메뉴 건너뛰기




Volumn 16, Issue 1, 1997, Pages 49-61

Connection pruning with static and adaptive pruning schedules

Author keywords

Early stopping; Empirical study; Generalization; Pruning

Indexed keywords

LEARNING SYSTEMS; PROBLEM SOLVING; STATISTICAL TESTS;

EID: 0031194103     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0925-2312(96)00054-9     Document Type: Article
Times cited : (29)

References (18)
  • 3
    • 0003578240 scopus 로고
    • An empirical study of learning speed in back-propagation networks
    • School of Computer Science, Carnegie Mellon University, Pittsburgh, PA
    • S. E. Fahlman, An empirical study of learning speed in back-propagation networks, Technical Report CMU-CS-88-162, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1988.
    • (1988) Technical Report CMU-CS-88-162
    • Fahlman, S.E.1
  • 5
    • 0027294340 scopus 로고
    • Improving model selection by nonconvergent methods
    • W. Finnoff, F. Hergert and H.G. Zimmermann, Improving model selection by nonconvergent methods, Neural Networks 6 (1993) 771-783.
    • (1993) Neural Networks , vol.6 , pp. 771-783
    • Finnoff, W.1    Hergert, F.2    Zimmermann, H.G.3
  • 6
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilemma
    • S. Geman, E. Bienenstock and R. Doursat, Neural networks and the bias/variance dilemma, Neural Comput. 4 (1992) 1-58.
    • (1992) Neural Comput. , vol.4 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 12
    • 0001765492 scopus 로고
    • Simplifying neural networks by soft weight-sharing
    • S.J. Nowlan and G.E. Hinton, Simplifying neural networks by soft weight-sharing, Neural Comput. 4(4) (1992) 473-493.
    • (1992) Neural Comput. , vol.4 , Issue.4 , pp. 473-493
    • Nowlan, S.J.1    Hinton, G.E.2
  • 13
    • 0004114283 scopus 로고
    • PROBEN 1 - A set of benchmarks and benchmarking rules for neural network training algorithms
    • Fakultät für Informatik, Universität Karlsruhe, Germany
    • L. Prechelt, PROBEN 1 - A set of benchmarks and benchmarking rules for neural network training algorithms, Technical Report 21/94, Fakultät für Informatik, Universität Karlsruhe, Germany, 1994. Anonymous FTP: /pub/papers/techreports/1994/1994-21.ps.gz on ftp.ira.uka.de.
    • (1994) Technical Report 21/94
    • Prechelt, L.1
  • 14
    • 0030130727 scopus 로고    scopus 로고
    • A quantitative study of experimental evaluations of neural network learning algorithms: Current research practice
    • L. Prechelt, A quantitative study of experimental evaluations of neural network learning algorithms: current research practice, Neural networks 9(3) (1996) 451-462.
    • (1996) Neural Networks , vol.9 , Issue.3 , pp. 451-462
    • Prechelt, L.1
  • 15
    • 84943274699 scopus 로고
    • A direct adaptive method for faster backpropagation learning: The RPROP algorithm
    • San Francisco, CA
    • M. Riedmiller and H. Braun, A direct adaptive method for faster backpropagation learning: The RPROP algorithm, in: Proc. IEEE Internat. Conf. on Neural Networks, San Francisco, CA (1993) 586-591.
    • (1993) Proc. IEEE Internat. Conf. on Neural Networks , pp. 586-591
    • Riedmiller, M.1    Braun, H.2
  • 18
    • 0342571792 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • School of Cognitive and Computing Sciences, University of Sussex, Brighton, England
    • P.M. Williams, Bayesian regularization and pruning using a Laplace prior, Technical Report CSRP-312, School of Cognitive and Computing Sciences, University of Sussex, Brighton, England, 1994. ftp://ftp.cogs.susx.ac.uk/pub/reports/csrp/csrp312.ps.Z.
    • (1994) Technical Report CSRP-312
    • Williams, P.M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.