메뉴 건너뛰기




Volumn 64, Issue , 2005, Pages 1-607

The Dissimilarity Representation for Pattern Recognition: Foundations and Applications

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85131970312     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1142/5965     Document Type: Book
Times cited : (481)

References (540)
  • 1
    • 0032256591 scopus 로고    scopus 로고
    • On the approximability of numerical taxonomy (fitting distances by tree metrics)
    • Agarwala, R., Bafna, V., Farach, M., Paterson, M., and Thorup, M. (1999). On the approximability of numerical taxonomy (fitting distances by tree metrics). SIAM Journal on Computing, 28(3), 1073-1085.
    • (1999) SIAM Journal on Computing , vol.28 , Issue.3 , pp. 1073-1085
    • Agarwala, R.1    Bafna, V.2    Farach, M.3    Paterson, M.4    Thorup, M.5
  • 2
    • 0025725905 scopus 로고
    • Instance-based learning algo-rithms
    • Aha, D., Kibler, D., and Albert, M. (1991). Instance-based learning algo-rithms. Machine Learning, 6, 37-66.
    • (1991) Machine Learning , vol.6 , pp. 37-66
    • Aha, D.1    Kibler, D.2    Albert, M.3
  • 3
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In International Symposium on Information Theory, pages 267-281.
    • (1973) International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 6
    • 0001195789 scopus 로고
    • Classification into two multivariate normal population with different covariance matrices
    • Anderson, T. and Bahadur, R. (1962). Classification into two multivariate normal population with different covariance matrices. Annals of Mathe-matical Statistics, 33, 420-431.
    • (1962) Annals of Mathe-Matical Statistics , vol.33 , pp. 420-431
    • Anderson, T.1    Bahadur, R.2
  • 8
    • 0031074521 scopus 로고    scopus 로고
    • Locally weighted learning
    • Atkeson, C., Moore, A., and Schaal, S. (1997). Locally weighted learning. AI Review, 11, 11-73.
    • (1997) AI Review , vol.11 , pp. 11-73
    • Atkeson, C.1    Moore, A.2    Schaal, S.3
  • 10
    • 35048832318 scopus 로고    scopus 로고
    • A probabilistic model us-ing information theoretic measures for cluster ensembles
    • F. Roli, J. Kittler, and T. Windeatt, editors
    • Ayad, H., Basir, O., and Kamel, M. (2004). A probabilistic model us-ing information theoretic measures for cluster ensembles. In F. Roli, J. Kittler, and T. Windeatt, editors, Multiple Classifier Systems, LNCS, volume 3077, pages 144-153.
    • (2004) Multiple Classifier Systems, LNCS , vol.3077 , pp. 144-153
    • Ayad, H.1    Basir, O.2    Kamel, M.3
  • 11
    • 0012574809 scopus 로고
    • Isometric embedding in?p-spaces
    • Ball, K. (1990). Isometric embedding in?p-spaces. European Journal of Combinatorics, 11, 305-311.
    • (1990) European Journal of Combinatorics , vol.11 , pp. 305-311
    • Ball, K.1
  • 12
    • 0027453616 scopus 로고
    • Model-based gaussian and non-gaussian clustering
    • Banfield, J. and Raftery, A. (1993). Model-based gaussian and non-gaussian clustering. Biometrics, 49, 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.1    Raftery, A.2
  • 15
    • 84945725462 scopus 로고    scopus 로고
    • Identifying multivariate outliers by dynamic graphics-as applied to some medical data
    • M. Ahsanullah and F. F. Yildirim, editors, New York. Nova Science Publishers
    • Bartkowiak, A. (2000). Identifying multivariate outliers by dynamic graphics-as applied to some medical data. In M. Ahsanullah and F. F. Yildirim, editors, Applied Statistical Science IV, pages 29-36, New York. Nova Science Publishers.
    • (2000) Applied Statistical Science IV , pp. 29-36
    • Bartkowiak, A.1
  • 16
    • 85131985149 scopus 로고    scopus 로고
    • A semi-stochastic grand tour for identifying outliers and finding a clean subset
    • Bartkowiak, A. (2001). A semi-stochastic grand tour for identifying outliers and finding a clean subset. Biometrical Letters, 38(1), 11-31.
    • (2001) Biometrical Letters , vol.38 , Issue.1 , pp. 11-31
    • Bartkowiak, A.1
  • 17
    • 0034395380 scopus 로고    scopus 로고
    • Outliers-finding and classify-ing which genuine and which spurious
    • Bartkowiak, A. and Szustalewicz, A. (2000). Outliers-finding and classify-ing which genuine and which spurious. Computational Statistics, 15(1), 3-12.
    • (2000) Computational Statistics , vol.15 , Issue.1 , pp. 3-12
    • Bartkowiak, A.1    Szustalewicz, A.2
  • 20
    • 0031875453 scopus 로고    scopus 로고
    • Determining the similarity of deformable shapes
    • Basri, R., Costa, L., Geiger, D., and Jacobs, D. (1998). Determining the similarity of deformable shapes. Vision Research, 38, 2365-2385.
    • (1998) Vision Research , vol.38 , pp. 2365-2385
    • Basri, R.1    Costa, L.2    Geiger, D.3    Jacobs, D.4
  • 21
    • 85131973245 scopus 로고
    • A classification of presence/absence based dissimilarity coefficients
    • Baulieu, F. (1989). A classification of presence/absence based dissimilarity coefficients. Algebra Universalis, 20, 351-367.
    • (1989) Algebra Universalis , vol.20 , pp. 351-367
    • Baulieu, F.1
  • 22
    • 0031506140 scopus 로고    scopus 로고
    • Two variant axiom systems for presence/absence based dissimilarity coefficients
    • Baulieu, F. (1997). Two variant axiom systems for presence/absence based dissimilarity coefficients. Journal of Classification, 14, 159-170.
    • (1997) Journal of Classification , vol.14 , pp. 159-170
    • Baulieu, F.1
  • 23
    • 84880203756 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral tech-niques for embedding and clustering
    • The MIT Press
    • Belkin, M. and Niyogi, P. (2002a). Laplacian eigenmaps and spectral tech-niques for embedding and clustering. In Advances in Neural Information Processing Systems, volume 14, pages 585-591. The MIT Press.
    • (2002) Advances in Neural Information Processing Systems , pp. 14585-14591
    • Belkin, M.1    Niyogi, P.2
  • 24
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin, M. and Niyogi, P. (2002b). Laplacian eigenmaps for dimensionality reduction and data representation. Neural Computation, 15(6), 1373-1396.
    • (2002) Neural Computation , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 29
    • 0026860799 scopus 로고
    • Robust linear programming dis-crimination of two linearly inseparable sets
    • Bennett, K. and Mangasarian, O. (1992). Robust linear programming dis-crimination of two linearly inseparable sets. Optimization Methods and Software, 1, 23-24.
    • (1992) Optimization Methods and Software , vol.1 , pp. 23-24
    • Bennett, K.1    Mangasarian, O.2
  • 30
    • 0002935122 scopus 로고    scopus 로고
    • Combining support vector and mathematical programming methods for induction
    • B. Scholkopf, C. Burges, and A. Smola, editors, MIT Press, Cambridge, MA
    • Bennett, K. and Mangasarian, O. (1999). Combining support vector and mathematical programming methods for induction. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods, Support Vector Learning, pages 307-326. MIT Press, Cambridge, MA.
    • (1999) Advances in Kernel Methods, Support Vector Learning , pp. 307-326
    • Bennett, K.1    Mangasarian, O.2
  • 34
    • 0036082940 scopus 로고    scopus 로고
    • VAT: A tool for visual assessment of (cluster) tendency
    • Piscataway, NJ. IEEE Press
    • Bezdek, J. and Hathaway, R. (2002). VAT: A tool for visual assessment of (cluster) tendency. In International Joint Conference on Neural Net-works, pages 2225-2230, Piscataway, NJ. IEEE Press.
    • (2002) International Joint Conference on Neural Net-Works , pp. 2225-2230
    • Bezdek, J.1    Hathaway, R.2
  • 42
    • 84902161562 scopus 로고    scopus 로고
    • GTM: A principled alter-native to the self-organizing map
    • C. Von der Malsburg, C. Von Seelen, J. Vorbrggen, and B. Sendhoff, editors, Berlin. Springer-Verlag
    • Bishop, C., Svensen, M., and Williams, C. (1996). GTM: A principled alter-native to the self-organizing map. In C. Von der Malsburg, C. Von Seelen, J. Vorbrggen, and B. Sendhoff, editors, International Conference on Ar-tificial Neural Networks, pages 165-170, Berlin. Springer-Verlag.
    • (1996) International Conference on Ar-Tificial Neural Networks , pp. 165-170
    • Bishop, C.1    Svensen, M.2    Williams, C.3
  • 43
    • 0344110441 scopus 로고    scopus 로고
    • Developments of the generative topographic mapping
    • Bishop, C., Svensen, M., and Williams, C. (1998). Developments of the generative topographic mapping. Neurocomputing, 21, 203-224.
    • (1998) Neurocomputing , vol.21 , pp. 203-224
    • Bishop, C.1    Svensen, M.2    Williams, C.3
  • 44
    • 0009004141 scopus 로고
    • Remarks concerning the Euclidean four-point prop-erty
    • Blumenthal, L. (1936). Remarks concerning the Euclidean four-point prop-erty. Ergebnisse eines Math. Koll., 7, 8-10.
    • (1936) Ergebnisse Eines Math. Koll , vol.7 , pp. 8-10
    • Blumenthal, L.1
  • 47
    • 0008932222 scopus 로고    scopus 로고
    • Generalized metric spaces: Completion, topology and powerdomains via the Yoneda embed-ding
    • Bonsangue, M., van Breugel, F., and Rutten, J. (1998). Generalized metric spaces: Completion, topology and powerdomains via the Yoneda embed-ding. Theoretical Computer Science, 193, 1-51.
    • (1998) Theoretical Computer Science , vol.193 , pp. 1-51
    • Bonsangue, M.1    Van Breugel, F.2    Rutten, J.3
  • 48
    • 84858049559 scopus 로고    scopus 로고
    • Fuzzy Hamming distance: A new dissimilarity measure
    • A. Amir and G. Landau, editors
    • Bookstein, A., Klein, S., and Raita, T. (2001). Fuzzy Hamming distance: A new dissimilarity measure. In A. Amir and G. Landau, editors, CPM 2001: LNCS 2089, pages 86-97.
    • (2001) CPM 2001: LNCS , vol.2089 , pp. 86-97
    • Bookstein, A.1    Klein, S.2    Raita, T.3
  • 50
    • 0022927138 scopus 로고
    • Distance transformation in digital images. Compure Vision
    • Borgefors, G. (1986). Distance transformation in digital images. Compure Vision, Graphics and Image Processing, 34, 344-371.
    • (1986) Graphics and Image Processing , vol.34 , pp. 344-371
    • Borgefors, G.1
  • 51
    • 51249178997 scopus 로고
    • On Lipschitz embedding of finite metric spaces in Hilbert space
    • Bourgain, J. (1985). On Lipschitz embedding of finite metric spaces in Hilbert space. Israel Journal of Mathematics, 52, 46-52.
    • (1985) Israel Journal of Mathematics , vol.52 , pp. 46-52
    • Bourgain, J.1
  • 53
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evalu-ation of machine learning algorithms
    • Bradley, A. (1997). The use of the area under the ROC curve in the evalu-ation of machine learning algorithms. Pattern Recognition, 30(7), 1145-1159.
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.1
  • 55
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L. (1996a). Bagging predictors. Machine Learning, 24(2), 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 60
    • 33746880883 scopus 로고
    • A maximum entropy approach to pairwise data clustering
    • Jerusalem, Israel
    • Buhmann, J. and Hofmann, T. (1994). A maximum entropy approach to pairwise data clustering. In International Conference on Pattern Recog-nition., volume 2, pages 207-212, Jerusalem, Israel.
    • (1994) International Conference on Pattern Recog-Nition , vol.2 , pp. 207-212
    • Buhmann, J.1    Hofmann, T.2
  • 62
    • 85131990885 scopus 로고
    • Syntactic and Structural Pattern Recognition Theory and Applications
    • Bunke, H. and Sanfeliu, A., editors (1990). Syntactic and Structural Pattern Recognition Theory and Applications. World Scientific.
    • (1990) World Scientific
    • Bunke, H.1    Sanfeliu, A.2
  • 63
    • 0031198630 scopus 로고    scopus 로고
    • On a relation between graph edit dis-tance and maximum common subgraph
    • Bunke, H. and Shearer, K. (1997). On a relation between graph edit dis-tance and maximum common subgraph. Pattern Recognition Letters, 18(8), 689-694.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.8 , pp. 689-694
    • Bunke, H.1    Shearer, K.2
  • 64
    • 0032024433 scopus 로고    scopus 로고
    • A graph distance metric based on the maximal common subgraph
    • Bunke, H. and Shearer, K. (1998). A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters, 19(3-4), 255-259.
