-
1
-
-
77950985670
-
Molecular-to-large-scale heat transfer with multiphase interfaces: Current status and new directions
-
COI: 1:CAS:528:DC%2BD1MXhtlSqsr7F
-
Manglik R.M. and Jog M.A.: Molecular-to-large-scale heat transfer with multiphase interfaces: Current status and new directions. J. Heat Transfer 131, 121001 (2009). DOI: 10.1115/1.4000007
-
(2009)
J. Heat Transfer
, vol.131
, pp. 121001
-
-
Manglik, R.M.1
Jog, M.A.2
-
3
-
-
80051548982
-
Study of the adhesion of Staphylococcus aureus to coated glass substrates
-
COI: 1:CAS:528:DC%2BC3MXlslOhs7s%3D
-
Page K., Wilson M., Mordan N., Chrzanowski W., Knowles J., and Parkin I.P.: Study of the adhesion of Staphylococcus aureus to coated glass substrates. J. Mater. Sci. 46, 6355–6363 (2011). DOI: 10.1007/s10853-011-5582-9
-
(2011)
J. Mater. Sci.
, vol.46
, pp. 6355-6363
-
-
Page, K.1
Wilson, M.2
Mordan, N.3
Chrzanowski, W.4
Knowles, J.5
Parkin, I.P.6
-
4
-
-
0347196690
-
-
John Wiley and Sons, Danvers, MA
-
Moran M., Shapiro H., Munson B.R., and DeWitt D.P.: Introduction to Thermal Systems Engineering (John Wiley and Sons, Danvers, MA, 2003).
-
(2003)
Introduction to Thermal Systems Engineering
-
-
Moran, M.1
Shapiro, H.2
Munson, B.R.3
DeWitt, D.P.4
-
6
-
-
33947242257
-
Direct liquid cooling of high flux micro and nano electronic components
-
COI: 1:CAS:528:DC%2BD28XhtFGru7rL
-
Bar-Cohen A., Arik M., and Ohadi M.: Direct liquid cooling of high flux micro and nano electronic components. Proc. IEEE 94, 1549–1570 (2006). DOI: 10.1109/JPROC.2006.879791
-
(2006)
Proc. IEEE
, vol.94
, pp. 1549-1570
-
-
Bar-Cohen, A.1
Arik, M.2
Ohadi, M.3
-
7
-
-
76049087566
-
Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces
-
COI: 1:CAS:528:DC%2BC3cXhvFeitb4%3D
-
McHale J.P. and Garimella S.V.: Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. Int. J. Multiphase Flow 36, 249–260 (2010). DOI: 10.1016/j.ijmultiphaseflow.2009.12.004
-
(2010)
Int. J. Multiphase Flow
, vol.36
, pp. 249-260
-
-
McHale, J.P.1
Garimella, S.V.2
-
9
-
-
2442539174
-
Microscale heat transfer measurements during pool boiling of FC-72: Effect of subcooling
-
COI: 1:CAS:528:DC%2BD2cXjvFSltrY%3D
-
Demiray F. and Kim J.: Microscale heat transfer measurements during pool boiling of FC-72: Effect of subcooling. Int. J. Heat Mass Transfer 47, 3257–3268 (2004). DOI: 10.1016/j.ijheatmasstransfer.2004.02.008
-
(2004)
Int. J. Heat Mass Transfer
, vol.47
, pp. 3257-3268
-
-
Demiray, F.1
Kim, J.2
-
10
-
-
84867774062
-
Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling
-
Jiang Y., Osada H., Inagaki M., and Horinouchi N.: Dynamic modeling on bubble growth, detachment and heat transfer for hybrid-scheme computations of nucleate boiling. Int. J. Heat Mass Transfer 56, 640–652 (2013). DOI: 10.1016/j.ijheatmasstransfer.2012.09.006
-
(2013)
Int. J. Heat Mass Transfer
, vol.56
, pp. 640-652
-
-
Jiang, Y.1
Osada, H.2
Inagaki, M.3
Horinouchi, N.4
-
11
-
-
82955203845
-
Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography
-
COI: 1:CAS:528:DC%2BC3MXhs1SktrnN
-
Golobic I., Petkovsek J., and Kenning D.B.R.: Bubble growth and horizontal coalescence in saturated pool boiling on a titanium foil, investigated by high-speed IR thermography. Int. J. Heat Mass Transfer 55, 1385–1402 (2012). DOI: 10.1016/j.ijheatmasstransfer.2011.08.021
-
(2012)
Int. J. Heat Mass Transfer
, vol.55
, pp. 1385-1402
-
-
Golobic, I.1
Petkovsek, J.2
Kenning, D.B.R.3
-
12
-
-
41649084344
-
Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes
-
COI: 1:CAS:528:DC%2BD1cXkvVSnurk%3D
-
Son G. and Dhir V.K.: Numerical simulation of nucleate boiling on a horizontal surface at high heat fluxes. Int. J. Heat Mass Transfer 51, 2566–2582 (2008). DOI: 10.1016/j.ijheatmasstransfer.2007.07.046
-
(2008)
Int. J. Heat Mass Transfer
, vol.51
, pp. 2566-2582
-
-
Son, G.1
Dhir, V.K.2
-
13
-
-
34247874494
-
Bubble dynamics and heat transfer during pool and flow boiling
-
COI: 1:CAS:528:DC%2BD2sXmslOhsLs%3D
-
Dhir V., Abarajith H.S., and Li D.: Bubble dynamics and heat transfer during pool and flow boiling. Heat Transfer Eng. 28, 608–624 (2007). DOI: 10.1080/01457630701266421
-
(2007)
Heat Transfer Eng.
