-
1
-
-
0000920843
-
Theory of adaptive pattern classifiers
-
S. Amari, "Theory of adaptive pattern classifiers," IEEE Trans. Electron. Comput., vol. EC-16, pp. 299-307, 1967.
-
(1967)
IEEE Trans. Electron. Comput.
, vol.EC-16
, pp. 299-307
-
-
Amari, S.1
-
2
-
-
0027257001
-
A universal theorem on learning curves
-
_, "A universal theorem on learning curves," Neural Networks, vol. 6, pp. 161-166, 1993.
-
(1993)
Neural Networks
, vol.6
, pp. 161-166
-
-
-
3
-
-
0000729504
-
Statistical theory of learning curves under entropie loss criterion
-
S. Amari and N. Murata, "Statistical theory of learning curves under entropie loss criterion," Neural Computa., vol. 5, pp. 140-153, 1993.
-
(1993)
Neural Computa.
, vol.5
, pp. 140-153
-
-
Amari, S.1
Murata, N.2
-
4
-
-
0001504093
-
Statistical theory of overtraining - Is cross-validation effective?
-
D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press
-
S. Amari, N. Murata, K.-R. Müller, M. Finke, and H. Yang, "Statistical theory of overtraining - Is cross-validation effective?," in NIPS'95: Advances in Neural Information Processing Systems 8, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press, 1996.
-
(1996)
NIPS'95: Advances in Neural Information Processing Systems 8
-
-
Amari, S.1
Murata, N.2
Müller, K.-R.3
Finke, M.4
Yang, H.5
-
5
-
-
0016355478
-
A new look at statistical model identification
-
H. Akaike, "A new look at statistical model identification," IEEE Trans. Automat. Contr., vol. AC-19, pp. 716-723, 1974.
-
(1974)
IEEE Trans. Automat. Contr.
, vol.AC-19
, pp. 716-723
-
-
Akaike, H.1
-
6
-
-
33747622314
-
Test error fluctuations in finite linear perceptrons
-
D. Barber, D. Saad, and P. Sollich, "Test error fluctuations in finite linear perceptrons," Neural Computa. vol. 7, pp. 809-821, 1995.
-
(1995)
Neural Computa.
, vol.7
, pp. 809-821
-
-
Barber, D.1
Saad, D.2
Sollich, P.3
-
7
-
-
22244458712
-
Finite-size effects and optimal test size in linear perceptrons
-
_, "Finite-size effects and optimal test size in linear perceptrons," J. Phys. A, vol. 28, pp. 1325-1334, 1995.
-
(1995)
J. Phys. A
, vol.28
, pp. 1325-1334
-
-
-
8
-
-
7244243460
-
On-line learning of dichotomies
-
NIPS 7, G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds. Cambridge, MA: MIT Press
-
N. Barkai, H. S. Seung, and H. Sompolinsky, "On-line learning of dichotomies," in Advances in Neural Information Processing Systems NIPS 7, G. Tesauro, D. S. Touretzky, and T. K. Leen, Eds. Cambridge, MA: MIT Press, 1995.
-
(1995)
Advances in Neural Information Processing Systems
-
-
Barkai, N.1
Seung, H.S.2
Sompolinsky, H.3
-
9
-
-
0000852384
-
Regularization and complexity control in feedforward networks
-
C. M. Bishop, "Regularization and complexity control in feedforward networks," Aston Univ., Tech. Rep. NCRG/95/022, 1995.
-
(1995)
Aston Univ., Tech. Rep. NCRG/95/022
-
-
Bishop, C.M.1
-
10
-
-
0001576846
-
Generalization ability of perceptrons with continuous outputs
-
S. Bös, W. Kinzel, and M. Opper, "Generalization ability of perceptrons with continuous outputs," Phys. Rev., vol. E47, pp. 1384-1391, 1993.
-
(1993)
Phys. Rev.