    • (1998) Pattern Recognition Letters , vol.19 , Issue.3-4 , pp. 255-259
    • Bunke, H.1    Shearer, K.2
  • 65
    • 84944036030 scopus 로고    scopus 로고
    • Towards bridging the gap between statistical and structural pattern recognition: Two new concepts in graph matching
    • Bunke, H., Gunter, S., and Jiang, X. (2001). Towards bridging the gap between statistical and structural pattern recognition: Two new concepts in graph matching. In International Conference on Advances in Pattern Recognition: Springer LNCS 2013, pages 1-11.
    • (2001) International Conference on Advances in Pattern Recognition: Springer LNCS , vol.2013 , pp. 1-11
    • Bunke, H.1    Gunter, S.2    Jiang, X.3
  • 67
    • 0002615660 scopus 로고    scopus 로고
    • Geometry and invariance in kernel based methods
    • B. Scholkopf, C. Burges, and A. Smola, editors, MIT Press
    • Burges, C. (1998). Geometry and invariance in kernel based methods. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods, Support Vector Learning. MIT Press.
    • (1998) Advances in Kernel Methods, Support Vector Learning
    • Burges, C.1
  • 69
    • 0039219582 scopus 로고
    • On the theorem in the geometry of position
    • Cayley, A. (1841). On the theorem in the geometry of position. Cambridge Mathematical Journal, 2, 267-271.
    • (1841) Cambridge Mathematical Journal , vol.2 , pp. 267-271
    • Cayley, A.1
  • 71
    • 0001833550 scopus 로고    scopus 로고
    • Distance between histograms of angular measurements and its application to handwritten character similarity
    • Cha, S. and Srihari, S. (2000). Distance between histograms of angular measurements and its application to handwritten character similarity. In International Conference on Pattern Recognition, volume 2, pages 21-24.
    • (2000) International Conference on Pattern Recognition , vol.2 , pp. 21-24
    • Cha, S.1    Srihari, S.2
  • 72
    • 0001499369 scopus 로고
    • Definiteness and semidefiniteness of quadratic forms revisited
    • Chabrillac, Y. and Crouzeix, J.-P. (1984). Definiteness and semidefiniteness of quadratic forms revisited. Linear Algebra and its Applications, 63(4), 283-292.
    • (1984) Linear Algebra and Its Applications , vol.63 , Issue.4 , pp. 283-292
    • Chabrillac, Y.1    Crouzeix, J.-P.2
  • 73
    • 0026904745 scopus 로고
    • Primitive pattern learning
    • Chan, T. and Goldfarb, L. (1992). Primitive pattern learning. Pattern Recognition, 25(8), 883-889.
    • (1992) Pattern Recognition , vol.25 , Issue.8 , pp. 883-889
    • Chan, T.1    Goldfarb, L.2
  • 76
    • 0033312823 scopus 로고    scopus 로고
    • On a metric distance between fuzzy sets
    • Chaudhuri, B. and Rosenfeld, A. (1999). On a metric distance between fuzzy sets. Information Sciences, 118, 159-171.
    • (1999) Information Sciences , vol.118 , pp. 159-171
    • Chaudhuri, B.1    Rosenfeld, A.2
  • 80
    • 85131992200 scopus 로고    scopus 로고
    • A Low-complexity Multidimensional Scaling Method Based on Clustering
    • Cho, D. and Miller, D. (2002). A Low-complexity Multidimensional Scaling Method Based on Clustering. Concept paper.
    • (2002) Concept Paper
    • Cho, D.1    Miller, D.2
  • 81
    • 0014710323 scopus 로고
    • On optimum recognition error and reject tradeoff
    • Chow, C. (1970). On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory, IT-16(1), 41-46.
    • (1970) IEEE Transactions on Information Theory , vol.IT-16 , Issue.1 , pp. 41-46
    • Chow, C.1
  • 85
    • 11844294062 scopus 로고    scopus 로고
    • Algorithmic clustering of music based on string compression
    • Cilibrasi, R., Vitanyi, P., and de Wolf, R. (2004). Algorithmic clustering of music based on string compression. Computer Music Journal, 28(4), 49-67.
    • (2004) Computer Music Journal , vol.28 , Issue.4 , pp. 49-67
    • Cilibrasi, R.1    Vitanyi, P.2    De Wolf, R.3
  • 86
    • 0030704667 scopus 로고    scopus 로고
    • Numerical taxonomy on data: Experi-mental results
    • Cohen, J. and Farach, M. (1997). Numerical taxonomy on data: Experi-mental results. Journal of Computational Biology, 4(4).
    • (1997) Journal of Computational Biology , vol.4 , Issue.4
    • Cohen, J.1    Farach, M.2
  • 87
    • 0035529609 scopus 로고    scopus 로고
    • Representations of Hermitian kernels by means of Krein spaces II. invariant kernels
    • Constantinescu, T. and Gheondea, A. (2001). Representations of Hermitian kernels by means of Krein spaces II. invariant kernels. Communications in Mathematical Physics, 216, 409-430.
    • (2001) Communications in Mathematical Physics , vol.216 , pp. 409-430
    • Constantinescu, T.1    Gheondea, A.2
  • 89
    • 0033957841 scopus 로고    scopus 로고
    • Prodom and prodom-cg: Tools for protein domain analysis and whole genome com-parisons
    • Corpet, F., Servant, F., Gouzy, J., and Kahn, D. (2000). Prodom and prodom-cg: Tools for protein domain analysis and whole genome com-parisons. Nucleid Acids Research, 28, 267-269.
    • (2000) Nucleid Acids Research , vol.28 , pp. 267-269
    • Corpet, F.1    Servant, F.2    Gouzy, J.3    Kahn, D.4
  • 91
    • 0036887496 scopus 로고    scopus 로고
    • Straight monotonic embedding of data sets in Eu-clidean spaces
    • Courrieu, P. (2002). Straight monotonic embedding of data sets in Eu-clidean spaces. Neural Networks, 15, 1185-1196.
    • (2002) Neural Networks , vol.15 , pp. 1185-1196
    • Courrieu, P.1
  • 94
    • 0034343577 scopus 로고    scopus 로고
    • A General Weighted Two-Way Dissimilarity Coefficient
    • Cox, T. and Cox, M. (2000). A General Weighted Two-Way Dissimilarity Coefficient. Journal of Classification, 17, 101-121.
    • (2000) Journal of Classification , vol.17 , pp. 101-121
    • Cox, T.1    Cox, M.2
  • 97
    • 0031540130 scopus 로고    scopus 로고
    • On (Super-)Spherical Distance Matrices and Two Results from Schoenberg
    • Critchley, F. and Fichet, B. (1997). On (Super-)Spherical Distance Matrices and Two Results from Schoenberg. Linear Algebra and its Applications, 251, 145-165.
    • (1997) Linear Algebra and Its Applications , vol.251 , pp. 145-165
    • Critchley, F.1    Fichet, B.2
  • 98
    • 34250226591 scopus 로고
    • Criteria for quasiconvexity and pseu-doconvexity: Relations and comparisons
    • Crouzeix, J. and Ferland, J. (1982). Criteria for quasiconvexity and pseu-doconvexity: Relations and comparisons. Mathematical Programming, 23(2), 193-205.
    • (1982) Mathematical Programming , vol.23 , Issue.2 , pp. 193-205
    • Crouzeix, J.1    Ferland, J.2
  • 99
    • 0000489740 scopus 로고
    • Information-type measures of divergence of probability distributions and indirect observations
    • Csiszar, I. (1967). Information-type measures of divergence of probability distributions and indirect observations. Studia Scientiarium Mathemati-carum Hungarica, 2, 299-318.
    • (1967) Studia Scientiarium Mathemati-Carum Hungarica , vol.2 , pp. 299-318
    • Csiszar, I.1
  • 101
    • 0028385080 scopus 로고
    • Minimal consistent set (MCS) identification for op-timal nearest neighbor decision systems design
    • Dasarthy, B. (1994). Minimal consistent set (MCS) identification for op-timal nearest neighbor decision systems design. IEEE Transactions on Systems, Man, and Cybernetics, 24(3), 511-517.
    • (1994) IEEE Transactions on Systems, Man, and Cybernetics , vol.24 , Issue.3 , pp. 511-517
    • Dasarthy, B.1
  • 102
    • 0001553164 scopus 로고
    • Convergance, closure and neigbhoorhoods
    • Day, M. (1944). Convergance, closure and neigbhoorhoods. Duke Mathe-matical Journal, 11, 181-199.
    • (1944) Duke Mathe-Matical Journal , vol.11 , pp. 181-199
    • Day, M.1
  • 105
    • 34249983436 scopus 로고    scopus 로고
    • Combining kernel in-formation for support vector classification
    • F. Roli, J. Kittler, and T. Windeatt, editors
    • de Diego, I., Moguerza, J., and Munoz, A. (2004). Combining kernel in-formation for support vector classification. In F. Roli, J. Kittler, and T. Windeatt, editors, Multiple Classifier Systems, LNCS, volume 3077, pages 102-111.
    • (2004) Multiple Classifier Systems, LNCS , vol.3077 , pp. 102-111
    • De Diego, I.1    Moguerza, J.2    Munoz, A.3
  • 106
    • 0031270961 scopus 로고    scopus 로고
    • Sammon’s mapping using neural net-works: A comparison
    • de Ridder, D. and Duin, R. (1997). Sammon’s mapping using neural net-works: A comparison. Pattern Recognition Letters, 18(11-13).
    • (1997) Pattern Recognition Letters , vol.18 , Issue.11-13
    • De Ridder, D.1    Duin, R.2
  • 107
    • 0345886178 scopus 로고    scopus 로고
    • The economics of clas-sification: Error vs. complexity
    • R. Kasturi, D. Laurendeau, and C. Suen, editors, Quebec City, Canada
    • de Ridder, D., Pekalska, E., and Duin, R. (2002). The economics of clas-sification: Error vs. complexity. In R. Kasturi, D. Laurendeau, and C. Suen, editors, International Conference on Pattern Recognition, vol-ume 3, pages 244-247, Quebec City, Canada.
    • (2002) International Conference on Pattern Recognition , vol.3 , pp. 244-247
    • De Ridder, D.1    Pekalska, E.2    Duin, R.3
  • 110
    • 0000355328 scopus 로고
    • Additive tree representations of incomplete dissimi-larity data
    • de Soete, G. (1984a). Additive tree representations of incomplete dissimi-larity data. Quality and Quantity, 18, 387-393.
    • (1984) Quality and Quantity , vol.18 , pp. 387-393
    • De Soete, G.1
  • 111
    • 0008981482 scopus 로고
    • A least squares algorithm for fitting an ultrametric tree to a dissimilarity matrix
    • de Soete, G. (1984b). A least squares algorithm for fitting an ultrametric tree to a dissimilarity matrix. Pattern Recognition Letters, 2, 133-137.
    • (1984) Pattern Recognition Letters , vol.2 , pp. 133-137
    • De Soete, G.1
  • 112
    • 0000169885 scopus 로고
    • Ultrametric tree representations of incomplete dis-similarity data
    • de Soete, G. (1984c). Ultrametric tree representations of incomplete dis-similarity data. Journal of Classification, 1, 235-242.
    • (1984) Journal of Classification , vol.1 , pp. 235-242
    • De Soete, G.1
  • 114
    • 0037594176 scopus 로고    scopus 로고
    • Autofluorescence characteristics of healthy oral mucosa at different anatomical sites
    • de Veld, D., Skurichina, M., Witjes, M., and et.al. (2003). Autofluorescence characteristics of healthy oral mucosa at different anatomical sites. Lasers in Surgery and Medicine, 23, 367-376.
    • (2003) Lasers in Surgery and Medicine , vol.23 , pp. 367-376
    • De Veld, D.1    Skurichina, M.2    Witjes, M.3
  • 116
    • 49349088537 scopus 로고    scopus 로고
    • Uni-versity of Toronto, Department of Computer Science
    • DELVE (Website). Data for evaluating learning in valid experiments. Uni-versity of Toronto, Department of Computer Science, http://www.es.toronto.edu/~delve/.
    • Data for Evaluating Learning in Valid Experiments
  • 117
    • 0030736375 scopus 로고    scopus 로고
    • Curvilinear component annalysis: A self-organizing neural network for nonlinear mapping of data sets
    • Demartines, P. and Herault, J. (1997). Curvilinear component annalysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Transations on Neural Networks, 8(1), 148-154.
    • (1997) IEEE Transations on Neural Networks , vol.8 , Issue.1 , pp. 148-154
    • Demartines, P.1    Herault, J.2
  • 126
    • 0012937288 scopus 로고    scopus 로고
    • A unified bias-variance decomposition and its appli-cations
    • Morgan Kaufmann
    • Domingos, P. (2000a). A unified bias-variance decomposition and its appli-cations. In International Conference on Machine Learning, pages 231-238. Morgan Kaufmann.