, vol.28
, pp. 608-624
-
-
Dhir, V.1
Abarajith, H.S.2
Li, D.3
-
14
-
-
70350489868
-
Self-propelled dropwise condensate on superhydrophobic surfaces
-
COI: 1:CAS:528:DC%2BD1MXhtlKitrbN
-
Boreyko J. and Chen C-H.: Self-propelled dropwise condensate on superhydrophobic surfaces. Phys. Rev. Lett. 103, 184501 (2009). DOI: 10.1103/PhysRevLett.103.184501
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 184501
-
-
Boreyko, J.1
Chen, C.-H.2
-
15
-
-
34248577551
-
Dropwise condensation on superhydrophobic surfaces with two-tier roughness
-
COI: 1:CAS:528:DC%2BD2sXlsVKlsr4%3D
-
Chen C-H., Cai Q., Tsai C., Chen C-L., Xiong G., Yu Y., and Ren Z.: Dropwise condensation on superhydrophobic surfaces with two-tier roughness. Appl. Phys. Lett. 90, 173108 (2007). DOI: 10.1063/1.2731434
-
(2007)
Appl. Phys. Lett.
, vol.90
, pp. 173108
-
-
Chen, C.-H.1
Cai, Q.2
Tsai, C.3
Chen, C.-L.4
Xiong, G.5
Yu, Y.6
Ren, Z.7
-
16
-
-
84870455008
-
Enhanced condensation on lubricant-impregnated nanotextured surfaces
-
COI: 1:CAS:528:DC%2BC38XhsVGitrfP
-
Anand S., Paxson A., Dhiman R., Smith J.D., and Varanasi K.K.: Enhanced condensation on lubricant-impregnated nanotextured surfaces. Langmuir 6, 10122–10129 (2012).
-
(2012)
Langmuir
, vol.6
, pp. 10122-10129
-
-
Anand, S.1
Paxson, A.2
Dhiman, R.3
Smith, J.D.4
Varanasi, K.K.5
-
17
-
-
79952394476
-
Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces
-
COI: 1:CAS:528:DC%2BC3MXisF2hur4%3D
-
Rykaczewski K., Scott J.H.J., and Fedorov A.G.: Electron beam heating effects during environmental scanning electron microscopy imaging of water condensation on superhydrophobic surfaces. Appl. Phys. Lett. 98, 093106 (2011). DOI: 10.1063/1.3560443
-
(2011)
Appl. Phys. Lett.
, vol.98
, pp. 093106
-
-
Rykaczewski, K.1
Scott, J.H.J.2
Fedorov, A.G.3
-
18
-
-
0041840308
-
Prediction of the frost formation on a cold flat surface
-
COI: 1:CAS:528:DC%2BD3sXltFKltbg%3D
-
Lee K-S., Jhee S., and Yang D-K.: Prediction of the frost formation on a cold flat surface. Int. J. Heat Mass Transfer 46, 3789–3796 (2003). DOI: 10.1016/S0017-9310(03)00195-9
-
(2003)
Int. J. Heat Mass Transfer
, vol.46
, pp. 3789-3796
-
-
Lee, K.-S.1
Jhee, S.2
Yang, D.-K.3
-
19
-
-
0017494237
-
Study of frost properties correlating with frost formation types
-
Hayashi Y., Aoki A., Adachi S., and Hori K.: Study of frost properties correlating with frost formation types. J. Heat Transfer 99, 239–245 (1977).
