메뉴 건너뛰기




Volumn 13, Issue 2, 1998, Pages 193-209

The effect of internal parameters and geometry on the performance of back-propagation neural networks: An empirical study

Author keywords

Artificial neural networks; Back propagation algorithm; Generalisation ability; Geometry; Internal parameters; Learning speed; Network design

Indexed keywords

BACKPROPAGATION; ENVIRONMENTAL ENGINEERING; LEARNING ALGORITHMS;

EID: 0032051569     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/S1364-8152(98)00020-6     Document Type: Article
Times cited : (212)

References (75)
  • 2
    • 0001209372 scopus 로고
    • Accelerated back-propagation learning: Two optimization methods
    • Battiti R. Accelerated back-propagation learning: two optimization methods. Complex Systems. 3:1989;331-342.
    • (1989) Complex Systems , vol.3 , pp. 331-342
    • Battiti, R.1
  • 3
    • 0001024110 scopus 로고
    • First- and second-order methods for learning: Between steepest descent and Newton's method
    • Battiti R. First- and second-order methods for learning: between steepest descent and Newton's method. Neural Computation. 4:1992;141-166.
    • (1992) Neural Computation , vol.4 , pp. 141-166
    • Battiti, R.1
  • 4
    • 0001160588 scopus 로고
    • What size net gives valid generalization?
    • Baum E.B., Haussler D. What size net gives valid generalization? Neural Computation. 1:1989;151-160.
    • (1989) Neural Computation , vol.1 , pp. 151-160
    • Baum, E.B.1    Haussler, D.2
  • 5
    • 0028516118 scopus 로고
    • Feed-forward neural networks: Why network size is so important
    • Bebis G., Georgiopoulos M. Feed-forward neural networks: why network size is so important. IEEE Potentials. October:1994;27-31.
    • (1994) IEEE Potentials , pp. 27-31
    • Bebis, G.1    Georgiopoulos, M.2
  • 6
    • 84972493978 scopus 로고
    • Comment on 'Neural networks: A review from a statistical perspective' by B. Cheng and D.M. Titterington
    • Breiman L. Comment on 'Neural networks: a review from a statistical perspective' by B. Cheng and D.M. Titterington. Statistical Science. 9(1):1994;38-42.
    • (1994) Statistical Science , vol.9 , Issue.1 , pp. 38-42
    • Breiman, L.1
  • 7
    • 0026852344 scopus 로고
    • Neural networks and operations research: An overview
    • Burke L.I., Ignizio J.P. Neural networks and operations research: an overview. Computer and Operations Research. 19(3/4):1992;179-189.
    • (1992) Computer and Operations Research , vol.19 , Issue.3-4 , pp. 179-189
    • Burke, L.I.1    Ignizio, J.P.2
  • 8
    • 0026954346 scopus 로고
    • Forecasting the behaviour of multivariate time series using neural networks
    • Chakraborty K., Mehrotra K., Mohan C.K., Ranka S. Forecasting the behaviour of multivariate time series using neural networks. Neural Networks. 5:1992;961-970.
    • (1992) Neural Networks , vol.5 , pp. 961-970
    • Chakraborty, K.1    Mehrotra, K.2    Mohan, C.K.3    Ranka, S.4
  • 9
    • 35248833159 scopus 로고
    • Neural networks: Forecasting breakthrough or just a passing fad?
    • Chatfield C. Neural networks: forecasting breakthrough or just a passing fad? International Journal of Forecasting. 9:1993;1-3.
    • (1993) International Journal of Forecasting , vol.9 , pp. 1-3
    • Chatfield, C.1
  • 10
    • 84972539015 scopus 로고
    • Neural networks: A review from a statistical perspective
    • Cheng B., Titterington D.M. Neural networks: a review from a statistical perspective. Statistical Science. 9:1994;2-54.
    • (1994) Statistical Science , vol.9 , pp. 2-54
    • Cheng, B.1    Titterington, D.M.2
  • 14
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematical Control Systems and Signaling. 2:1989;303-314.
    • (1989) Mathematical Control Systems and Signaling , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 15
    • 0031277503 scopus 로고    scopus 로고
    • Effects of learning parameters on learning procedure and performance of a BPNN
    • Dai H.C., Macbeth C. Effects of learning parameters on learning procedure and performance of a BPNN. Neural Networks. 10(8):1997;1505-1521.