    • (2000) International Conference on Machine Learning , pp. 231-238
    • Domingos, P.1
  • 127
    • 85158077035 scopus 로고    scopus 로고
    • A unified bias-variance decomposition for zero-one and squared loss
    • Austin, Texas. AAAI Press
    • Domingos, P. (2000b). A unified bias-variance decomposition for zero-one and squared loss. In International Conference on Artificial Intelligence, pages 564-569, Austin, Texas. AAAI Press.
    • (2000) International Conference on Artificial Intelligence , pp. 564-569
    • Domingos, P.1
  • 128
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple bayesian classifier under zero-one loss
    • Domingos, P. and Pazzani, M. (1997). On the optimality of the simple bayesian classifier under zero-one loss. Machine Learning, 29(2-3), 103-130.
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 129
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: Locally linear em-bedding techniques for high-dimensional data
    • Donoho, D. and Grimes, C. (2003). Hessian eigenmaps: Locally linear em-bedding techniques for high-dimensional data. In Proceedings of the Na-tional Academy of Arts and Sciences, volume 100, pages 5591-5596.
    • (2003) Proceedings of the Na-Tional Academy of Arts and Sciences , vol.100 , pp. 5591-5596
    • Donoho, D.1    Grimes, C.2
  • 132
    • 0034562759 scopus 로고    scopus 로고
    • Similarity based methods: A general framework for classi-fication, approximation and association
    • Duch, W. (2000). Similarity based methods: A general framework for classi-fication, approximation and association. Control and Cybernetics, 29(4), 937-968.
    • (2000) Control and Cybernetics , vol.29 , Issue.4 , pp. 937-968
    • Duch, W.1
  • 133
    • 85131980380 scopus 로고    scopus 로고
    • Polish Conference on Theory and Applications of Artificial Intelligence, Lod’z
    • Duch, W., Naud, A., and Adamczak, R. (1998). A framework for similarity-based methods. In Polish Conference on Theory and Applications of Artificial Intelligence, pages 33-60, Lod’z.
    • (1998) A framework for similarity-based methods , pp. 33-60
    • Duch, W.1    Naud, A.2    Adamczak, R.3
  • 134
    • 0347920387 scopus 로고    scopus 로고
    • Classification, asso-ciation and pattern completion using neural similarity based methods
    • Duch, W., Adamczak, R., and Diercksen, G. (2000). Classification, asso-ciation and pattern completion using neural similarity based methods. Applied Mathematics and Computer Science, 10(4), 101-120.
    • (2000) Applied Mathematics and Computer Science , vol.10 , Issue.4 , pp. 101-120
    • Duch, W.1    Adamczak, R.2    Diercksen, G.3
  • 137
    • 33751584745 scopus 로고    scopus 로고
    • The combining classifier: To train or not to train?
    • Quebec City, Canada
    • Duin, R. (2002). The combining classifier: To train or not to train? In International Conference on Pattern Recognition, volume 2, pages 765-770, Quebec City, Canada.
    • (2002) International Conference on Pattern Recognition , vol.2 , pp. 765-770
    • Duin, R.1
  • 139
    • 27844590998 scopus 로고    scopus 로고
    • Possibilities of zero-error recognition by dissimilarity representations
    • J. Inesta and L. Mico, editors, Allicante, Spain
    • Duin, R. and Pekalska, E. (2002). Possibilities of zero-error recognition by dissimilarity representations. In J. Inesta and L. Mico, editors, Pattern Recognition in Information Systems, Allicante, Spain.
    • (2002) Pattern Recognition in Information Systems
    • Duin, R.1    Pekalska, E.2
  • 140
    • 62949110022 scopus 로고    scopus 로고
    • Object representation, sample size and data set complexity
    • T. Ho and M. Basu, editors, Springer-Verlag
    • Duin, R. and Pekalska, E. (2005). Object representation, sample size and data set complexity. In T. Ho and M. Basu, editors, Data Complexity in Pattern Recognition, page to appear. Springer-Verlag.
    • (2005) Data Complexity in Pattern Recognition
    • Duin, R.1    Pekalska, E.2
  • 141
    • 84947790916 scopus 로고    scopus 로고
    • Classifier conditional posterior probabilities
    • Sydney. Joint I APR International Workshops on SSPR and SPR
    • Duin, R. and Tax, D. (1998). Classifier conditional posterior probabilities. In Advances in Pattern Recognition, LNCS, volume 1451, pages 611-619, Sydney. Joint I APR International Workshops on SSPR and SPR.
    • (1998) Advances in Pattern Recognition, LNCS , vol.1451 , pp. 611-619
    • Duin, R.1    Tax, D.2
  • 143
    • 0031276929 scopus 로고    scopus 로고
    • Experiments with object based discriminant functions; a featureless approach to pattern recogni-tion
    • Duin, R., de Ridder, D., and Tax, D. (1997). Experiments with object based discriminant functions; a featureless approach to pattern recogni-tion. Pattern Recognition Letters, 18(11-13), 1159 T166.
    • (1997) Pattern Recognition Letters , vol.18 , Issue.11-13 , pp. 166
    • Duin, R.1    De Ridder, D.2    Tax, D.3
  • 144
    • 0346460837 scopus 로고    scopus 로고
    • Featureless pattern classifica-tion
    • Duin, R., de Ridder, D., and Tax, D. (1998). Featureless pattern classifica-tion. Kybernetika, 34(4), 399-404.
    • (1998) Kybernetika , vol.34 , Issue.4 , pp. 399-404
    • Duin, R.1    De Ridder, D.2    Tax, D.3
  • 146
    • 0036192078 scopus 로고    scopus 로고
    • A note on core research issues for statistical pattern recognition
    • Duin, R., Roli, F., and de Ridder, D. (2002). A note on core research issues for statistical pattern recognition. Pattern Recognition Letters, 23(4), 493-499.
    • (2002) Pattern Recognition Letters , vol.23 , Issue.4 , pp. 493-499
    • Duin, R.1    Roli, F.2    De Ridder, D.3
  • 151
    • 0031569940 scopus 로고    scopus 로고
    • Similarity, connectionism, and the problem of representation in vision
    • Edelman, S. and Duvdevani-Bar, S. (1997). Similarity, connectionism, and the problem of representation in vision. Neural Computation, 9, 701-720.
    • (1997) Neural Computation , vol.9 , pp. 701-720
    • Edelman, S.1    Duvdevani-Bar, S.2
  • 156
    • 0031338770 scopus 로고    scopus 로고
    • Distance measures for point sets and their computation
    • Eiter, T. and Mannila, H. (1997). Distance measures for point sets and their computation. Acta Informatica, 34(2), 109-133.
    • (1997) Acta Informatica , vol.34 , Issue.2 , pp. 109-133
    • Eiter, T.1    Mannila, H.2
  • 161
    • 84976803260 scopus 로고
    • FastMap: A fast algorithm for indexing, data-mining and visualization of tradditional and multimedia datasets
    • California
    • Faloutsos, C. and Lin, K.-I. (1995). FastMap: A fast algorithm for indexing, data-mining and visualization of tradditional and multimedia datasets. In ACM SIGMOD, International Conference on Management of Data, pages 163-174, California.
    • (1995) ACM SIGMOD, International Conference on Management of Data , pp. 163-174
    • Faloutsos, C.1    Lin, K.-I.2
  • 162
    • 0029192324 scopus 로고
    • A robust model for finding optimal evolutionary trees
    • Farach, M., Kannan, S., and Warnow, T. (1995). A robust model for finding optimal evolutionary trees. Algorithmica, 13, 155-179.
    • (1995) Algorithmica , vol.13 , pp. 155-179
    • Farach, M.1    Kannan, S.2    Warnow, T.3
  • 167
    • 0007239615 scopus 로고    scopus 로고
    • Ultrametric sets in Euclidean point spaces
    • Fiedler, M. (1998). Ultrametric sets in Euclidean point spaces. Journal of Linear Algebra, 3, 23-30.
    • (1998) Journal of Linear Algebra , vol.3 , pp. 23-30
    • Fiedler, M.1
  • 169
    • 85131971861 scopus 로고    scopus 로고
    • University of Surrey
    • Fish contours (Website). University of Surrey, http://www.ee.surrey.ac.uk/Personal/F.Mokhtarian/.
    • Fish Contours (Website)
  • 170
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley, C. and Raftery, A. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. Computer Journal, (41), 578-588.
    • (1998) Computer Journal , Issue.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.2
  • 171
    • 33845229615 scopus 로고    scopus 로고
    • Data clustering using evidence accumulation
    • R. Kasturi, D. Laurendeau, and C. Suen, editors, Quebec City, Canada
    • Fred, A. and Jain, A. (2002a). Data clustering using evidence accumulation. In R. Kasturi, D. Laurendeau, and C. Suen, editors, International Con-ference on Pattern Recognition, pages 276-280, Quebec City, Canada.
    • (2002) International Con-Ference on Pattern Recognition , pp. 276-280
    • Fred, A.1    Jain, A.2
  • 175
    • 84909719934 scopus 로고
    • On the encoding of arbitrary geometric configurations
    • Freeman, H. and Glass, J. (1961). On the encoding of arbitrary geometric configurations. IRE Transactions, EC-10(2), 260-268.
    • (1961) IRE Transactions , vol.EC-10 , Issue.2 , pp. 260-268
    • Freeman, H.1    Glass, J.2
  • 176
    • 22044433821 scopus 로고    scopus 로고
    • A pretopological approach for pattern classification with reject options
    • A. Amin, D. Dori, P. Pudil, and H. Freeman, editors, Springer
    • Frelicot, C. and Emptoz, H. (1998). A pretopological approach for pattern classification with reject options. In A. Amin, D. Dori, P. Pudil, and H. Freeman, editors, Joint IAPR International Workshops on SSPR and SPR, LNCS, volume 1451, pages 707-715. Springer.
    • (1998) Joint IAPR International Workshops on SSPR and SPR, LNCS , vol.1451 , pp. 707-715
    • Frelicot, C.1    Emptoz, H.2
  • 180
    • 0000201892 scopus 로고    scopus 로고
    • Semidefinite programming relaxation for nonconvex quadratic programs
    • Fujie, T. and Kojima, M. (1997). Semidefinite programming relaxation for nonconvex quadratic programs. Journal of Global Optimization, 10, 367-380.
    • (1997) Journal of Global Optimization , vol.10 , pp. 367-380
    • Fujie, T.1    Kojima, M.2
  • 182
  • 184
    • 0030807655 scopus 로고    scopus 로고
    • BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data
    • Gascuel, O. (1997). BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data. Molecular Biology and Evolution, 14, 685-695.
    • (1997) Molecular Biology and Evolution , vol.14 , pp. 685-695
    • Gascuel, O.1
  • 185
    • 0034360426 scopus 로고    scopus 로고
    • Data model and classification by trees: The minimum variance reduction (MVR) method
    • Gascuel, O. (2000). Data model and classification by trees: The minimum variance reduction (MVR) method. Journal of Classification, 17, 67-99.
    • (2000) Journal of Classification , vol.17 , pp. 67-99
    • Gascuel, O.1
  • 186
    • 0002493754 scopus 로고
    • Extended topology, neighboorhoods and convergents
    • Copen-hagen. Kobenhavns Univ. Matematiske Inst
    • Gastl, G. and Hammer, P. (1967). Extended topology, neighboorhoods and convergents. In Colloquium on Convexity 1965, pages 104-116, Copen-hagen. Kobenhavns Univ. Matematiske Inst.
    • (1967) Colloquium on Convexity 1965 , pp. 104-116
    • Gastl, G.1    Hammer, P.2
  • 187
    • 0002294331 scopus 로고    scopus 로고
    • Pedestrian detection from a moving vehicle
    • Dublin, Ireland
    • Gavrila, D. (2000). Pedestrian detection from a moving vehicle. In European Conference on Computer Vision, Dublin, Ireland.
    • (2000) European Conference on Computer Vision
    • Gavrila, D.1
  • 189
    • 0033325120 scopus 로고    scopus 로고
    • Flexible syntactic matching of curves and its application to automatic hierarchical classification of sil-houettes
    • Gdalyahu, Y. and Weinshall, D. (1999). Flexible syntactic matching of curves and its application to automatic hierarchical classification of sil-houettes. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, 21(12).
    • (1999) IEEE Transactions on Pattern Analysis and Machine Intelli-Gence , vol.21 , Issue.12
    • Gdalyahu, Y.1    Weinshall, D.2
  • 190
  • 192
    • 0036896227 scopus 로고    scopus 로고
    • On choosing and bounding probability metrics
    • Gibbs, A. and Su, F. (2002). On choosing and bounding probability metrics. International Statistical Review, 70(3), 419-435.