-
(1977)
J. Heat Transfer
-
-
Hayashi, Y.1
Aoki, A.2
Adachi, S.3
Hori, K.4
-
20
-
-
78650719687
-
Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets
-
COI: 1:CAS:528:DC%2BC3cXhsVSisr%2FM
-
Mishchenko L., Hatton B., Bahadur V., Taylor J., Krupenkin T., and Aizenberg J.: Design of ice-free nanostructured surfaces based on repulsion of impacting water droplets. ACS Nano 4, 7699–7707 (2010). DOI: 10.1021/nn102557p
-
(2010)
ACS Nano
, vol.4
, pp. 7699-7707
-
-
Mishchenko, L.1
Hatton, B.2
Bahadur, V.3
Taylor, J.4
Krupenkin, T.5
Aizenberg, J.6
-
21
-
-
77950851906
-
Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer
-
COI: 1:CAS:528:DC%2BC3cXksVGht74%3D
-
Patankar N.A.: Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer. Soft Matter 6, 1613–1620 (2010). DOI: 10.1039/b923967g
-
(2010)
Soft Matter
, vol.6
, pp. 1613-1620
-
-
Patankar, N.A.1
-
22
-
-
77957701344
-
Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface
-
COI: 1:CAS:528:DC%2BC3cXht1eltbjM
-
Ahn H., Lee C., Kim H., Jo H., Kang S., Kim J., Shin J., and Kim M.H.: Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface. Nucl. Eng. Des. 240, 3350–3360 (2010). DOI: 10.1016/j.nucengdes.2010.07.006
-
(2010)
Nucl. Eng. Des.
, vol.240
, pp. 3350-3360
-
-
Ahn, H.1
Lee, C.2
Kim, H.3
Jo, H.4
Kang, S.5
Kim, J.6
Shin, J.7
Kim, M.H.8
-
23
-
-
33645944382
-
Internal vessel cooling feasibility attributed by critical heat flux in inclined rectangular gap
-
COI: 1:CAS:528:DC%2BD28Xjt1Sjsbc%3D
-
Kim Y., Kim S., Suh K., Rempe J., Cheung F.B., and Kim S.B.: Internal vessel cooling feasibility attributed by critical heat flux in inclined rectangular gap. Nucl. Technol. 154, 13–40 (2006). DOI: 10.13182/NT06-A3715
-
(2006)
Nucl. Technol.
, vol.154
, pp. 13-40
-
-
Kim, Y.1
Kim, S.2
Suh, K.3
Rempe, J.4
Cheung, F.B.5
Kim, S.B.6
-
24
-
-
0019655750
-
Critical heat flux predictions during blowdown transients
-
COI: 1:CAS:528:DyaL3MXmt1Oms78%3D
-
Leung J.C.M., Gallivan K., Henry R.E., and Bankoff S.G.: Critical heat flux predictions during blowdown transients. Int. J. Multiphase Flow 7, 677–701 (1981). DOI: 10.1016/0301-9322(81)90038-0
-
(1981)
Int. J. Multiphase Flow
, vol.7
, pp. 677-701
-
-
Leung, J.C.M.1
Gallivan, K.2
Henry, R.E.3
Bankoff, S.G.4
-
28
-
-
0017292388
-
Boiling augmentation with structured surfaces
-
Corman J.C. and McLaughlin M.H.: Boiling augmentation with structured surfaces. ASHRAE Trans. 82, 906–918 (1976).
-
(1976)
ASHRAE Trans.
, vol.82
, pp. 906-918
-
-
Corman, J.C.1
McLaughlin, M.H.2
-
29
-
-
0008262201
-
About boiling mechanism on flooded surface with capillary-porous coating
-
Mankovskij O., Ioffe O., Fibgant L.G., and Tolczinskij A.R.: About boiling mechanism on flooded surface with capillary-porous coating. Ing. Fiz. J. 30, 975–982 (1976).
-
(1976)
Ing. Fiz. J.
, vol.30
, pp. 975-982
-
-
Mankovskij, O.1
Ioffe, O.2
Fibgant, L.G.3
Tolczinskij, A.R.4
-
30
-
-
0023170542
-
Pool boiling from GEWA surfaces in water and R-113
-
COI: 1:CAS:528:DyaL2sXkvVShsr4%3D
-
Ayub Z.H. and Bergles A.E.: Pool boiling from GEWA surfaces in water and R-113. Wärme-und Stoffübertragung 21, 209–219 (1987). DOI: 10.1007/BF01004023
-
(1987)
Wärme-und Stoffübertragung
, vol.21
, pp. 209-219
-
-
Ayub, Z.H.1
Bergles, A.E.2
-
31
-
-
0017678207
-
Heat transfer tubes enhancing boiling and condensation in heat exchangers of a refrigerating machine
-
Arai N.: Heat transfer tubes enhancing boiling and condensation in heat exchangers of a refrigerating machine. ASHRAE Trans. 83, 58–70 (1977).