, vol.E47
, pp. 1384-1391
-
-
Bös, S.1
Kinzel, W.2
Opper, M.3
-
11
-
-
0344710496
-
Avoiding overfitting by finite temperature learning and cross-validation
-
Pans
-
_, "Avoiding overfitting by finite temperature learning and cross-validation," in Proc. Int. Conf. Artificial Neural Networks ICANN'95, Pans, 1995, pp. 111-116.
-
(1995)
Proc. Int. Conf. Artificial Neural Networks ICANN'95
, pp. 111-116
-
-
-
13
-
-
0009545605
-
Estimating a posteriori probabilities using stochastic network models
-
M. Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, and A. S. Weigend, Eds. Hillsdale, NJ: Lawrence Erlbaum
-
M. Finke and K.-R. Müller, "Estimating a posteriori probabilities using stochastic network models," in Proc. 1993 Connectionist Models Summer School, M. Mozer, P. Smolensky, D. S. Touretzky, J. L. Elman, and A. S. Weigend, Eds. Hillsdale, NJ: Lawrence Erlbaum, 1994, p. 324.
-
(1994)
Proc. 1993 Connectionist Models Summer School
, pp. 324
-
-
Finke, M.1
Müller, K.-R.2
-
17
-
-
0000071615
-
Learning process in neural networks
-
T. Heskes and B. Kappen, Learning process in neural networks, Phys. Rev., vol. A44, pp. 2718-2762, 1991.
-
(1991)
Phys. Rev.
, vol.A44
, pp. 2718-2762
-
-
Heskes, T.1
Kappen, B.2
-
18
-
-
0003921982
-
A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-test split
-
D. S. Touretzky, M. C. Mozer and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press
-
M. Kearns, "A bound on the error of cross validation using the approximation and estimation rates, with consequences for the training-test split," in NIPS'95: Advances in Neural Information Processing Systems 8, D. S. Touretzky, M. C. Mozer and M. E. Hasselmo, Eds. Cambridge, MA: MIT Press, 1996.
-
(1996)
NIPS'95: Advances in Neural Information Processing Systems 8
-
-
Kearns, M.1
-
19
-
-
0000821295
-
Generalization in a linear perceptron in the presence of noise
-
A. Krogh and J. Hertz, "Generalization in a linear perceptron in the presence of noise," J. Phys. A, vol. 25, pp. 1135-1147, 1992.
-
(1992)
J. Phys. A
, vol.25
, pp. 1135-1147
-
-
Krogh, A.1
Hertz, J.2
-
20
-
-
0000902690
-
The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems
-
J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann
-
J. E. Moody, "The effective number of parameters: An analysis of generalization and regularization in nonlinear learning systems," in NIPS 4: Advances in Neural Information Processing Systems, J. E. Moody, S. J. Hanson, and R. P. Lippmann, Eds. San Mateo, CA: Morgan Kaufmann, 1992.
-
(1992)
NIPS 4: Advances in Neural Information Processing Systems
-
-
Moody, J.E.1
-
21
-
-
0040269272
-
A criterion for determining the number of parameters in an artificial neural-network model
-
T. Kohonen, et al., Eds.. Amsterdam, The Netherlands: Elsevier
-
N. Murata, S. Yoshizawa, and S. Amari, "A criterion for determining the number of parameters in an artificial neural-network model," in Artificial Neural Networks, T. Kohonen, et al., Eds.. Amsterdam, The Netherlands: Elsevier, 1991, pp. 9-14.
-
(1991)
Artificial Neural Networks
, pp. 9-14
-
-
Murata, N.1
Yoshizawa, S.2
Amari, S.3
-
22
-
-
0037569066
-
Learning curves, model selection and complexity of neural networks
-
S. J. Hanson et al., Eds. San Mateo, CA: Morgan Kaufmann
-
_, "Learning curves, model selection and complexity of neural networks," in NIPS 5: Advances in Neural Information Processing Systems, S. J. Hanson et al., Eds. San Mateo, CA: Morgan Kaufmann, 1993.