    • (1997) Neural Networks , vol.10 , Issue.8 , pp. 1505-1521
    • Dai, H.C.1    Macbeth, C.2
  • 16
    • 2842607639 scopus 로고
    • Optimisation of multiple reservoir systems including salinity effects
    • Dandy G.C., Crawley P.D. Optimisation of multiple reservoir systems including salinity effects. Water Resources Research. 28(4):1992;979-990.
    • (1992) Water Resources Research , vol.28 , Issue.4 , pp. 979-990
    • Dandy, G.C.1    Crawley, P.D.2
  • 19
    • 0010320019 scopus 로고
    • Comment on 'Neural networks and related methods for classification' by B.D. Ripley
    • De Veaux R.D., Darken C.J., Ungar L.H. Comment on 'Neural networks and related methods for classification' by B.D. Ripley. Journal of the Royal Statistical Society, B. 56(3):1994;446-447.
    • (1994) Journal of the Royal Statistical Society, B , vol.56 , Issue.3 , pp. 446-447
    • De Veaux, R.D.1    Darken, C.J.2    Ungar, L.H.3
  • 20
    • 0000155950 scopus 로고
    • The cascade-correlation learning architecture
    • In: Touretzky, D. (Ed.) Morgan Kaufmann, San Mateo
    • Fahlman, S.E., Lebiere, C., 1990. The cascade-correlation learning architecture. In: Touretzky, D. (Ed.), Advances in Neural Information Processing Systems 2. Morgan Kaufmann, San Mateo.
    • (1990) Advances in Neural Information Processing Systems , vol.2
    • Fahlman, S.E.1    Lebiere, C.2
  • 21
    • 0028416331 scopus 로고
    • Neural networks in civil engineering. I: Principles and understanding
    • Flood I., Kartam N. Neural networks in civil engineering. I: Principles and understanding. Journal of Computing in Civil Engineering. 8(2):1994;131-148.
    • (1994) Journal of Computing in Civil Engineering , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 22
    • 0000809163 scopus 로고    scopus 로고
    • Nonlinear modelling and prediction with feedforward and recurrent networks
    • Gençay R., Liu T. Nonlinear modelling and prediction with feedforward and recurrent networks. Physica D. 108(1):1997;119-134.
    • (1997) Physica D , vol.108 , Issue.1 , pp. 119-134
    • Gençay, R.1    Liu, T.2
  • 24
    • 0000598965 scopus 로고    scopus 로고
    • A novel neural network design for long range prediction of rainfall pattern
    • Goswami P., Srividya A novel neural network design for long range prediction of rainfall pattern. Current Science. 70(6):1996;447-457.
    • (1996) Current Science , vol.70 , Issue.6 , pp. 447-457
    • Goswami, P.1    Srividya2
  • 25
    • 0031191950 scopus 로고    scopus 로고
    • Neural networks and traditional time series methods: A synergistic combination in state economic forecasts
    • Hansen J.V., Nelson R.D. Neural networks and traditional time series methods: a synergistic combination in state economic forecasts. IEEE Transactions on Neural Networks. 8(4):1997;863-873.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.4 , pp. 863-873
    • Hansen, J.V.1    Nelson, R.D.2
  • 27
    • 0028320021 scopus 로고
    • Developing practical neural network applications using back-propagation
    • Hegazy T., Fazio P., Moselhi O. Developing practical neural network applications using back-propagation. Microcomputers in Civil Engineering. 9:1994;145-159.
    • (1994) Microcomputers in Civil Engineering , vol.9 , pp. 145-159
    • Hegazy, T.1    Fazio, P.2    Moselhi, O.3
  • 32
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs R.A. Increased rates of convergence through learning rate adaptation. Neural Networks. 1:1988;295-307.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 36
  • 38
    • 0031146959 scopus 로고    scopus 로고
    • Constructive algorithms for structure learning in feedforward neural networks for regression problems
    • Kwok T.-Y., Yeung D.-Y. Constructive algorithms for structure learning in feedforward neural networks for regression problems. IEEE Transactions on Neural Networks. 8(3):1997;630-645.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.3 , pp. 630-645
    • Kwok, T.-Y.1    Yeung, D.-Y.2
  • 42
    • 0010318701 scopus 로고