-
(1977)
ASHRAE Trans.
, vol.83
, pp. 58-70
-
-
Arai, N.1
-
32
-
-
0019051627
-
Dynamic model of enhanced boiling heat transfer on porous surfaces
-
COI: 1:CAS:528:DyaL3MXjt1yjuw%3D%3D
-
Nakayama W., Daikoku T., Kuwahara H., and Nakajima T.: Dynamic model of enhanced boiling heat transfer on porous surfaces. J. Heat Transfer 102, 451–456 (1980). DOI: 10.1115/1.3244321
-
(1980)
J. Heat Transfer
, vol.102
, pp. 451-456
-
-
Nakayama, W.1
Daikoku, T.2
Kuwahara, H.3
Nakajima, T.4
-
33
-
-
0037330924
-
Pool boiling on a superhydrophilic surface
-
COI: 1:CAS:528:DC%2BD3sXhslGiu7c%3D
-
Takata Y., Hidaka S., Masuda M., and Ito T.: Pool boiling on a superhydrophilic surface. Int. J. Energy Res. 27, 111–119 (2003). DOI: 10.1002/er.861
-
(2003)
Int. J. Energy Res.
, vol.27
, pp. 111-119
-
-
Takata, Y.1
Hidaka, S.2
Masuda, M.3
Ito, T.4
-
34
-
-
38149092690
-
Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces
-
COI: 1:CAS:528:DC%2BD2sXhtlGjtb7M
-
Li C. and Peterson G.P.: Parametric study of pool boiling on horizontal highly conductive microporous coated surfaces. J. Heat Transfer-Trans. ASME 129, 1465–1475 (2007). DOI: 10.1115/1.2759969
-
(2007)
J. Heat Transfer-Trans. ASME
, vol.129
, pp. 1465-1475
-
-
Li, C.1
Peterson, G.P.2
-
35
-
-
49749143783
-
Nanostructured copper interfaces for enhanced boiling
-
COI: 1:CAS:528:DC%2BD1cXhtVehurbL
-
Li C., Wang Z., Wang P., Peles Y., Koratkar N., and Peterson G.P.: Nanostructured copper interfaces for enhanced boiling. Small 4, 1084–1088 (2008). DOI: 10.1002/smll.200700991
-
(2008)
Small
, vol.4
, pp. 1084-1088
-
-
Li, C.1
Wang, Z.2
Wang, P.3
Peles, Y.4
Koratkar, N.5
Peterson, G.P.6
-
36
-
-
77954543060
-
Characterization of evaporation and boiling from sintered powder wicks fed by capillary action
-
COI: 1:CAS:528:DC%2BC3cXos1WmtLY%3D
-
Weibel J., Garimella S.V., and North M.T.: Characterization of evaporation and boiling from sintered powder wicks fed by capillary action. Int. J. Heat Mass Transfer 53, 4204–4215 (2010). DOI: 10.1016/j.ijheatmasstransfer.2010.05.043
-
(2010)
Int. J. Heat Mass Transfer
, vol.53
, pp. 4204-4215
-
-
Weibel, J.1
Garimella, S.V.2
North, M.T.3
-
37
-
-
82955248128
-
Effect of open microchannel geometry on pool boiling enhancement
-
Cooke D. and Kandlikar S.G.: Effect of open microchannel geometry on pool boiling enhancement. Int. J. Heat Mass Transfer 55, 1004–1013 (2012). DOI: 10.1016/j.ijheatmasstransfer.2011.10.010
-
(2012)
Int. J. Heat Mass Transfer
, vol.55
, pp. 1004-1013
-
-
Cooke, D.1
Kandlikar, S.G.2
-
38
-
-
84874102385
-
Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer
-
COI: 1:CAS:528:DC%2BC3sXit1aitb0%3D
-
Kandlikar S.G.: Controlling bubble motion over heated surface through evaporation momentum force to enhance pool boiling heat transfer. Appl. Phys. Lett. 102, 051611 (2013). DOI: 10.1063/1.4791682
-
(2013)
Appl. Phys. Lett.
, vol.102
, pp. 051611
-
-
Kandlikar, S.G.1
-
39
-
-
0000311659
-
Maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure
-
Nukiyama S.: Maximum and minimum values of heat transmitted from metal to boiling water under atmospheric pressure. Jpn. Soc. Mech. Eng. 37, 367–374 (1934).
-
(1934)
Jpn. Soc. Mech. Eng.
