메뉴 건너뛰기




Volumn 108, Issue 1-2, 1997, Pages 119-134

Nonlinear modelling and prediction with feedforward and recurrent networks

Author keywords

Feedforward networks; Noise filtering; Recurrent networks

Indexed keywords


EID: 0000809163     PISSN: 01672789     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0167-2789(97)82009-X     Document Type: Article
Times cited : (124)

References (34)
  • 2
    • 0040375220 scopus 로고    scopus 로고
    • Cancelling deterministic noise by constructing nonlinear inverses to linear filters
    • D.S. Broomhead, J.P. Huke and M.A.S. Potts, Cancelling deterministic noise by constructing nonlinear inverses to linear filters, Physica D 89 (1996) 439-458.
    • (1996) Physica D , vol.89 , pp. 439-458
    • Broomhead, D.S.1    Huke, J.P.2    Potts, M.A.S.3
  • 4
    • 45149144372 scopus 로고
    • Nonlinear prediction of chaotic time series
    • M. Casdagli, Nonlinear prediction of chaotic time series, Physica D 35 (1989) 335-356.
    • (1989) Physica D , vol.35 , pp. 335-356
    • Casdagli, M.1
  • 5
    • 0024861871 scopus 로고
    • Approximation by superposition of a sigmoidal function
    • G. Cybenko, Approximation by superposition of a sigmoidal function, Math. Control Signals Systems 2 (1989) 303-314.
    • (1989) Math. Control Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 6
    • 4244149447 scopus 로고    scopus 로고
    • The topological invariance of Lyapunov exponents in embedded dynamics
    • W.D. Dechert and R. Gençay, The topological invariance of Lyapunov exponents in embedded dynamics, Physica D 90 (1996) 40-55.
    • (1996) Physica D , vol.90 , pp. 40-55
    • Dechert, W.D.1    Gençay, R.2
  • 7
    • 26444565569 scopus 로고
    • Finding structure in time
    • J.L. Elman, Finding structure in time, Cognitive Sci. 14 (1990) 179-211.
    • (1990) Cognitive Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 9
    • 0002635074 scopus 로고
    • Exploiting chaos to predict the future and reduce noise
    • ed. Y.C. Lee World Scientific, Singapore
    • J.D. Farmer and J.J. Sidorowich, Exploiting chaos to predict the future and reduce noise, in: Evolution, Learning and Cognition, ed. Y.C. Lee (World Scientific, Singapore, 1988).
    • (1988) Evolution, Learning and Cognition
    • Farmer, J.D.1    Sidorowich, J.J.2
  • 10
    • 0024866495 scopus 로고
    • On the approximate realization of continuous mappings by neural networks
    • K.-I. Funahashi, On the approximate realization of continuous mappings by neural networks, Neural Networks 2 (1989) 183-192.
    • (1989) Neural Networks , vol.2 , pp. 183-192
    • Funahashi, K.-I.1
  • 11
    • 0024124325 scopus 로고
    • There exists a neural network that does not make avoidable mistakes
    • San Diego, CA IEEE Press, New York
    • A.R. Gallant and H. White, There exists a neural network that does not make avoidable mistakes, Proc. 2nd Ann. IEEE Conf. on Neural Networks, San Diego, CA (IEEE Press, New York, 1988) I.657-I.664.
    • (1988) Proc. 2nd Ann. IEEE Conf. on Neural Networks
    • Gallant, A.R.1    White, H.2
  • 12
    • 0026449851 scopus 로고
    • On learning the derivatives of an unknown mapping with multilayer feedforward networks
    • A.R. Gallant and H. White, On learning the derivatives of an unknown mapping with multilayer feedforward networks, Neural Networks 5 (1992) 129-138.
    • (1992) Neural Networks , vol.5 , pp. 129-138
    • Gallant, A.R.1    White, H.2
  • 13
    • 0001052370 scopus 로고
    • Nonlinear prediction of noisy time series with feedforward networks
    • R. Gençay, Nonlinear prediction of noisy time series with feedforward networks, Phys. Lett. A 187 (1994) 397-403.
    • (1994) Phys. Lett. A , vol.187 , pp. 397-403
    • Gençay, R.1
  • 14
    • 0001062715 scopus 로고    scopus 로고
    • A statistical framework for testing chaotic dynamics via Lyapunov exponents
    • R. Gençay, A statistical framework for testing chaotic dynamics via Lyapunov exponents, Physica D 89 (1996) 261-266.
    • (1996) Physica D , vol.89 , pp. 261-266
    • Gençay, R.1
  • 15
    • 0000547548 scopus 로고
    • An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system
    • R. Gençay and W.D. Dechert, An algorithm for the n Lyapunov exponents of an n-dimensional unknown dynamical system, Physica D 59 (1992) 142-157.
    • (1992) Physica D , vol.59 , pp. 142-157
    • Gençay, R.1    Dechert, W.D.2
  • 16
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks 4 (1991) 251-257.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 17