-
(1993)
NIPS 5: Advances in Neural Information Processing Systems
-
-
-
23
-
-
0028544395
-
Network information criterion - Determining the number of hidden units for an artificial neural-network model
-
_, "Network information criterion - Determining the number of hidden units for an artificial neural-network model," IEEE Trans. Neural Networks, vol. 5, pp. 865-872, 1994.
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, pp. 865-872
-
-
-
24
-
-
84866219415
-
A numerical study on learning curves in stochastic multilayer feedforward networks
-
K.-R. Müller, M Finke, N. Murata, K Schulten, and S. Amari, "A numerical study on learning curves in stochastic multilayer feedforward networks," Univ. Tokyo, Tech. Rep. METR 03-95, 1995,
-
(1995)
Univ. Tokyo, Tech. Rep. METR 03-95
-
-
Müller, K.-R.1
Finke, M.2
Murata, N.3
Schulten, K.4
Amari, S.5
-
25
-
-
0030188747
-
-
also Neural Computa., vol. 8, pp. 1085-1106, 1996.
-
(1996)
Neural Computa.
, vol.8
, pp. 1085-1106
-
-
-
26
-
-
0025056697
-
Regularizalion algorithms for learning that are equivalent to multilayer networks
-
T. Poggio and F. Girosi, "Regularizalion algorithms for learning that are equivalent to multilayer networks," Science, vol. 247, pp. 978-982, 1990.
-
(1990)
Science
, vol.247
, pp. 978-982
-
-
Poggio, T.1
Girosi, F.2
-
27
-
-
0000318553
-
Stochastic complexity and modeling
-
J. Rissanen, "Stochastic complexity and modeling," Ann. Statist., vol. 14, pp. 1080-1100, 1986.
-
(1986)
Ann. Statist.
, vol.14
, pp. 1080-1100
-
-
Rissanen, J.1
-
28
-
-
0000646059
-
Learning internal representations by error propagation
-
Cambridge, MA: MIT Press
-
D. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal representations by error propagation," in Parallel Distributed Processing: Explorations in the Micro structure of Cognition, vol. 1 - Foundations. Cambridge, MA: MIT Press, 1986.
-
(1986)
Parallel Distributed Processing: Explorations in the Micro Structure of Cognition, Vol. 1 - Foundations
, vol.1
-
-
Rumelhart, D.1
Hinton, G.E.2
Williams, R.J.3
-
29
-
-
4243234689
-
On-line learning in soft committee machines
-
D. Saad, S. A. Solla, "On-line learning in soft committee machines," Phys. Rev. E, vol. 52, pp. 4225-4243,
-
Phys. Rev. E
, vol.52
, pp. 4225-4243
-
-
Saad, D.1
Solla, S.A.2
-
30
-
-
4243050152
-
Exact solution for on-line learning in multilayer neural nelworks
-
and "Exact solution for on-line learning in multilayer neural nelworks," Phys. Rev. Lett., vol. 74, pp. 4337-4340, 1995.
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 4337-4340
-
-
-
31
-
-
4243345837
-
-
Linköping Univ., Sweden, Tech. Rep. LiTH-ISY-R-1567
-
J. Sjöberg and L. Ljung, "Overtraining, regularizalion and searching for minimum with application to neural networks," Linköping Univ., Sweden, Tech. Rep. LiTH-ISY-R-1567, 1994.
-
(1994)
Overtraining, Regularizalion and Searching for Minimum with Application to Neural Networks
-
-
Sjöberg, J.1
Ljung, L.2
-
32
-
-
0000487861
-
Optimal stopping and effective machine complexity in learning
-
to appear, revised and extended version
-
C. Wang, S. S. Venkatesh, J. S. Judd, "Optimal stopping and effective machine complexity in learning," to appear, 1994 (revised and extended version of NIPS vol. 6, pp. 303-310, 1995).
-
(1994)
NIPS
, vol.6
, pp. 303-310
-
-
Wang, C.1
Venkatesh, S.S.2
Judd, J.S.3
|