, vol.37
, pp. 367-374
-
-
Nukiyama, S.1
-
40
-
-
84947629337
-
A new correlation of pool boiling data including effect of heating surface characteristics
-
COI: 1:CAS:528:DyaF1MXktFCmsL8%3D
-
Mikic B.B. and Rohsenow W.M.: A new correlation of pool boiling data including effect of heating surface characteristics. J. Heat Transfer 91, 245–250 (1969). DOI: 10.1115/1.3580136
-
(1969)
J. Heat Transfer
, vol.91
, pp. 245-250
-
-
Mikic, B.B.1
Rohsenow, W.M.2
-
41
-
-
85001970955
-
On the size range of active nucleation cavities on a heating surface
-
COI: 1:CAS:528:DyaF38XksFGntLs%3D
-
Hsu K-Y.: On the size range of active nucleation cavities on a heating surface. ASME J. Heat Transfer 84, 207–216 (1962). DOI: 10.1115/1.3684339
-
(1962)
ASME J. Heat Transfer
, vol.84
, pp. 207-216
-
-
Hsu, K.-Y.1
-
42
-
-
84997492918
-
Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface
-
COI: 1:CAS:528:DyaK2cXhtFSgsrY%3D
-
Wang C.H. and Dhir V.K.: Effect of surface wettability on active nucleation site density during pool boiling of water on a vertical surface. J. Heat Transfer-Trans. ASME 115, 659–669 (1993). DOI: 10.1115/1.2910737
-
(1993)
J. Heat Transfer-Trans. ASME
, vol.115
, pp. 659-669
-
-
Wang, C.H.1
Dhir, V.K.2
-
43
-
-
77958050607
-
Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling?
-
COI: 1:CAS:528:DC%2BC3cXht1Gns7nM
-
Betz A., Xu J., Qiu H., and Attinger D.: Do surfaces with mixed hydrophilic and hydrophobic areas enhance pool boiling? Appl. Phys. Lett. 97, 141909 (2010). DOI: 10.1063/1.3485057
-
(2010)
Appl. Phys. Lett.
, vol.97
, pp. 141909
-
-
Betz, A.1
Xu, J.2
Qiu, H.3
Attinger, D.4
-
44
-
-
80053216636
-
A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces
-
COI: 1:CAS:528:DC%2BC3MXht1ant7%2FM
-
Jo H., Ahn H., Kang S., and Kim M.H.: A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces. Int. J. Heat Mass Transfer 54, 5643–5652 (2011). DOI: 10.1016/j.ijheatmasstransfer.2011.06.001
-
(2011)
Int. J. Heat Mass Transfer
, vol.54
, pp. 5643-5652
-
-
Jo, H.1
Ahn, H.2
Kang, S.3
Kim, M.H.4
-
45
-
-
33144463919
-
Critical heat flux in thin, uniform particle coatings
-
COI: 1:CAS:528:DC%2BD28XhvVegt7w%3D
-
Hwang G.S. and Kaviany M.: Critical heat flux in thin, uniform particle coatings. Int. J. Heat Mass Transfer 49, 844–849 (2006). DOI: 10.1016/j.ijheatmasstransfer.2005.09.020
-
(2006)
Int. J. Heat Mass Transfer
, vol.49
, pp. 844-849
-
-
Hwang, G.S.1
Kaviany, M.2
-
47
-
-
85141851740
-
From nano to micro scales in boiling
-
Kakac S., Vasiliev L., Bayazitoglu Y., and Yener Y. eds.; Kulwer Academic Publishers, The Netherlands
-
Dhir V., Abarajith H.S., and Warrier G.R.: From nano to micro scales in boiling. In Microscale Heat Transfer Fundamentals and Applications, Proceedings of NATO-ASI Meeting, NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 193, Kakac S., Vasiliev L., Bayazitoglu Y., and Yener Y. eds.; Kulwer Academic Publishers: The Netherlands, 2005.
-
(2005)
In Microscale Heat Transfer Fundamentals and Applications, Proceedings of NATO-ASI Meeting, NATO Science Series II: Mathematics, Physics and Chemistry
, vol.193
-
-
Dhir, V.1
Abarajith, H.S.2
Warrier, G.R.3
-
48
-
-
0036699572
-
The boiling crisis phenomenon: Part II: Dryout dynamics and burnout
-
COI: 1:CAS:528:DC%2BD38Xms1yitr4%3D
-
Theofanous T., Dinh T., Tu J.P., and Dinh A.T.: The boiling crisis phenomenon: Part II: Dryout dynamics and burnout. Exp. Therm. Fluid Sci. 26, 793–810 (2002). DOI: 10.1016/S0894-1777(02)00193-0
-
(2002)
Exp. Therm. Fluid Sci.