    • (2002) International Statistical Review , vol.70 , Issue.3 , pp. 419-435
    • Gibbs, A.1    Su, F.2
  • 193
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and sup-port vector machines
    • Girosi, F. (1998). An equivalence between sparse approximation and sup-port vector machines. Neural Computation, 10(6), 1455-1480.
    • (1998) Neural Computation , vol.10 , Issue.6 , pp. 1455-1480
    • Girosi, F.1
  • 194
    • 85131995503 scopus 로고
    • On extended topologies, i: Closure operators
    • Gnilka, S. (1994). On extended topologies, i: Closure operators. Cornmen-tationes Mathernaticae, 34, 81 94.
    • (1994) Cornmen-Tationes Mathernaticae , vol.34 , Issue.81 , pp. 94
    • Gnilka, S.1
  • 195
    • 0010717778 scopus 로고
    • On extended topologies, ii: Compactness, quasi-metrizability, symmetry
    • Gnilka, S. (1995). On extended topologies, ii: Compactness, quasi-metrizability, symmetry. Commentationes Mathernaticae, 35, 147-162.
    • (1995) Commentationes Mathernaticae , vol.35 , pp. 147-162
    • Gnilka, S.1
  • 196
    • 4243860629 scopus 로고    scopus 로고
    • On continuity in extended topologies. Annales Societatis Mathernaticae Polonae. Seria I
    • Gnilka, S. (1997). On continuity in extended topologies. Annales Societatis Mathernaticae Polonae. Seria I. Commentationes Mathernaticae, 37, 99-108.
    • (1997) Commentationes Mathernaticae , vol.37 , pp. 99-108
    • Gnilka, S.1
  • 198
    • 0021644153 scopus 로고
    • A unified approach to pattern recognition
    • Goldfarb, L. (1984). A unified approach to pattern recognition. Pattern Recognition, 17, 575-582.
    • (1984) Pattern Recognition , vol.17 , pp. 575-582
    • Goldfarb, L.1
  • 199
    • 0002080181 scopus 로고
    • A new approach to pattern recognition
    • L. Kanal and A. Rosenfeld, editors, Elsevier Science Publishers BV
    • Goldfarb, L. (1985). A new approach to pattern recognition. In L. Kanal and A. Rosenfeld, editors, Progress in Pattern Recognition, volume 2, pages 241-402. Elsevier Science Publishers BV.
    • (1985) Progress in Pattern Recognition, Volume 2 , pp. 241-402
    • Goldfarb, L.1
  • 200
    • 0025572817 scopus 로고
    • On the foundations of intelligent processes-I. An evolving model for pattern recognition
    • Goldfarb, L. (1990). On the foundations of intelligent processes-I. An evolving model for pattern recognition. Pattern Recognition, 23(6), 595-616.
    • (1990) Pattern Recognition , vol.23 , Issue.6 , pp. 595-616
    • Goldfarb, L.1
  • 201
    • 0026850980 scopus 로고
    • What is distance and why do we need the metric model for pattern learning?
    • Goldfarb, L. (1992). What is distance and why do we need the metric model for pattern learning? Pattern Recognition, 25(4), 431-438.
    • (1992) Pattern Recognition , vol.25 , Issue.4 , pp. 431-438
    • Goldfarb, L.1
  • 204
    • 85027655030 scopus 로고
    • Transforma-tion systems are more economical and informative class descriptions than formal grammars
    • The Netherlands
    • Goldfarb, L., Abela, J., Bhavsar, V., and Kamat, V. (1992). Transforma-tion systems are more economical and informative class descriptions than formal grammars. In International Conference on Pattern Recognition, volume 2, pages 660-664, The Netherlands.
    • (1992) International Conference on Pattern Recognition , vol.2 , pp. 660-664
    • Goldfarb, L.1    Abela, J.2    Bhavsar, V.3    Kamat, V.4
  • 205
    • 0029344494 scopus 로고
    • Can a vector space based learning model discover inductive class generalization in a symbolic environment?
    • Goldfarb, L., Abela, J., Bhavsar, V., and Kamat, V. (1995). Can a vector space based learning model discover inductive class generalization in a symbolic environment? Pattern Recognition Letters, 16(7), 719-726.
    • (1995) Pattern Recognition Letters , vol.16 , Issue.7 , pp. 719-726
    • Goldfarb, L.1    Abela, J.2    Bhavsar, V.3    Kamat, V.4
  • 209
    • 3042810516 scopus 로고
    • Similarity, interactive activation, and mapping
    • Goldstone, R. (1994). Similarity, interactive activation, and mapping. Jour-nal of Experimental Psychology, 20, 3-28.
    • (1994) Jour-Nal of Experimental Psychology , vol.20 , pp. 3-28
    • Goldstone, R.1
  • 210
    • 0002849313 scopus 로고    scopus 로고
    • Hanging together: A connectionist model of sim-ilarity
    • J. Grainger and A. Jacobs, editors, NJ: Lawrence Erlbaum Associates, Mahwah
    • Goldstone, R. (1998). Hanging together: A connectionist model of sim-ilarity. In J. Grainger and A. Jacobs, editors, Localized Connectionist Approaches to Human Cognition, pages 283-325. NJ: Lawrence Erlbaum Associates, Mahwah.
    • (1998) Localized Connectionist Approaches to Human Cognition , pp. 283-325
    • Goldstone, R.1
  • 211
    • 0001997027 scopus 로고    scopus 로고
    • Similarity
    • R. Wilson and F. Keil, editors, MA: MIT Press, Cambridge
    • Goldstone, R. (1999). Similarity. In R. Wilson and F. Keil, editors, MIT encyclopedia of the cognitive sciences, pages 763-765. MA: MIT Press, Cambridge.
    • (1999) MIT Encyclopedia of the Cognitive Sciences , pp. 763-765
    • Goldstone, R.1
  • 213
    • 2442517922 scopus 로고    scopus 로고
    • Numerical methods for large-scale non-convex quadratic programming
    • A. Siddiqi and M. Kotcvara, editors, Kluwer Academic Publishers, Dordrecht, The Netherlands
    • Gould, N. and Toint, P. (2002). Numerical methods for large-scale non-convex quadratic programming. In A. Siddiqi and M. Kotcvara, editors, Trends in Industrial and Applied Mathematics, pages 149-179. Kluwer Academic Publishers, Dordrecht, The Netherlands.
    • (2002) Trends in Industrial and Applied Mathematics , pp. 149-179
    • Gould, N.1    Toint, P.2
  • 214
    • 0344824306 scopus 로고
    • Unsupervised learning through symbolic clustering
    • Gowda, K. and Diday, E. (1991). Unsupervised learning through symbolic clustering. Pattern Recognition Letters, 12, 259-264.
    • (1991) Pattern Recognition Letters , vol.12 , pp. 259-264
    • Gowda, K.1    Diday, E.2
  • 215
    • 0001330098 scopus 로고
    • A general coefficient of similarity and some of its prop-erties
    • Gower, J. (1971). A general coefficient of similarity and some of its prop-erties. Biometrics, 27, 25-33.
    • (1971) Biometrics , vol.27 , pp. 25-33
    • Gower, J.1
  • 216
    • 0009245040 scopus 로고
    • Euclidean distance geometry
    • Gower, J. (1982). Euclidean distance geometry. Mathematical Scientist, (7), 1-14.
    • (1982) Mathematical Scientist , Issue.7 , pp. 1-14
    • Gower, J.1
  • 217
    • 33747044600 scopus 로고
    • Metric and Euclidean Properties of Dissimilarity Coeffi-cients
    • Gower, J. (1986). Metric and Euclidean Properties of Dissimilarity Coeffi-cients. Journal of Classification, 3, 5-48.
    • (1986) Journal of Classification , vol.3 , pp. 5-48
    • Gower, J.1
  • 218
    • 0001120850 scopus 로고
    • Minimum spanning trees and single linkage cluster analysis
    • Gower, J. and Ross, G. (1969). Minimum spanning trees and single linkage cluster analysis. Applied Statistics, 18, 54-64.
    • (1969) Applied Statistics , vol.18 , pp. 54-64
    • Gower, J.1    Ross, G.2
  • 225
  • 226
    • 0031084264 scopus 로고    scopus 로고
    • Fast implementations of nearest-neighbor classifiers
    • Grother, P., Candela, G., and Blue, J. (1997). Fast implementations of nearest-neighbor classifiers. Pattern Recognition, 30(3), 459-465.
    • (1997) Pattern Recognition , vol.30 , Issue.3 , pp. 459-465
    • Grother, P.1    Candela, G.2    Blue, J.3
  • 228
    • 84958044352 scopus 로고    scopus 로고
    • Curvilinear component analysis for high-dimensional data representation: II. examples of additional mapping constraints in specific applications
    • Spain
    • Guerin-Dugue, A., Teissier, P., Delso Gafaro, G., and Herault, J. (1999). Curvilinear component analysis for high-dimensional data representation: II. examples of additional mapping constraints in specific applications. In Conference on Artificial and Natural Neural Networks, LNCS 1607, pages 635-644, Spain.
    • (1999) Conference on Artificial and Natural Neural Networks, LNCS , vol.1607 , pp. 635-644
    • Guerin-Dugue, A.1    Teissier, P.2    Delso Gafaro, G.3    Herault, J.4
  • 229
    • 0036565310 scopus 로고    scopus 로고
    • Cluster number selection for a small set of samples using the bayesian ying-yang model
    • Guo, P., Chen, C., and Lyu, M. (2002). Cluster number selection for a small set of samples using the bayesian ying-yang model. IEEE Transactions on Neural Networks, 13(3), 757-763.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 757-763
    • Guo, P.1    Chen, C.2    Lyu, M.3
  • 232
    • 0032680802 scopus 로고    scopus 로고
    • Reliable and efficient pattern matching using an affine invariant metric
    • Hagedoorn, M. and Veltkamp, R. (1999a). Reliable and efficient pattern matching using an affine invariant metric. International Journal of Com-puter Vision, 31(2-3), 103-115.
    • (1999) International Journal of Com-Puter Vision , vol.31 , Issue.2-3 , pp. 103-115
    • Hagedoorn, M.1    Veltkamp, R.2
  • 235
    • 0004207439 scopus 로고
    • Springer-Verlag, New York
    • Halmos, P. (1974). Measure Theory. Springer-Verlag, New York.
    • (1974) Measure Theory
    • Halmos, P.1
  • 238
    • 0006703095 scopus 로고    scopus 로고
    • General Bias/Variance decomposition with target independent variance of error functions derived from the ex-ponential family of distributions
    • Barcelona, Spain
    • Hansen, J. and Heskes, T. (2000). General Bias/Variance decomposition with target independent variance of error functions derived from the ex-ponential family of distributions. In International Conference on Pattern Recognition, volume 2, pages 207-210, Barcelona, Spain.
    • (2000) International Conference on Pattern Recognition , vol.2 , pp. 207-210
    • Hansen, J.1    Heskes, T.2
  • 244
    • 0037410621 scopus 로고    scopus 로고
    • Visual cluster validity (VCV) for pro-totype generator clustering models
    • Hathaway, R. and Bezdek, J. (2003). Visual cluster validity (VCV) for pro-totype generator clustering models. Pattern Recognition Letters, 24(9-10), 1563-1569.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.9-10 , pp. 1563-1569
    • Hathaway, R.1    Bezdek, J.2
  • 245
    • 0001935184 scopus 로고
    • A generalized majorization method for least squares multidimensional scaling of pseudodistances that may be negative
    • Heiser, W. (1991). A generalized majorization method for least squares multidimensional scaling of pseudodistances that may be negative. Psy-chometrica, 56, 7-27.
    • (1991) Psy-Chometrica , vol.56 , pp. 7-27
    • Heiser, W.1
  • 246
    • 84958063257 scopus 로고    scopus 로고
    • Curvilinear component analysis for high dimensional data representation: I. theoret-ical aspects and practical use in the presence of noise
    • Spain
    • Herault, J., Jausions-Picaud, C., and Guerin-Dugue, A. (1999). Curvilinear component analysis for high dimensional data representation: I. theoret-ical aspects and practical use in the presence of noise. In Conference on Artificial and Natural Neural Networks, LNCS 1607, pages 625-634, Spain.
    • (1999) Conference on Artificial and Natural Neural Networks, LNCS , vol.1607 , pp. 625-634
    • Herault, J.1    Jausions-Picaud, C.2    Guerin-Dugue, A.3
  • 247
    • 0001691634 scopus 로고    scopus 로고
    • Bias/variance decompositions for likelihood-based esti-mators
    • Heskes, T. (1998). Bias/variance decompositions for likelihood-based esti-mators. Neural Computation, 10, 1425-1433.
    • (1998) Neural Computation , vol.10 , pp. 1425-1433
    • Heskes, T.1
  • 252
    • 84965890587 scopus 로고
    • Godel, Escher, Bach-an Eternal Golden Braid
    • Hofstadter, D. (1979). Godel, Escher, Bach-an Eternal Golden Braid. Basic Books.