    • Constraining multilayer perceptrons: Application to the contour detection
    • Paris, France
    • Loncelle, J., 1990. Constraining multilayer perceptrons: application to the contour detection. Proceedings of the International Neural Networks Conference, vol. 1. Paris, France, pp. 23-26.
    • (1990) Proceedings of the International Neural Networks Conference , vol.1 , pp. 23-26
    • Loncelle, J.1
  • 43
    • 0003591531 scopus 로고
    • Research Report No. R131. Department of Civil and Environmental Engineering, The University of Adelaide, South Australia, Australia
    • Maier, H.R., 1995. A review of artificial neural networks. Research Report No. R131. Department of Civil and Environmental Engineering, The University of Adelaide, South Australia, Australia.
    • (1995) A Review of Artificial Neural Networks
    • Maier, H.R.1
  • 44
    • 0030405597 scopus 로고    scopus 로고
    • Neural network models for forecasting univariate time series
    • Maier H.R., Dandy G.C. Neural network models for forecasting univariate time series. Neural Network World. 5:1996;747-771.
    • (1996) Neural Network World , vol.5 , pp. 747-771
    • Maier, H.R.1    Dandy, G.C.2
  • 45
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • Maier H.R., Dandy G.C. The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research. 32(4):1996;1013-1022.
    • (1996) Water Resources Research , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 46
    • 0031096422 scopus 로고    scopus 로고
    • Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks
    • Maier H.R., Dandy G.C. Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks. Mathematics and Computers in Simulation. 43:1997;377-386.
    • (1997) Mathematics and Computers in Simulation , vol.43 , pp. 377-386
    • Maier, H.R.1    Dandy, G.C.2
  • 50
    • 0012733832 scopus 로고    scopus 로고
    • Stream hydrological and ecological responses to climate change assessed with an artificial neural network
    • Poff N.L., Tokar S., Johnson P. Stream hydrological and ecological responses to climate change assessed with an artificial neural network. Limonl. and Oceanography. 41(5):1996;857-863.
    • (1996) Limonl. and Oceanography , vol.41 , Issue.5 , pp. 857-863
    • Poff, N.L.1    Tokar, S.2    Johnson, P.3
  • 52
    • 0000696616 scopus 로고
    • Neural networks and related methods of classification
    • Ripley B.D. Neural networks and related methods of classification. Journal of the Royal Statistical Society, B. 56(3):1994;409-456.
    • (1994) Journal of the Royal Statistical Society, B , vol.56 , Issue.3 , pp. 409-456
    • Ripley, B.D.1
  • 54
    • 0028174533 scopus 로고
    • Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling
    • Rogers L.L., Dowla F.U. Optimization of groundwater remediation using artificial neural networks with parallel solute transport modeling. Water Resources Research. 30(2):1994;457-481.
    • (1994) Water Resources Research , vol.30 , Issue.2 , pp. 457-481
    • Rogers, L.L.1    Dowla, F.U.2
  • 56
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • In: Rumelhart, D.E., McClelland, J.L. (Eds.) MIT Press
    • Rumelhart, D.E., Hinton, G.E., Williams, R.J., 1986. Learning internal representations by error propagation. In: Rumelhart, D.E., McClelland, J.L. (Eds.), Parallel Distributed Processing, vol. 1. MIT Press.
    • (1986) Parallel Distributed Processing , vol.1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 58
    • 0001432606 scopus 로고
    • Forecasting minimum temperature with short time-length data using artificial neural networks
    • Schizas C.N., Pattichis C.S., Michaelides S.C. Forecasting minimum temperature with short time-length data using artificial neural networks. Neural Network World. 4(2):1994;219-230.
    • (1994) Neural Network World , vol.4 , Issue.2 , pp. 219-230
    • Schizas, C.N.1    Pattichis, C.S.2    Michaelides, S.C.3
  • 60
    • 0026017007 scopus 로고
    • Creating artificial neural networks that generalize