, vol.26
, pp. 793-810
-
-
Theofanous, T.1
Dinh, T.2
Tu, J.P.3
Dinh, A.T.4
-
49
-
-
14844353113
-
Odyssey of the enhanced boiling surface
-
COI: 1:CAS:528:DC%2BD2MXovVGqtg%3D%3D
-
Webb R.L.: Odyssey of the enhanced boiling surface. J. Heat Transfer 126, 1051–1059 (2004). DOI: 10.1115/1.1834615
-
(2004)
J. Heat Transfer
, vol.126
, pp. 1051-1059
-
-
Webb, R.L.1
-
51
-
-
26144475396
-
Means for increasing the heat transfer coefficient between a wall and boiling liquid
-
Hummel R.L.: Means for increasing the heat transfer coefficient between a wall and boiling liquid. U.S. Patent No. 3207209, 1965.
-
(1965)
U.S. Patent No. 3207209
-
-
Hummel, R.L.1
-
53
-
-
3042989611
-
A general theory of heterophase fluctuations and pretransition phenomena
-
COI: 1:CAS:528:DyaA1MXkslSisQ%3D%3D
-
Frenkel J.: A general theory of heterophase fluctuations and pretransition phenomena. J. Chem. Phys. 7, 538 (1939). DOI: 10.1063/1.1750484
-
(1939)
J. Chem. Phys.
, vol.7
, pp. 538
-
-
Frenkel, J.1
-
54
-
-
0036678552
-
Onset of nucleate boiling and active nucleation site density during subcooled flow boiling
-
COI: 1:CAS:528:DC%2BD38XlsValsrg%3D
-
Basu N., Warrier G.R., and Dhir V.K.: Onset of nucleate boiling and active nucleation site density during subcooled flow boiling. J. Heat Transfer 124, 717 (2002). DOI: 10.1115/1.1471522
-
(2002)
J. Heat Transfer
, vol.124
, pp. 717
-
-
Basu, N.1
Warrier, G.R.2
Dhir, V.K.3
-
55
-
-
0000409730
-
Cavitation and nuclei
-
Knapp R.T.: Cavitation and nuclei. Trans. ASME 80, 1321 (1958).
-
(1958)
Trans. ASME
, vol.80
, pp. 1321
-
-
Knapp, R.T.1
-
56
-
-
0001832696
-
The prediction of surface temperature at incipient boiling
-
Bankoff S.G.: The prediction of surface temperature at incipient boiling. Chem. Eng. Prog., Symp. Ser. 55, 87 (1959).
-
(1959)
Chem. Eng. Prog., Symp. Ser.
, vol.55
, pp. 87
-
-
Bankoff, S.G.1
-
57
-
-
33645794739
-
Comparison of nucleation site density for pool boiling and gas nucleation
-
COI: 1:CAS:528:DC%2BD2MXhtlCgurrJ
-
Qi Y. and Klausner J.F.: Comparison of nucleation site density for pool boiling and gas nucleation. J. Heat Transfer 128, 13 (2006). DOI: 10.1115/1.2130399
-
(2006)
J. Heat Transfer
, vol.128
, pp. 13
-
-
Qi, Y.1
Klausner, J.F.2
-
58
-
-
84870199014
-
Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces
-
COI: 1:CAS:528:DC%2BC38XhvVymur%2FI
-
Betz A., Jenkins J., Kim C-J., and Attinger D.: Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces. Int. J. Heat Mass Transfer 57, 733–741 (2013). DOI: 10.1016/j.ijheatmasstransfer.2012.10.080
-
(2013)
Int. J. Heat Mass Transfer
, vol.57
, pp. 733-741
-
-
Betz, A.1
Jenkins, J.2
Kim, C.-J.3
Attinger, D.4
-
59
-
-
0000568649
-
A hydrodynamic model for nucleate pool boiling
-
Tien C.L.: A hydrodynamic model for nucleate pool boiling. Int. J. Heat Mass Transfer 5, 533–540 (1962). DOI: 10.1016/0017-9310(62)90164-3
-
(1962)
Int. J. Heat Mass Transfer
, vol.5
, pp. 533-540
-
-
Tien, C.L.1
-
60
-
-
84984082184
-
Dynamics of vapor bubbles and boiling heat transfer
-
COI: 1:CAS:528:DyaG28XhtVOgsQ%3D%3D
-
Forster H.K. and Zuber N.: Dynamics of vapor bubbles and boiling heat transfer. AIChE 1, 531–535 (1955). DOI: 10.1002/aic.690010425
-
(1955)
AIChE
, vol.1
, pp. 531-535
-
-
Forster, H.K.1
Zuber, N.2
-
61
-
-
0031245320
-
A transient micro-convection model of nucleate pool boiling
-
COI: 1:CAS:528:DyaK2sXkvFGjur8%3D
-