    • (1979) Basic Books
    • Hofstadter, D.1
  • 255
    • 58149421595 scopus 로고
    • Analysis of a complex of statistical variables into principal components
    • Hotelling, H. (1933). Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24, 417-441.
    • (1933) Journal of Educational Psychology , vol.24 , pp. 417-441
    • Hotelling, H.1
  • 256
    • 27644504838 scopus 로고    scopus 로고
    • Limiting form of the sample covariance matrix eigenspectrum in pea and kernel pea
    • S. Thrun, L. Saul, and B. Scholkopf, editors
    • Hoyle, D. and Rattray, M. (2003a). Limiting form of the sample covariance matrix eigenspectrum in pea and kernel pea. In S. Thrun, L. Saul, and B. Scholkopf, editors, Neural Information Processing Systems conference.
    • (2003) Neural Information Processing Systems Conference
    • Hoyle, D.1    Rattray, M.2
  • 257
    • 0037389951 scopus 로고    scopus 로고
    • Pea learning for sparse high-dimensional data
    • Hoyle, D. and Rattray, M. (2003b). Pea learning for sparse high-dimensional data. Europhysics Letters, 62(1), 117-123.
    • (2003) Europhysics Letters , vol.62 , Issue.1 , pp. 117-123
    • Hoyle, D.1    Rattray, M.2
  • 258
    • 42749102750 scopus 로고    scopus 로고
    • Principal component analysis eigenvalue spectra from data with symmetry breaking structure
    • Hoyle, D. and Rattray, M. (2004a). Principal component analysis eigenvalue spectra from data with symmetry breaking structure. Physical Review, E(69).
    • (2004) Physical Review , vol.E , Issue.69
    • Hoyle, D.1    Rattray, M.2
  • 260
    • 0004262735 scopus 로고
    • John Wiley & Sons, New York
    • Huber, P. (1981). Robust Statistics. John Wiley & Sons, New York.
    • (1981) Robust Statistics
    • Huber, P.1
  • 261
    • 15844416877 scopus 로고    scopus 로고
    • Trees and ultrametric spaces: A categorical equivalence
    • Hughes, B. (2004). Trees and ultrametric spaces: A categorical equivalence. Advances in Mathematics, 189, 148-191.
    • (2004) Advances in Mathematics , vol.189 , pp. 148-191
    • Hughes, B.1
  • 265
    • 0035162484 scopus 로고    scopus 로고
    • Algorithmic applications of low-distortion geometric em-beddings
    • Las Vegas, Nevada
    • Indyk, P. (2001). Algorithmic applications of low-distortion geometric em-beddings. In Annual Symposium on Foundations of Computer Science, pages 10-33, Las Vegas, Nevada.
    • (2001) Annual Symposium on Foundations of Computer Science , pp. 10-33
    • Indyk, P.1
  • 267
    • 85131985782 scopus 로고    scopus 로고
    • Isomap (Website). Isomap. http://isomap.stanford.edu/.
    • Isomap
  • 272
    • 63249112814 scopus 로고
    • Dimensionality and sample size considerations in pattern recognition practice
    • P. R. Krishnaiah and L. N. Kanal, editors, North-Holland, Amsterdam
    • Jain, A. K. and Chandrasekaran, B. (1987). Dimensionality and sample size considerations in pattern recognition practice. In P. R. Krishnaiah and L. N. Kanal, editors, Handbook of Statistics, volume 2, pages 835-855. North-Holland, Amsterdam.
    • (1987) Handbook of Statistics , vol.2 , pp. 835-855
    • Jain, A.K.1    Chandrasekaran, B.2
  • 274
    • 0037403462 scopus 로고    scopus 로고
    • Variance and bias for general loss functions
    • James, G. (2003). Variance and bias for general loss functions. Machine Learning, 51, 115-135.
    • (2003) Machine Learning , vol.51 , pp. 115-135
    • James, G.1
  • 278
    • 0035336998 scopus 로고    scopus 로고
    • Two-phase clustering process for outliers detection
    • Jiang, M., Tseng, S., and Su, C. (2001). Two-phase clustering process for outliers detection. Pattern Recognition Letters, 22(6-7), 691-700.
    • (2001) Pattern Recognition Letters , vol.22 , Issue.6-7 , pp. 691-700
    • Jiang, M.1    Tseng, S.2    Su, C.3
  • 279
    • 0010765711 scopus 로고
    • On Lipschitz embedding of finite metric spaces in low dimensional normed spaces
    • J. Lindenstrauss and V. Milman, editors, Lecture Notes, Springer-Verlag
    • Johnson, W., Lindenstrauss, J., and Schechtman, G. (1987). On Lipschitz embedding of finite metric spaces in low dimensional normed spaces. In J. Lindenstrauss and V. Milman, editors, Geometrical Aspects of Func-tional Analysis, Lecture Notes, 1267. Springer-Verlag.
    • (1987) Geometrical Aspects of Func-Tional Analysis
    • Johnson, W.1    Lindenstrauss, J.2    Schechtman, G.3
  • 280
    • 70449386713 scopus 로고    scopus 로고
    • Uncertainty sampling for one-class clas-sifiers
    • N. Chawla, N. Japkowicz, and A. Kolcz, editors
    • Juszczak, P. and Duin, R. (2003). Uncertainty sampling for one-class clas-sifiers. In N. Chawla, N. Japkowicz, and A. Kolcz, editors, ICML Work-shop: Learning with Imbalanced Data Sets II., pages 81-88.
    • (2003) ICML Work-Shop: Learning with Imbalanced Data Sets II , pp. 81-88
    • Juszczak, P.1    Duin, R.2
  • 281
    • 0022076947 scopus 로고
    • Metrics and undirected graphs
    • Karzanov, A. (1985). Metrics and undirected graphs. Mathematical pro-gramming, 32, 183-198.
    • (1985) Mathematical Pro-Gramming , vol.32 , pp. 183-198
    • Karzanov, A.1
  • 283
    • 85156237082 scopus 로고    scopus 로고
    • Intrinsic dimension estimation using packing numbers
    • Vancouver, Canada
    • Kegl, B. (2002). Intrinsic dimension estimation using packing numbers. In Neural Information Processing Systems, Vancouver, Canada.
    • (2002) Neural Information Processing Systems
    • Kegl, B.1
  • 284
  • 286
    • 85131980287 scopus 로고    scopus 로고
    • Kernel Machines (Website), http://www.kernel-machines.org/.
  • 288
    • 38249019149 scopus 로고
    • Computer graphics and connected topologies on finite ordered sets
    • Khalimsky, E., Kopperman, R., and Meyer, P. (1990). Computer graphics and connected topologies on finite ordered sets. Topology and its Appli-cations, 36, 1-17.
    • (1990) Topology and Its Appli-Cations , vol.36 , pp. 1-17
    • Khalimsky, E.1    Kopperman, R.2    Meyer, P.3
  • 296
    • 11244274996 scopus 로고    scopus 로고
    • Multiple genome rearrangement: A general approach via the evolutionary genome graph
    • Korkin, D. and Goldfarb, L. (2002). Multiple genome rearrangement: A general approach via the evolutionary genome graph. Bioinformatics, 18, 303-311.
    • (2002) Bioinformatics , vol.18 , pp. 303-311
    • Korkin, D.1    Goldfarb, L.2
  • 297
    • 0004002860 scopus 로고
    • Springer-Verlag, Berlin, Heidelberg, New York
    • Kothe, G. (1969). Topological vector spaces I. Springer-Verlag, Berlin, Heidelberg, New York.
    • (1969) Topological Vector Spaces I
    • Kothe, G.1
  • 301
    • 0041654220 scopus 로고
    • Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis
    • Kruskal, J. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29, 1-27.
    • (1964) Psychometrika , vol.29 , pp. 1-27
    • Kruskal, J.1
  • 302
    • 0002369860 scopus 로고
    • Multidimensional scaling and other methods for dis-covering structure
    • John Wiley & Sons, New York
    • Kruskal, J. (1977). Multidimensional scaling and other methods for dis-covering structure. In Statistical methods for digital computers, pages 296-339. John Wiley & Sons, New York.
    • (1977) Statistical Methods for Digital Computers , pp. 296-339
    • Kruskal, J.1
  • 306
    • 84861973487 scopus 로고    scopus 로고
    • Using diversity with three vari-ants of boosting: Aggressive, conservative and inverse
    • J. Kittler and F. Roli, editors, Springer-Verlag
    • Kuncheva, L. and Whitaker, C. (2002). Using diversity with three vari-ants of boosting: Aggressive, conservative and inverse. In J. Kittler and F. Roli, editors, Multiple Classifier Systems, LNCS, volume 2364, pages 81-90. Springer-Verlag.
    • (2002) Multiple Classifier Systems, LNCS , vol.2364 , pp. 81-90
    • Kuncheva, L.1    Whitaker, C.2
  • 307
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva, L. and Whitaker, C. (2003). Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Machine Learning, 51(2), 181-207.
    • (2003) Machine Learning , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.2
  • 308
    • 0036896235 scopus 로고    scopus 로고
    • An experimental study on diversity for bagging and boosting with linear classifiers
    • Kuncheva, L., Skurichina, M., and Duin, R. (2002). An experimental study on diversity for bagging and boosting with linear classifiers. Information Fusion, 3(2), 245-258.
    • (2002) Information Fusion , vol.3 , Issue.2 , pp. 245-258
    • Kuncheva, L.1    Skurichina, M.2    Duin, R.3
  • 310
    • 84947596279 scopus 로고    scopus 로고
    • On com-bining one-class classifiers for image database retrieval
    • J. Kittler and F. Roli, editors, Springer-Verlag
    • Lai, C., Tax, D., Pekalska, E., Duin, R., and Pachk, P. (2002). On com-bining one-class classifiers for image database retrieval. In J. Kittler and F. Roli, editors, Multiple Classifier Systems, LNCS, volume 2364, pages 212-221. Springer-Verlag.
    • (2002) Multiple Classifier Systems, LNCS , vol.2364 , pp. 212-221
    • Lai, C.1    Tax, D.2    Pekalska, E.3    Duin, R.4    Pachk, P.5
  • 312
    • 84867038166 scopus 로고    scopus 로고
    • Classifier combinations: Implementation and theoretical issues
    • J. Kittler and F. Roli, editors
    • Lam, L. (2000). Classifier combinations: Implementation and theoretical issues. In J. Kittler and F. Roli, editors, Multiple Classifier Systems, LNCS, volume 1857, pages 78-86.
    • (2000) Multiple Classifier Systems, LNCS , vol.1857 , pp. 78-86
    • Lam, L.1
  • 313
    • 0003126317 scopus 로고
    • A general theory of classificatory sorting strategies. I. hierarchical systems
    • Lance, G. and Williams, W. (1967). A general theory of classificatory sorting strategies. I. hierarchical systems. Computer Journal, (9), 373-380.
    • (1967) Computer Journal , Issue.9 , pp. 373-380
    • Lance, G.1    Williams, W.2
  • 315
    • 0004030281 scopus 로고    scopus 로고
    • Springer, 3rd edition
    • Lang, S. (2004). Linear algebra. Springer, 3rd edition.
    • (2004) Linear Algebra
    • Lang, S.1
  • 318
    • 84898813002 scopus 로고    scopus 로고
    • Pretopological approach for su-pervised learning
    • Los Alamitos, CA. IAPR, IEEE Computer Society Press
    • Lebourgeois, F. and Emptoz, H. (1996). Pretopological approach for su-pervised learning. In International Conference on Pattern Recognition, pages 256-260, Los Alamitos, CA. IAPR, IEEE Computer Society Press.
    • (1996) International Conference on Pattern Recognition , pp. 256-260
    • Lebourgeois, F.1    Emptoz, H.2
  • 321
    • 85131977230 scopus 로고    scopus 로고
    • Lee, M. (Website). Similarity judgements, http://www.psychology.adelaide.edu.au/members/staff/michaellee.html.
    • Similarity Judgements
    • Lee, M.1
  • 322
    • 0346389278 scopus 로고
    • Isometric embeddings of isosceles (non-archimedean) spaces in Euclidean spaces
    • Lemin, A. (1985). Isometric embeddings of isosceles (non-archimedean) spaces in Euclidean spaces. Soviet Math. Dokl, 32(3), 740-744.
    • (1985) Soviet Math. Dokl , vol.32 , Issue.3 , pp. 740-744
    • Lemin, A.1
  • 324
    • 0001116877 scopus 로고
    • Binary codes capable of correcting delations, inser-tions and reversals
    • Levenshtein, V. (1966). Binary codes capable of correcting delations, inser-tions and reversals. Soviet Phys. Dokl, 6, 707-710.
    • (1966) Soviet Phys. Dokl , vol.6 , pp. 707-710
    • Levenshtein, V.1
  • 325
    • 0034843832 scopus 로고    scopus 로고
    • The earth mover’s distance is the Mallows distance: Some insights from statistics
    • Vancouver, Canada
    • Levina, E. and Bickel, P. (2001). The earth mover’s distance is the Mallows distance: Some insights from statistics. In International Conference on Computer Vision, Vancouver, Canada.