    • Sietsma J., Dow R.J.F. Creating artificial neural networks that generalize. Neural Networks. 4:1991;67-79.
    • (1991) Neural Networks , vol.4 , pp. 67-79
    • Sietsma, J.1    Dow, R.J.F.2
  • 61
    • 84882420668 scopus 로고
    • Acceleration techniques for the backpropagation algorithm
    • Silva F., Almeida L. Acceleration techniques for the backpropagation algorithm. Lecture Notes in Computer Science. 412:1990;110-119.
    • (1990) Lecture Notes in Computer Science , vol.412 , pp. 110-119
    • Silva, F.1    Almeida, L.2
  • 63
    • 0001336749 scopus 로고
    • Accelerated learning in layered neural networks
    • Solla S.A., Levin E., Fleisher M. Accelerated learning in layered neural networks. Complex Systems. 2:1988;625-639.
    • (1988) Complex Systems , vol.2 , pp. 625-639
    • Solla, S.A.1    Levin, E.2    Fleisher, M.3
  • 64
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, B. 36:1974;111-147.
    • (1974) Journal of the Royal Statistical Society, B , vol.36 , pp. 111-147
    • Stone, M.1
  • 65
    • 0026258339 scopus 로고
    • Time series forecasting using neural networks vs Box-Jenkins methodology
    • Tang Z., deAlmeida C., Fishwick P.A. Time series forecasting using neural networks vs Box-Jenkins methodology. Simulation. 57(5):1991;303-310.
    • (1991) Simulation , vol.57 , Issue.5 , pp. 303-310
    • Tang, Z.1    DeAlmeida, C.2    Fishwick, P.A.3
  • 66
    • 0001275437 scopus 로고    scopus 로고
    • Forecasting the equatorial pacific sea surface temperatures by neural network models
    • Tangang F.T., Hsieh W.W., Tang B. Forecasting the equatorial pacific sea surface temperatures by neural network models. Climate Dynamics. 13(2):1997;135-147.
    • (1997) Climate Dynamics , vol.13 , Issue.2 , pp. 135-147
    • Tangang, F.T.1    Hsieh, W.W.2    Tang, B.3
  • 69
    • 0030327681 scopus 로고    scopus 로고
    • Understanding neural networks as statistical tools
    • Warner B., Misra M. Understanding neural networks as statistical tools. American Statistician. 50(4):1996;284-293.
    • (1996) American Statistician , vol.50 , Issue.4 , pp. 284-293
    • Warner, B.1    Misra, M.2
  • 71
    • 0026955395 scopus 로고
    • Avoiding false local minima by proper initialization of connections
    • Wessels L., Barnard E. Avoiding false local minima by proper initialization of connections. IEEE Transactions on Neural Networks. 3(6):1992;899-905.
    • (1992) IEEE Transactions on Neural Networks , vol.3 , Issue.6 , pp. 899-905
    • Wessels, L.1    Barnard, E.2
  • 72
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: A statistical perspective
    • White H. Learning in artificial neural networks: a statistical perspective. Neural Computation. 1:1989;425-464.
    • (1989) Neural Computation , vol.1 , pp. 425-464
    • White, H.1
  • 73
    • 0030729974 scopus 로고    scopus 로고
    • Modelling algal growth and transport in rivers - A comparison of time series analysis, dynamic mass balance and neural network techniques
    • Whitehead P.G., Howard A., Arulmani C. Modelling algal growth and transport in rivers - a comparison of time series analysis, dynamic mass balance and neural network techniques. Hydrobiologia. 349:1997;39-46.
    • (1997) Hydrobiologia , vol.349 , pp. 39-46
    • Whitehead, P.G.1    Howard, A.2    Arulmani, C.3
  • 74
    • 0001237771 scopus 로고
    • Handwritten chinese character recognition by rule-embedded neocognitron
    • Yeung D.S., Fong H.S. Handwritten chinese character recognition by rule-embedded neocognitron. Neural Computing and Applications. 2(4):1994;216-226.
    • (1994) Neural Computing and Applications , vol.2 , Issue.4 , pp. 216-226
    • Yeung, D.S.1    Fong, H.S.2
  • 75
    • 0031127257 scopus 로고    scopus 로고
    • Efficient backpropagation learning using optimal learning rate and momentum
    • Yu X.H., Chen G.A. Efficient backpropagation learning using optimal learning rate and momentum. Neural Networks. 10(3):1997;517-527.
    • (1997) Neural Networks , vol.10 , Issue.3 , pp. 517-527
    • Yu, X.H.1    Chen, G.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.