington, D.C.: Amer. Statist. Assoc.
    • A. R. Barron and R. L. Barron, "Statistical learning networks: A unifying view," in Proc. 20th Symp. Interface Computing Sci. Statist., E. Wegman, Ed. Washington, D.C.: Amer. Statist. Assoc., 1988, pp. 192-203.
    • (1988) Proc. 20th Symp. Interface Computing Sci. Statist. , pp. 192-203
    • Barron, A.R.1    Barron, R.L.2
  • 135
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective (with discussion)
    • B. Cheng and D. M. Titterington, "Neural networks: A review from a statistical perspective (with discussion)," Statist. Sci., vol. 9, no. 1, pp. 2-54, 1994.
    • (1994) Statist. Sci. , vol.9 , Issue.1 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 136
    • 33747772325 scopus 로고
    • Neural networks and nonparametric regression
    • Helsingoer, Denmark, Aug.
    • V. Cherkassky, "Neural networks and nonparametric regression," in Proc. IEEE-SP Wkshp., Helsingoer, Denmark, Aug. 1992, pp. 511-521.
    • (1992) Proc. IEEE-SP Wkshp. , pp. 511-521
    • Cherkassky, V.1
  • 137
    • 0002983776 scopus 로고
    • Statistical aspects of neural networks
    • O. E. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall, Eds. London: Chapman and Hall
    • B. D. Ripley, "Statistical aspects of neural networks," in Networks and Chaos - Statistical and Probabilistic Aspects, O. E. Barndorff-Nielsen, J. L. Jensen, and W. S. Kendall, Eds. London: Chapman and Hall, 1993, pp. 40-123.
    • (1993) Networks and Chaos - Statistical and Probabilistic Aspects , pp. 40-123
    • Ripley, B.D.1
  • 138
    • 0000696616 scopus 로고
    • Neural networks and related methods for classification
    • B. D. Ripley, "Neural networks and related methods for classification (with discussion)," J. Roy. Statist. Soc. Series B, vol. 56, 1994.
    • (1994) J. Roy. Statist. Soc. Series B , vol.56
    • Ripley, B.D.1
  • 140
    • 0001441372 scopus 로고
    • Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks
    • Aug.
    • D. J. C. MacKay, "Probable networks and plausible predictions - A review of practical Bayesian methods for supervised neural networks," Network: Computa. Neural Syst., vol. 6, no. 3, pp. 469-505, Aug. 1995.
    • (1995) Network: Computa. Neural Syst. , vol.6 , Issue.3 , pp. 469-505
    • MacKay, D.J.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.