    • (2001) International Conference on Computer Vision
    • Levina, E.1    Bickel, P.2
  • 328
    • 85131971021 scopus 로고    scopus 로고
    • Machine diagnostics by neural networks, experimental setup
    • P. J. H.E. Bal, H. Corporaal and J. Tonino, editors, The Netherlands
    • Ligteringen, R., Duin, R., Frietman, E., and Ypma, A. (1997). Machine diagnostics by neural networks, experimental setup. In P. J. H.E. Bal, H. Corporaal and J. Tonino, editors, Annual Conference of the Advanced School for Computing and Imaging, pages 185-190, The Netherlands.
    • (1997) Annual Conference of the Advanced School for Computing and Imaging , pp. 185-190
    • Ligteringen, R.1    Duin, R.2    Frietman, E.3    Ypma, A.4
  • 329
    • 0005180705 scopus 로고    scopus 로고
    • An information-theoretic definition of similarity
    • Morgan Kaufmann, San Francisco, CA
    • Lin, D. (1998). An information-theoretic definition of similarity. In In-ternational Conference on Machine Learning, pages 296-304. Morgan Kaufmann, San Francisco, CA.
    • (1998) In-Ternational Conference on Machine Learning , pp. 296-304
    • Lin, D.1
  • 330
    • 0344077919 scopus 로고    scopus 로고
    • Finite metric spaces-combinatorics, geometry and al-gorithms
    • Beijing, China
    • Linial, N. (2002). Finite metric spaces-combinatorics, geometry and al-gorithms. In International Congress of Mathematicians, pages 573-586, Beijing, China.
    • (2002) International Congress of Mathematicians , pp. 573-586
    • Linial, N.1
  • 333
    • 0001920729 scopus 로고
    • Similarity metric learning for a variable-kernel classifier
    • Lowe, D. (1995). Similarity metric learning for a variable-kernel classifier. Neural Computation, 7(1), 72-85.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 72-85
    • Lowe, D.1
  • 335
  • 339
    • 0032686461 scopus 로고    scopus 로고
    • Arbitrary-norm separating plane
    • Mangasarian, O. (1999). Arbitrary-norm separating plane. Operations Re-search Letters, 24(1-2), 15-23.
    • (1999) Operations Re-Search Letters , vol.24 , Issue.1-2 , pp. 15-23
    • Mangasarian, O.1
  • 342
    • 0029270805 scopus 로고
    • Artificial neural networks for feature ex-traction and multivariate data projection
    • Mao, J. and Jain, A. (1995). Artificial neural networks for feature ex-traction and multivariate data projection. IEEE Transactions on Neural Networks, 6, 296-317.
    • (1995) IEEE Transactions on Neural Networks , vol.6 , pp. 296-317
    • Mao, J.1    Jain, A.2
  • 343
    • 0028204732 scopus 로고
    • Topology representing networks
    • Martinez, T. and Schulten, K. (1994). Topology representing networks. Neural Networks, 7, 507-523.
    • (1994) Neural Networks , vol.7 , pp. 507-523
    • Martinez, T.1    Schulten, K.2
  • 346
    • 0001438129 scopus 로고
    • Bi-Lipschitz embeddings into low dimensional Eu-clidean spaces
    • Matousek, J. (1990). Bi-Lipschitz embeddings into low dimensional Eu-clidean spaces. Commentationes Mathematicae Universitatis Carolinae, 31(3), 589-600.
    • (1990) Commentationes Mathematicae Universitatis Carolinae , vol.31 , Issue.3 , pp. 589-600
    • Matousek, J.1
  • 351
    • 0040167690 scopus 로고
    • New foundation of Euclidean geometry
    • Menger, K. (1931). New foundation of Euclidean geometry. American Journal of Mathematics, 53, 721-745.
    • (1931) American Journal of Mathematics , vol.53 , pp. 721-745
    • Menger, K.1
  • 353
    • 85131978083 scopus 로고    scopus 로고
    • MFEAT (Website). Multiple features database at UCI repository of Ma-chine Learning databases, http://www.ics.uci.edu/$\sim$mlearn/MLRepository.html.
    • MFEAT (Website)
  • 355
    • 0032021907 scopus 로고    scopus 로고
    • Comparison of fast nearest neighbour clas-sifiers for handwritten character recognition
    • Mico, L. and Oncina, J. (1998). Comparison of fast nearest neighbour clas-sifiers for handwritten character recognition. Pattern Recognition Letters, 19(3-4), 351-356.
    • (1998) Pattern Recognition Letters , vol.19 , Issue.3-4 , pp. 351-356
    • Mico, L.1    Oncina, J.2
  • 356
    • 0030169250 scopus 로고    scopus 로고
    • A fast branch & bound nearest neighbour classifier in metric spaces
    • Mico, L., Oncina, J., and Carrasco, R. (1996). A fast branch & bound nearest neighbour classifier in metric spaces. Pattern Recognition Letters, 17(7), 731-739.
    • (1996) Pattern Recognition Letters , vol.17 , Issue.7 , pp. 731-739
    • Mico, L.1    Oncina, J.2    Carrasco, R.3
  • 358
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moler, M. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6, 525-533.
    • (1993) Neural Networks , vol.6 , pp. 525-533
    • Moler, M.1
  • 359
    • 0037233254 scopus 로고    scopus 로고
    • A modification of the LAESA algorithm for approximated k-nn clasification
    • Moreno-Seco, F., Mico, L., and Oncina, J. (2003). A modification of the LAESA algorithm for approximated k-nn clasification. Pattern Recogni-tion Letters, 24(1-3), 47-53.
    • (2003) Pattern Recogni-Tion Letters , vol.24 , Issue.1-3 , pp. 47-53
    • Moreno-Seco, F.1    Mico, L.2    Oncina, J.3
  • 360
    • 0035683817 scopus 로고    scopus 로고
    • Shape contexts enable efficient retrieval of similar shapes
    • Mori, G., Belongie, S., and Malik, H. (2001). Shape contexts enable efficient retrieval of similar shapes. In Computer Vision and Pattern Recognition, volume 1, pages 723-730.
    • (2001) Computer Vision and Pattern Recognition , vol.1 , pp. 723-730
    • Mori, G.1    Belongie, S.2    Malik, H.3
  • 363
    • 0010142578 scopus 로고
    • One-class classifier net-works for target recognition applications
    • Portland, OR. International Neural Network Society
    • Moya, M., Koch, M., and Hostetler, L. (1993). One-class classifier net-works for target recognition applications. In World Congress on Neural Networks, pages 797-801, Portland, OR. International Neural Network Society.
    • (1993) World Congress on Neural Networks , pp. 797-801
    • Moya, M.1    Koch, M.2    Hostetler, L.3
  • 365
    • 84880056101 scopus 로고    scopus 로고
    • Englewood Cliffs, New Jersey, 2nd edition
    • Munkres, J. (2000). Topology. Prentice-Hall, Englewood Cliffs, New Jersey, 2nd edition.
    • (2000) Topology. Prentice-Hall
    • Munkres, J.1
  • 366
    • 0028961335 scopus 로고
    • Scop: A structural classification of proteins database for the investigation of sequences and structures
    • Murzin, A., Brenner, S., Hubbard, T., and Chothia, C. (1995). Scop: A structural classification of proteins database for the investigation of sequences and structures. Journal of Molecular Biology, 247, 536-540.
    • (1995) Journal of Molecular Biology , vol.247 , pp. 536-540
    • Murzin, A.1    Brenner, S.2    Hubbard, T.3    Chothia, C.4
  • 368
    • 0345566149 scopus 로고    scopus 로고
    • A guided tour to approximate string matching
    • Navarro, G. (2001). A guided tour to approximate string matching. ACM computing surveys, 33(1), 31-88.
    • (2001) ACM Computing Surveys , vol.33 , Issue.1 , pp. 31-88
    • Navarro, G.1
  • 371
  • 373
    • 85131983018 scopus 로고    scopus 로고
    • Classifying spectral data using relational representation
    • Graz, Austria
    • Pachk, P. and Duin, R. (2003a). Classifying spectral data using relational representation. In Spectral Imaging Workshop, Graz, Austria.
    • (2003) Spectral Imaging Workshop
    • Pachk, P.1    Duin, R.2
  • 374
    • 0348041666 scopus 로고    scopus 로고
    • Dissimilarity-based classification of spec-tra: Computational issues
    • Pach'k, P. and Duin, R. (2003b). Dissimilarity-based classification of spec-tra: Computational issues. Real Time Imaging, 9(4), 237-244.
    • (2003) Real Time Imaging , vol.9 , Issue.4 , pp. 237-244
    • Pach'k, P.1    Duin, R.2
  • 375
    • 0034319192 scopus 로고    scopus 로고
    • A class-dependent weighted dissimilarity measure for nearest neighbor classification problems
    • Paredes, R. and Vidal, E. (2000). A class-dependent weighted dissimilarity measure for nearest neighbor classification problems. Pattern Recognition Letters, 21(12), 1027-1036.
    • (2000) Pattern Recognition Letters , vol.21 , Issue.12 , pp. 1027-1036
    • Paredes, R.1    Vidal, E.2
  • 376
    • 0000184052 scopus 로고    scopus 로고
    • Statistical independence and novelty detection with information preserving nonlinear maps
    • Parra, L., Deco, G., and Miesbach, S. (1996). Statistical independence and novelty detection with information preserving nonlinear maps. Neural Computation, 8, 260-269.
    • (1996) Neural Computation , vol.8 , pp. 260-269
    • Parra, L.1    Deco, G.2    Miesbach, S.3
  • 377
    • 0001473437 scopus 로고
    • On estimation of a probability function and mode
    • Parzen, E. (1962). On estimation of a probability function and mode. Annals of Mathematical Statistics, 33(3), 1065-1076.
    • (1962) Annals of Mathematical Statistics , vol.33 , Issue.3 , pp. 1065-1076
    • Parzen, E.1
  • 381
    • 0034826030 scopus 로고    scopus 로고
    • Automatic pattern recognition by sim-ilarity representations
    • Pekalska, E. and Duin, R. (2001a). Automatic pattern recognition by sim-ilarity representations. Electronic Letters, 37(3), 159-160.
    • (2001) Electronic Letters , vol.37 , Issue.3 , pp. 159-160
    • Pekalska, E.1    Duin, R.2
  • 382
    • 84957001462 scopus 로고    scopus 로고
    • On combining dissimilarity represen-tations
    • J. Kittler and F. Roli, editors, Springer Verlag
    • Pekalska, E. and Duin, R. (2001b). On combining dissimilarity represen-tations. In J. Kittler and F. Roli, editors, Multiple Classifier Systems, LNCS, volume 2096, pages 359-368. Springer Verlag.
    • (2001) Multiple Classifier Systems, LNCS , vol.2096 , pp. 359-368
    • Pekalska, E.1    Duin, R.2
  • 383
    • 0036604999 scopus 로고    scopus 로고
    • Dissimilarity representations allow for building good classifiers
    • Pekalska, E. and Duin, R. (2002a). Dissimilarity representations allow for building good classifiers. Pattern Recognition Letters, 23(8), 943-956.
    • (2002) Pattern Recognition Letters , vol.23 , Issue.8 , pp. 943-956
    • Pekalska, E.1    Duin, R.2
  • 384
    • 12344250914 scopus 로고    scopus 로고
    • Prototype selection for finding efficient representations of dissimilarity data
    • R. Kasturi, D. Laurendeau, and C. Suen, editors, Quebec City, Canada
    • Pekalska, E. and Duin, R. (2002b). Prototype selection for finding efficient representations of dissimilarity data. In R. Kasturi, D. Laurendeau, and C. Suen, editors, International Conference on Pattern Recognition, vol-ume 3, pages 37-40, Quebec City, Canada.
    • (2002) International Conference on Pattern Recognition, Vol-Ume , vol.3 , pp. 37-40
    • Pekalska, E.1    Duin, R.2
  • 385
    • 23044533467 scopus 로고    scopus 로고
    • Spatial representation of dissimilarity data via lower-complexity linear and nonlinear mappings
    • T. Caelli, A. Amin, R. Duin, M. Kamel, and D. de Ridder, editors, Springer-Verlag
    • Pekalska, E. and Duin, R. (2002c). Spatial representation of dissimilarity data via lower-complexity linear and nonlinear mappings. In T. Caelli, A. Amin, R. Duin, M. Kamel, and D. de Ridder, editors, Interna-tional Workshop on SPR, + SSPR, LNCS, volume 2396, pages 470-478. Springer-Verlag.
    • (2002) Interna-Tional Workshop on SPR, + SSPR, LNCS , vol.2396 , pp. 470-478
    • Pekalska, E.1    Duin, R.2
  • 390
    • 0041995203 scopus 로고    scopus 로고
    • A Generalized Kernel Ap-proach to Dissimilarity Based Classification
    • Pekalska, E., Paclik, P., and Duin, R. (2002b). A Generalized Kernel Ap-proach to Dissimilarity Based Classification. Journal of Machine Learn-ing Research, 2(2), 175-211.