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe and H. White, Multilayer feedforward networks are universal approximators, Neural Networks 2 (1989) 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 18
    • 0025627940 scopus 로고
    • Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks
    • K. Hornik, M. Stinchcombe and H. White, Universal approximation of an unknown mapping and its derivatives using multilayer feedforward networks, Neural Networks 3 (1990) 551-560.
    • (1990) Neural Networks , vol.3 , pp. 551-560
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 20
    • 0029307027 scopus 로고
    • A recurrent Newton algorithm and its convergence property
    • C.-M. Kuan, A recurrent Newton algorithm and its convergence property, IEEE Trans. Neural Networks 6 (1994) 779-783.
    • (1994) IEEE Trans. Neural Networks , vol.6 , pp. 779-783
    • Kuan, C.-M.1
  • 21
    • 0000535797 scopus 로고
    • A convergence result for learning in recurrent neural networks
    • C.-M. Kuan, K. Hornik and H. White, A convergence result for learning in recurrent neural networks, Neural Comput. 6 (1994) 620-640.
    • (1994) Neural Comput. , vol.6 , pp. 620-640
    • Kuan, C.-M.1    Hornik, K.2    White, H.3
  • 22
    • 84983857211 scopus 로고
    • Forecasting exchange rates using feedforward and recurrent neural networks
    • C.-M. Kuan and T. Liu, Forecasting exchange rates using feedforward and recurrent neural networks, J. Appl. Econometrics 10 (1995) 347-364.
    • (1995) J. Appl. Econometrics , vol.10 , pp. 347-364
    • Kuan, C.-M.1    Liu, T.2
  • 23
    • 84948516717 scopus 로고
    • Artificial neural networks: An econometric perspective
    • C.-M. Kuan and H. White, Artificial neural networks: An econometric perspective, Econometric Rev. 13 (1994) 1-91.
    • (1994) Econometric Rev. , vol.13 , pp. 1-91
    • Kuan, C.-M.1    White, H.2
  • 26
    • 0003290175 scopus 로고
    • On the dimension of the compact invariant sets of certain nonlinear maps
    • Dynamical Systems and Turbulence, eds. D. Rand and L.S. Young, Springer, Berlin
    • R. Mañé, On the dimension of the compact invariant sets of certain nonlinear maps, in: Dynamical Systems and Turbulence, eds. D. Rand and L.S. Young, Lecture Notes in Mathematics, Vol. 898 (Springer, Berlin, 1981).
    • (1981) Lecture Notes in Mathematics , vol.898
    • Mañé, R.1
  • 27
    • 84986759419 scopus 로고
    • The statistical analysis of perturbed limit cycle processes using nonlinear time series models
    • T. Ozaki, The statistical analysis of perturbed limit cycle processes using nonlinear time series models, J. Time Series Anal. 3 (1982) 29.
    • (1982) J. Time Series Anal. , vol.3 , pp. 29
    • Ozaki, T.1
  • 28
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz, Estimating the dimension of a model, Ann. of Statist. 6 (1978) 461-464.
    • (1978) Ann. of Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 30
    • 0000779360 scopus 로고
    • Detecting strange attractors in turbulence
    • Dynamical Systems and Turbulence, eds. D. Rand and L.S. Young, Springer, Berlin
    • F. Takens, Detecting strange attractors in turbulence, in: Dynamical Systems and Turbulence, eds. D. Rand and L.S. Young, Lecture Notes in Mathematics, Vol. 898 (Springer, Berlin, 1981).
    • (1981) Lecture Notes in Mathematics , vol.898
    • Takens, F.1
  • 31
    • 0003348046 scopus 로고
    • Threshold Models in Nonlinear Time Series Analysis
    • Springer, New York
    • H. Tong, Threshold Models in Nonlinear Time Series Analysis, Lecture Notes in Statistics, Vol. 21 (Springer, New York, 1983).
    • (1983) Lecture Notes in Statistics , vol.21
    • Tong, H.1
  • 32
    • 0012195187 scopus 로고
    • Some asymptotic results for learning in single hidden-layer feedforward network models
    • H. White, Some asymptotic results for learning in single hidden-layer feedforward network models, J. Am. Statist. Assoc. 94 (1989) 1003-1013.
    • (1989) J. Am. Statist. Assoc. , vol.94 , pp. 1003-1013
    • White, H.1
  • 33
    • 0025635525 scopus 로고
    • Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings
    • H. White, Connectionist nonparametric regression: Multilayer feedforward networks can learn arbitrary mappings, Neural Networks 3 (1990) 535-549.
    • (1990) Neural Networks , vol.3 , pp. 535-549
    • White, H.1
  • 34
    • 84986753922 scopus 로고
    • Nearest-neighbor methods for time series analysis
    • S. Yakowitz, Nearest-neighbor methods for time series analysis, J. Time Series Anal. 8 (1987) 235-247.
    • (1987) J. Time Series Anal. , vol.8 , pp. 235-247
    • Yakowitz, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.