Haider S.I. and Webb R.L.: A transient micro-convection model of nucleate pool boiling. Int. J. Heat Mass Transfer 40, 3675–3688 (1997). DOI: 10.1016/S0017-9310(96)00372-9
-
(1997)
Int. J. Heat Mass Transfer
, vol.40
, pp. 3675-3688
-
-
Haider, S.I.1
Webb, R.L.2
-
62
-
-
84868311035
-
Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure
-
COI: 1:CAS:528:DC%2BC38Xhslaku7zM
-
Utaka Y., Kashiwabara Y., and Ozaki M.: Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure. Int. J. Heat Mass Transfer 57, 222–230 (2013). DOI: 10.1016/j.ijheatmasstransfer.2012.10.031
-
(2013)
Int. J. Heat Mass Transfer
, vol.57
, pp. 222-230
-
-
Utaka, Y.1
Kashiwabara, Y.2
Ozaki, M.3
-
63
-
-
49849128270
-
The microlayer in nucleate pool boiling
-
COI: 1:CAS:528:DyaF1MXkvVaqurg%3D
-
Cooper M.G. and Lloyd A.J.P.: The microlayer in nucleate pool boiling. Int. J. Heat Mass Transfer 12, 895–913 (1969). DOI: 10.1016/0017-9310(69)90154-9
-
(1969)
Int. J. Heat Mass Transfer
, vol.12
, pp. 895-913
-
-
Cooper, M.G.1
Lloyd, A.J.P.2
-
65
-
-
0000754384
-
Boiling heat transfer
-
Dhir V.K.: Boiling heat transfer. Annu. Rev. Fluid Mech. 30, 365–401 (1998). DOI: 10.1146/annurev.fluid.30.1.365
-
(1998)
Annu. Rev. Fluid Mech.
, vol.30
, pp. 365-401
-
-
Dhir, V.K.1
-
67
-
-
0002121821
-
On the transition to film boiling under natural convection
-
Kutateladze S.S.: On the transition to film boiling under natural convection. Kotloturbostroenie 3, 10 (1948).
-
(1948)
Kotloturbostroenie
, vol.3
, pp. 10
-
-
Kutateladze, S.S.1
-
68
-
-
84874885094
-
Extended Hydrodynamic Theory to the Peak and Minimum Pool Boiling Heat Fluxes
-
National Technical Information Service
-
Lienhard J.H. and Dhir V.K.: Extended Hydrodynamic Theory to the Peak and Minimum Pool Boiling Heat Fluxes, NASA CR, Vol. 2270 (National Technical Information Service, 1973).
-
(1973)
NASA CR
, vol.2270
-
-
Lienhard, J.H.1
Dhir, V.K.2
-
69
-
-
0020721274
-
A new hydrodynamic model of the critical heat flux, applicable widely to both pool and forced convective boiling on submerged bodies in saturated liquids
-
Haramura Y. and Katto Y.: A new hydrodynamic model of the critical heat flux, applicable widely to both pool and forced convective boiling on submerged bodies in saturated liquids. Int. J. Heat Mass Transfer 26, 389–399 (1983). DOI: 10.1016/0017-9310(83)90043-1
-
(1983)
Int. J. Heat Mass Transfer
, vol.26
, pp. 389-399
-
-
Haramura, Y.1
Katto, Y.2
-
70
-
-
0022162306
-
Transition boiling heat transfer on a vertical surface
-
COI: 1:CAS:528:DyaL28Xlt1Kntw%3D%3D
-
Bui T.D. and Dhir V.K.: Transition boiling heat transfer on a vertical surface. J. Heat Transfer-Trans. ASME 107, 756–763 (1985). DOI: 10.1115/1.3247501
-
(1985)
J. Heat Transfer-Trans. ASME
, vol.107
, pp. 756-763
-
-
Bui, T.D.1
Dhir, V.K.2
-
71
-
-
0035673649
-
A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation
-
COI: 1:CAS:528:DC%2BD38Xkt1Wnuw%3D%3D
-
Kandlikar S.G.: A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation. J. Heat Transfer 123, 1071 (2001). DOI: 10.1115/1.1409265
-
(2001)
J. Heat Transfer
, vol.123
, pp. 1071
-
-
Kandlikar, S.G.1
-
72
-
-
0024716099
-
Framework for a unified model for nucleate and transition pool boiling
-
COI: 1:CAS:528:DyaL1MXlsFKks7o%3D
-
Dhir V.K. and Liaw S.P.: Framework for a unified model for nucleate and transition pool boiling. J. Heat Transfer 111, 739–746 (1989). DOI: 10.1115/1.3250745
-
(1989)