    • (2002) Journal of Machine Learn-Ing Research , vol.2 , Issue.2 , pp. 175-211
    • Pekalska, E.1    Paclik, P.2    Duin, R.3
  • 391
    • 84899008261 scopus 로고    scopus 로고
    • One-class LP classifier for dis-similarity representations
    • S. T. S. Becker and K. Obermayer, editors, MIT Press, Cambridge, MA
    • Pekalska, E., Tax, D., and Duin, R. (2003). One-class LP classifier for dis-similarity representations. In S. T. S. Becker and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 761-768. MIT Press, Cambridge, MA.
    • (2003) Advances in Neural Information Processing Systems , vol.15 , pp. 761-768
    • Pekalska, E.1    Tax, D.2    Duin, R.3
  • 392
    • 33749612653 scopus 로고    scopus 로고
    • On not making dissimilarities Euclidean
    • T. Caelli, A. Amin, R. Duin, M. Kamel, and D. de Ridder, editors, Springer-Verlag
    • Pekalska, E., Duin, R., Gunter, S., and Bunke, H. (2004b). On not making dissimilarities Euclidean. In T. Caelli, A. Amin, R. Duin, M. Kamel, and D. de Ridder, editors, Joint IAPR International Workshops on SSPR and SPR, LNCS, pages 1145-1154. Springer-Verlag.
    • (2004) Joint IAPR International Workshops on SSPR and SPR, LNCS , pp. 1145-1154
    • Pekalska, E.1    Duin, R.2    Gunter, S.3    Bunke, H.4
  • 401
    • 0033896770 scopus 로고    scopus 로고
    • A theory of proximity based clustering: Structure detection by optimization
    • Puzicha, J., Hofmann, T., and Buhmann, J. (1999b). A theory of proximity based clustering: Structure detection by optimization. Pattern Recogni-tion, 33(4), 617-634.
    • (1999) Pattern Recogni-Tion , vol.33 , Issue.4 , pp. 617-634
    • Puzicha, J.1    Hofmann, T.2    Buhmann, J.3
  • 404
    • 0033713736 scopus 로고    scopus 로고
    • Fast nearest-neighbor search algorithms based on approximation-elimination search
    • Ramasubramanian, V. and Paliwal, K. (2000). Fast nearest-neighbor search algorithms based on approximation-elimination search. Pattern Recogni-tion, 33(96), 1497-151.
    • (2000) Pattern Recogni-Tion , vol.33 , Issue.96 , pp. 1497-2151
    • Ramasubramanian, V.1    Paliwal, K.2
  • 405
    • 0032042805 scopus 로고    scopus 로고
    • On expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix
    • Raudys, S. and Duin, R. (1998). On expected classification error of the Fisher linear classifier with pseudo-inverse covariance matrix. Pattern Recognition Letters, 19(5-6), 385-392.
    • (1998) Pattern Recognition Letters , vol.19 , Issue.5-6 , pp. 385-392
    • Raudys, S.1    Duin, R.2
  • 408
    • 0004085467 scopus 로고    scopus 로고
    • Springer-Verlag, New York, 2nd edition
    • Robert, C. (2001). The Bayesian Choice. Springer-Verlag, New York, 2nd edition.
    • (2001) The Bayesian Choice
    • Robert, C.1
  • 410
    • 85131979315 scopus 로고    scopus 로고
    • Invariants for Pattern Recognition and Classifica-tion
    • World Scientific Publishing Co
    • Rodrigues, M. (2001). Invariants for Pattern Recognition and Classifica-tion. Series in Machine Perception and Artificial Intelligence, 42. World Scientific Publishing Co.
    • (2001) Series in Machine Perception and Artificial Intelligence , vol.42
    • Rodrigues, M.1
  • 415
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear Dimensionality Reduction by Locally Linear Embedding
    • Roweis, S. and Saul, L. (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290, 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 418
    • 85131993265 scopus 로고    scopus 로고
    • Ph.D. thesis, Stanford University
    • Rubner, Y. (1999). Texture Metrics. Ph.D. thesis, Stanford University.
    • (1999) Texture Metrics
    • Rubner, Y.1
  • 422
    • 0004057553 scopus 로고
    • McGraw Hill, New York, 2nd edition
    • Rudin, W. (1991). Functional analysis. McGraw Hill, New York, 2nd edition.
    • (1991) Functional Analysis
    • Rudin, W.1
  • 423
    • 33750366773 scopus 로고
    • Consultants Bureau, New York and London
    • Sadovnichij, V. (1991). Theory of Operators. Consultants Bureau, New York and London.
    • (1991) Theory of Operators
    • Sadovnichij, V.1
  • 424
    • 0023375195 scopus 로고
    • The neighbor-joining method: A new method for reconstructing phylogenetic trees
    • Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.
    • (1987) Molecular Biology and Evolution , vol.4 , pp. 406-425
    • Saitou, N.1    Nei, M.2
  • 425
    • 84887006810 scopus 로고
    • A nonlinear mapping for data structure analysis
    • Sammon Jr.. J. (1969). A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18, 401-409.
    • (1969) IEEE Transactions on Computers , vol.C-18 , pp. 401-409
    • Sammon, J.1
  • 426
    • 0031164017 scopus 로고    scopus 로고
    • Prototype selection for the nearest neighbor rule through proximity graphs
    • Sanchez, J., Pla, F., and Ferri, F. (1997). Prototype selection for the nearest neighbor rule through proximity graphs. Pattern Recognition Letters, 18, 507-513.
    • (1997) Pattern Recognition Letters , vol.18 , pp. 507-513
    • Sanchez, J.1    Pla, F.2    Ferri, F.3
  • 427
    • 0032208093 scopus 로고    scopus 로고
    • Improving the k-ncn classification rule through heuristic modifications
    • Sanchez, J., Pla, F., and Ferri, F. (1998). Improving the k-ncn classification rule through heuristic modifications. Pattern Recognition Letters, 19, 1165-1170.
    • (1998) Pattern Recognition Letters , vol.19 , pp. 1165-1170
    • Sanchez, J.1    Pla, F.2    Ferri, F.3
  • 431
    • 2342517502 scopus 로고    scopus 로고
    • Think globally, fit locally: Unsupervised learning of low-dimensional manifolds
    • Saul, L. (2003). Think globally, fit locally: Unsupervised learning of low-dimensional manifolds. Journal of Machine Learning Research, 4, 119-155.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 119-155
    • Saul, L.1
  • 432
    • 0028909231 scopus 로고
    • Analysis of connectivity in the cat cerebral cortex
    • Scannell, J., Blakemore, C., and Young, M. (1995). Analysis of connectivity in the cat cerebral cortex. Journal of Neuroscience, 15, 1463-1483.
    • (1995) Journal of Neuroscience , vol.15 , pp. 1463-1483
    • Scannell, J.1    Blakemore, C.2    Young, M.3
  • 433
    • 0000190592 scopus 로고    scopus 로고
    • Native hilbert spaces for radial basis functions i
    • M. Buhman, D. Mache, M. Felten, and M. M.W., editors, Birkhauser-Verlag
    • Schaback, R. (1999). Native hilbert spaces for radial basis functions i. In M. Buhman, D. Mache, M. Felten, and M. M.W., editors, Inter-national Series of Numerical Mathematics, volume 132, pages 255-282. Birkhauser-Verlag.
    • (1999) Inter-National Series of Numerical Mathematics , vol.132 , pp. 255-282
    • Schaback, R.1
  • 434
    • 0034274841 scopus 로고    scopus 로고
    • A unified theory of radial basis functions (native hilbert spaces for radial basis functions ii)
    • Schaback, R. (2000). A unified theory of radial basis functions (native hilbert spaces for radial basis functions ii),. Journal of Computational and Applied Mathematics, 121(1-2), 165-177.
    • (2000) Journal of Computational and Applied Mathematics , vol.121 , Issue.1-2 , pp. 165-177
    • Schaback, R.1
  • 437
    • 0001203499 scopus 로고
    • Remarks to maurice frechet’s article’sur la definition axiomatique d’une classe d’espace distancies vectoriellement applicable sur l’espace de hilbert
    • Schoenberg, I. (1935). Remarks to maurice frechet’s article’sur la definition axiomatique d’une classe d’espace distancies vectoriellement applicable sur l’espace de hilbert. Annals of Mathematics, 36(3), 724-732.
    • (1935) Annals of Mathematics , vol.36 , Issue.3 , pp. 724-732
    • Schoenberg, I.1
  • 438
    • 0001641319 scopus 로고
    • On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in hilbert space
    • Schoenberg, I. (1937). On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in hilbert space. Annals of Mathematics, 38, 787-797.
    • (1937) Annals of Mathematics , vol.38 , pp. 787-797
    • Schoenberg, I.1
  • 439
    • 0001743201 scopus 로고
    • Metric spaces and completely monotone functions
    • Schoenberg, I. (1938a). Metric spaces and completely monotone functions. Annals of Mathematics, 39, 811-841.
    • (1938) Annals of Mathematics , vol.39 , pp. 811-841
    • Schoenberg, I.1
  • 445
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • Scholkopf, B., Smola, A., and Muller, K.-R. (1998a). Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10(5).
    • (1998) Neural Computation , vol.10 , Issue.5
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 447
    • 0002570938 scopus 로고    scopus 로고
    • Kernel principal component analysis
    • B. Scholkopf, C. Burges, and A. Smola, editors, MIT Press, Cambridge, MA
    • Scholkopf, B., Smola, A., and Muller, K.-R. (1999b). Kernel principal component analysis. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods, Support Vector Learning, pages 327-352. MIT Press, Cambridge, MA.
    • (1999) Advances in Kernel Methods, Support Vector Learning , pp. 327-352
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 449
    • 0000487102 scopus 로고    scopus 로고
    • Estimating the support of a high-dimensional distribution
    • Scholkopf, B., Platt, J., Smola, A., and Williamson, R. (2001). Estimating the support of a high-dimensional distribution. Neural Computation, 13, 1443-1471.
    • (2001) Neural Computation , vol.13 , pp. 1443-1471
    • Scholkopf, B.1    Platt, J.2    Smola, A.3    Williamson, R.4
  • 450
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statis-tics, 6, 461-464.
    • (1978) Annals of Statis-Tics , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 451
    • 78651584759 scopus 로고    scopus 로고
    • Outlier detection and clustering by partial mixture mod-eling
    • Prague, Czech Republic
    • Scott, D. (2004). Outlier detection and clustering by partial mixture mod-eling. In Computational Statistics, Prague, Czech Republic.
    • (2004) Computational Statistics
    • Scott, D.1
  • 460
    • 0004284836 scopus 로고
    • University of Toronto Press, Toronto
    • Sierpiriski, W. (1952). General Topology. University of Toronto Press, Toronto.
    • (1952) General Topology
    • Sierpiriski, W.1
  • 464
    • 0004132023 scopus 로고    scopus 로고
    • Ph.D. thesis, Delft University of Technology, Delft, The Netherlands
    • Skurichina, M. (2001). Stabilizing Weak Classifiers. Ph.D. thesis, Delft University of Technology, Delft, The Netherlands.
    • (2001) Stabilizing Weak Classifiers
    • Skurichina, M.1
  • 467
    • 85131974201 scopus 로고    scopus 로고
    • Technical report, Institute for Theoretical Chemistry and Struc-tural Biology, University of Vienna, Austria
    • Stadler, B. and Stadler, P. (2001a). Basic properties of filter convergence spaces. Technical report, Institute for Theoretical Chemistry and Struc-tural Biology, University of Vienna, Austria.
    • (2001) Basic Properties of Filter Convergence Spaces
    • Stadler, B.1    Stadler, P.2
  • 470
    • 0035930008 scopus 로고    scopus 로고
    • The topol-ogy of the possible: Formal spaces underlying patterns of evolutionary change
    • Stadler, B., Stadler, P., Wagner, G., and Fontana, W. (2001). The topol-ogy of the possible: Formal spaces underlying patterns of evolutionary change. Journal of Theoretical Biology, 213(2), 241-274.
    • (2001) Journal of Theoretical Biology , vol.213 , Issue.2 , pp. 241-274
    • Stadler, B.1    Stadler, P.2    Wagner, G.3    Fontana, W.4
  • 472
    • 0022909661 scopus 로고
    • Toward memory-based reasoning
    • Stanfill, C. and Waltz, D. (1986). Toward memory-based reasoning. Com-munications of ACM, 29, 1213-1228.
    • (1986) Com-Munications of ACM , vol.29 , pp. 1213-1228
    • Stanfill, C.1    Waltz, D.2
  • 473
    • 0003893064 scopus 로고    scopus 로고
    • World Scientific Publish-ing Company, 2nd edition
    • Stephen, G. (1998). String Searching Algorithms. World Scientific Publish-ing Company, 2nd edition.
    • (1998) String Searching Algorithms
    • Stephen, G.1
  • 474
    • 85131994601 scopus 로고    scopus 로고
    • Strauss, R. (Website). http://www.biol.ttu.edu/Strauss/Matlab/matlab.htm.
    • Strauss, R.1
  • 476
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining multiple partitions
    • Strehl, A. and Ghosh, J. (2002a). Cluster ensembles-a knowledge reuse framework for combining multiple partitions. Journal on Machine Learn-ing Research, 3, 583-617.
    • (2002) Journal on Machine Learn-Ing Research , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 477
    • 0036931833 scopus 로고    scopus 로고
    • Cluster ensembles-a knowledge reuse framework for combining partitionings
    • Edmonton
    • Strehl, A. and Ghosh, J. (2002b). Cluster ensembles-a knowledge reuse framework for combining partitionings. In Conference on Artificial In- telligence, pages 93-98, Edmonton.
    • (2002) Conference on Artificial In- Telligence , pp. 93-98
    • Strehl, A.1    Ghosh, J.2
  • 480
    • 0001598644 scopus 로고
    • On generalized information measures and their applica-tions
    • P. Hawkes, editor
    • Taneja, I. (1989). On generalized information measures and their applica-tions. In P. Hawkes, editor, Advances in Electronics and Electron Physics, volume 76, pages 327-413.
    • (1989) Advances in Electronics and Electron Physics , vol.76 , pp. 327-413
    • Taneja, I.1
  • 481
    • 0007736395 scopus 로고
    • New developments in generalized information measures
    • P. Hawkes, editor
    • Taneja, I. (1995). New developments in generalized information measures. In P. Hawkes, editor, Advances in Imaging and Electron Physics, vol-ume 91, pages 37-135.
    • (1995) Advances in Imaging and Electron Physics , vol.91 , pp. 37-135
    • Taneja, I.1
  • 486
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • Tax, D. and Duin, R. (1999). Support vector domain description. Pattern Recognition Letters, 20(11-13), 1191-1199.
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.1    Duin, R.2
  • 487
    • 84957038175 scopus 로고    scopus 로고
    • Combining one-class classifiers
    • J. Kittler and F. Roli, editors, Springer Verlag
    • Tax, D. and Duin, R. (2001). Combining one-class classifiers. In J. Kittler and F. Roli, editors, Multiple Classifier Systems, LNCS, volume 2096, pages 299-308. Springer Verlag.
    • (2001) Multiple Classifier Systems, LNCS , vol.2096 , pp. 299-308
    • Tax, D.1    Duin, R.2
  • 488
    • 0013372968 scopus 로고    scopus 로고
    • Uniform object generation for optimizing one-class classifiers
    • Tax, D. and Duin, R. (2002). Uniform object generation for optimizing one-class classifiers. Journal for Machine Learning Research, 2(2), 155-173.
    • (2002) Journal for Machine Learning Research , vol.2 , Issue.2 , pp. 155-173
    • Tax, D.1    Duin, R.2
  • 489
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D. and Duin, R. (2004). Support vector data description. Machine Learning, 54(1), 45-56.
    • (2004) Machine Learning , vol.54 , Issue.1 , pp. 45-56
    • Tax, D.1    Duin, R.2
  • 490
    • 10044248411 scopus 로고    scopus 로고
    • A consistency-based model selection for one-class classification
    • Cambridge, UK
    • Tax, D. and Muller, K.-R. (2004). A consistency-based model selection for one-class classification. In International Conference on Pattern Recogni-tion, volume 2, pages 363-366, Cambridge, UK.
    • (2004) International Conference on Pattern Recogni-Tion , vol.2 , pp. 363-366
    • Tax, D.1    Muller, K.-R.2
  • 492
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum, J., de Silva, V., and Langford, J. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319-2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    De Silva, V.2    Langford, J.3
  • 498
    • 0033556788 scopus 로고    scopus 로고
    • Mixtures of probabilistic principal component analysers
    • Tipping, M. and Bishop, C. (1999). Mixtures of probabilistic principal component analysers. Neural Computation, 11(2), 443-482.
    • (1999) Neural Computation , vol.11 , Issue.2 , pp. 443-482
    • Tipping, M.1    Bishop, C.2
  • 499
  • 501
    • 0037408246 scopus 로고    scopus 로고
    • Computing approximate tree edit distance using relaxation labeling
    • Torsello, A. and Hancock, E. (2003). Computing approximate tree edit distance using relaxation labeling. Pattern Recognition Letters, 24(8), 1089 1097.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.8 , pp. 1089
    • Torsello, A.1    Hancock, E.2
  • 502
    • 85132000458 scopus 로고    scopus 로고
    • Optimal dilations for metric multidi-mensional scaling
    • American Statistical Association
    • Trosset, M. and Mathar, R. (2000). Optimal dilations for metric multidi-mensional scaling. In Statistical Computing Section, American Statistical Association.
    • (2000) Statistical Computing Section
    • Trosset, M.1    Mathar, R.2
  • 503
    • 0002182927 scopus 로고
    • A survey of sampling from contaminated distributions
    • I. Olkin, S. Ghurye, W. Hoeffding, W. Madow, and H. Mann, editors, Stanford University Press, Stanford, CA
    • Tukey, J. (1960). A survey of sampling from contaminated distributions. In I. Olkin, S. Ghurye, W. Hoeffding, W. Madow, and H. Mann, editors, Contributions to Probability and Statistics. Essays in Honor of Harold Hotelling, pages 448-485. Stanford University Press, Stanford, CA.
    • (1960) Contributions to Probability and Statistics. Essays in Honor of Harold Hotelling , pp. 448-485
    • Tukey, J.1
  • 504
    • 58149411184 scopus 로고
    • Features of similarity
    • Tversky, A. (1977). Features of similarity. Psychological Review, 84(4), 327-352.
    • (1977) Psychological Review , vol.84 , Issue.4 , pp. 327-352
    • Tversky, A.1
  • 508
    • 85131984056 scopus 로고    scopus 로고
    • Content-based retrieval from im-age databases: Current solutions and future directions
    • Thessaloniki, Greece
    • Vasconcelos, N. and Kunt, M. (2000). Content-based retrieval from im-age databases: Current solutions and future directions. In International Conference on Image Processing, Thessaloniki, Greece.
    • (2000) International Conference on Image Processing
    • Vasconcelos, N.1    Kunt, M.2
  • 512
    • 33751574892 scopus 로고
    • Mas-ter’s thesis, Department of Computer Science, University of Toronto
    • Verma, R. (1991). A Metric Approach to Isolated Word Recognition. Mas-ter’s thesis, Department of Computer Science, University of Toronto.
    • (1991) A Metric Approach to Isolated Word Recognition
    • Verma, R.1
  • 515
    • 9444255070 scopus 로고    scopus 로고
    • Distance-based classification with Lipschitz functions
    • B. Scholkopf and M. Warmuth, editors, Berlin-Heidelberg, Germany. Springer Verlag
    • von Luxburg, U. and Bousquet, O. (2003). Distance-based classification with Lipschitz functions. In B. Scholkopf and M. Warmuth, editors, Annual Conference on Computational Learning Theory, pages 314-328, Berlin-Heidelberg, Germany. Springer Verlag.
    • (2003) Annual Conference on Computational Learning Theory , pp. 314-328
    • Von Luxburg, U.1    Bousquet, O.2
  • 518
    • 0001873883 scopus 로고    scopus 로고
    • Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV
    • B. Scholkopf, C. Burges, and A. Smola, editors, MIT Press, Cambridge, MA
    • Wahba, G. (1999). Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods, Support Vector Learning, pages 69-88. MIT Press, Cambridge, MA.
    • (1999) Advances in Kernel Methods, Support Vector Learning , pp. 69-88
    • Wahba, G.1
  • 520
    • 0029305517 scopus 로고
    • Multidimensional scaling by iterative majorization using radial basis functions
    • Webb, A. (1995). Multidimensional scaling by iterative majorization using radial basis functions. Pattern Recognition, 28(5), 753-759.
    • (1995) Pattern Recognition , vol.28 , Issue.5 , pp. 753-759
    • Webb, A.1
  • 521
    • 0031517185 scopus 로고    scopus 로고
    • Radial basis functions for exploratory data analysis: An iterative majorisation approach for Minkowski distances based on multidimensional scaling
    • Webb, A. (1997). Radial basis functions for exploratory data analysis: An iterative majorisation approach for Minkowski distances based on multidimensional scaling. Journal of Classification, 14(2), 249-268.
    • (1997) Journal of Classification , vol.14 , Issue.2 , pp. 249-268
    • Webb, A.1
  • 526
    • 0003924016 scopus 로고
    • John Wiley & Sons, Inc., New York-London
    • Wilks, S. (1962). Mathematical Statistics. John Wiley & Sons, Inc., New York-London.
    • (1962) Mathematical Statistics
    • Wilks, S.1
  • 527
    • 0004151989 scopus 로고
    • Addison-Wesley Publishing Com-pany
    • Willard, S. (1970). General Topology. Addison-Wesley Publishing Com-pany.
    • (1970) General Topology
    • Willard, S.1
  • 528
    • 0008863979 scopus 로고
    • Tech-nical report, National Institute of Standards and Technology
    • Wilson, C. and Garris, M. (1992). Handprinted character database 3. Tech-nical report, National Institute of Standards and Technology.
    • (1992) Handprinted Character Database 3
    • Wilson, C.1    Garris, M.2
  • 530
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson, R. and Martinez, T. (2000). Reduction techniques for instance-based learning algorithms. Machine Learning, 38(3), 257-286.
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 257-286
    • Wilson, R.1    Martinez, T.2
  • 531
    • 0029669421 scopus 로고    scopus 로고
    • Invariant pattern-recognition: A review
    • Wood, J. (1996). Invariant pattern-recognition: A review. Pattern Recog-nition, 29(1), 1-17.
    • (1996) Pattern Recog-Nition , vol.29 , Issue.1 , pp. 1-17
    • Wood, J.1
  • 532
    • 0032050058 scopus 로고    scopus 로고
    • Computable elastic distances between shapes
    • Younes, L. (1998). Computable elastic distances between shapes. SIAM Journal on Applied Mathematics, 58(2), 565-586.
    • (1998) SIAM Journal on Applied Mathematics , vol.58 , Issue.2 , pp. 565-586
    • Younes, L.1
  • 533
    • 0033114845 scopus 로고    scopus 로고
    • Optimal matching between shapes via elastic deforma-tions
    • Younes, L. (1999). Optimal matching between shapes via elastic deforma-tions. Image and Vision Computing, 17(5-6), 381-389.
    • (1999) Image and Vision Computing , vol.17 , Issue.5-6 , pp. 381-389
    • Younes, L.1
  • 534
    • 0002361037 scopus 로고
    • Discussion of a set of points in terms of their mutual distances
    • Young, G. and Householder, A. (1938). Discussion of a set of points in terms of their mutual distances. Psychometrika, 3, 19-22.
    • (1938) Psychometrika , vol.3 , pp. 19-22
    • Young, G.1    Householder, A.2
  • 535
    • 33745201784 scopus 로고    scopus 로고
    • Support objects for domain approximation
    • Skovde, Sweden. Springer, Berlin
    • Ypma, A. and Duin, R. (1998). Support objects for domain approximation. In International Conference on Artificial Neural Networks, pages 719-724, Skovde, Sweden. Springer, Berlin.
    • (1998) International Conference on Artificial Neural Networks , pp. 719-724
    • Ypma, A.1    Duin, R.2
  • 537
    • 0015315797 scopus 로고
    • Fourier Descriptors for Plane Closed Curves
    • Zahn, C. and Roskies, R. (1972). Fourier Descriptors for Plane Closed Curves. IEEE Transactions, C-21(3), 269-281.
    • (1972) IEEE Transactions , vol.C-21 , Issue.3 , pp. 269-281
    • Zahn, C.1    Roskies, R.2
  • 538
    • 1642412307 scopus 로고    scopus 로고
    • An empirical re-examination of weighted voting for k-nn
    • Tilburg, The Netherlands. Springer, Berlin
    • Zavrel, J. (1997). An empirical re-examination of weighted voting for k-nn. In Belgian-Dutch Conference on Machine Learning, pages 139-148, Tilburg, The Netherlands. Springer, Berlin.
    • (1997) Belgian-Dutch Conference on Machine Learning , pp. 139-148
    • Zavrel, J.1
  • 540
    • 0030396412 scopus 로고    scopus 로고
    • Forms: A flexible object recognition and modeling system
    • Zhu, S. and Yuille, A. (1996). Forms: A flexible object recognition and modeling system. International Journal on Computer Vision, 20(3), 187-212.
    • (1996) International Journal on Computer Vision , vol.20 , Issue.3 , pp. 187-212
    • Zhu, S.1    Yuille, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.