J. Heat Transfer
, vol.111
, pp. 739-746
-
-
Dhir, V.K.1
Liaw, S.P.2
-
74
-
-
0036258822
-
Dropwise condensation theory and experiment: A review
-
COI: 1:CAS:528:DC%2BD38XlsVGqs78%3D
-
Rose J.W.: Dropwise condensation theory and experiment: A review. Proc. Inst. Mech. Eng., Part A 216, 115–128 (2002). DOI: 10.1243/09576500260049034
-
(2002)
Proc. Inst. Mech. Eng., Part A
, vol.216
, pp. 115-128
-
-
Rose, J.W.1
-
75
-
-
0001694673
-
Drop size distributions and heat-transfer in dropwise condensation
-
COI: 1:CAS:528:DyaE3sXhs1Wgt7w%3D
-
Graham C. and Griffith P.: Drop size distributions and heat-transfer in dropwise condensation. Int. J. Heat Mass Transfer 16, 337–346 (1973). DOI: 10.1016/0017-9310(73)90062-8
-
(1973)
Int. J. Heat Mass Transfer
, vol.16
, pp. 337-346
-
-
Graham, C.1
Griffith, P.2
-
78
-
-
0026939863
-
Practical model for molecular contaminant deposition kinetics
-
COI: 1:CAS:528:DyaK3sXht1Omsbo%3D
-
Glassford A.P.M.: Practical model for molecular contaminant deposition kinetics. J. Thermophys. Heat Transfer 6, 656–664 (1992). DOI: 10.2514/3.11548
-
(1992)
J. Thermophys. Heat Transfer
, vol.6
, pp. 656-664
-
-
Glassford, A.P.M.1
-
79
-
-
0032635707
-
Nucleation and growth of clusters in the process of vapor deposition
-
COI: 1:CAS:528:DyaK1MXksVyis7s%3D
-
Chen L., Chen C.Y., and Lee Y.L.: Nucleation and growth of clusters in the process of vapor deposition. Surf. Sci. 429, 150–160 (1999). DOI: 10.1016/S0039-6028(99)00360-X
-
(1999)
Surf. Sci.
, vol.429
, pp. 150-160
-
-
Chen, L.1
Chen, C.Y.2
Lee, Y.L.3
-
82
-
-
0002539822
-
Interphase matter transfer, the condensation coefficient and dropwise condensation
-
Rose J.W.: Interphase matter transfer, the condensation coefficient and dropwise condensation. In Proceedings of 11th International Conference, Kyongju, Vol. 2, 1998.
-
(1998)
Proceedings of 11Th International Conference, Kyongju
, vol.2
-
-
Rose, J.W.1
-
83
-
-
0000267038
-
On mechanism of dropwise condensation
-
COI: 1:CAS:528:DyaF1MXlt12jsbg%3D
-
Mikic B.B.: On mechanism of dropwise condensation. Int. J. Heat Mass Transfer 12, 1311–1323 (1969). DOI: 10.1016/0017-9310(69)90174-4
-
(1969)
Int. J. Heat Mass Transfer
, vol.12
, pp. 1311-1323
-
-
Mikic, B.B.1
-
84
-
-
0032046296
-
Drops at rest on a tilted plane
-
COI: 1:CAS:528:DyaK1cXhvVKrt7g%3D
-
Quere D., Azzopardi M.J., and Delattre L.: Drops at rest on a tilted plane. Langmuir 14, 2213–2216 (1998). DOI: 10.1021/la970645l
-
(1998)
Langmuir
, vol.14
, pp. 2213-2216
-
-
Quere, D.1
Azzopardi, M.J.2
Delattre, L.3
-
85
-
-
79955719387
-
Dropwise condensation modeling suitable for superhydrophobic surfaces
-
Kim S. and Kim K.J.: Dropwise condensation modeling suitable for superhydrophobic surfaces. J. Heat Transfer 133, 081502 (2011). DOI: 10.1115/1.4003742
-
(2011)
J. Heat Transfer
, vol.133
, pp. 081502
-
-
Kim, S.1
Kim, K.J.2
-
86
-
-
0016544457
-
Measurements of drop-size distributions during transient dropwise condensation
-
Tanaka H.: Measurements of drop-size distributions during transient dropwise condensation. J. Heat Transfer-Trans. ASME 97, 341–346 (1975). DOI: 10.1115/1.3450376
-
(1975)
J. Heat Transfer-Trans. ASME
, vol.97
, pp. 341-346
-
-
Tanaka, H.1
-
87
-
-
0035834096
-
Drop distributions and numerical simulation of dropwise condensation heat transfer
-
COI: 1:CAS:528:DC%2BD3MXlsFyntbo%3D
-
Wu Y., Yang C.X., and Yuan X.G.: Drop distributions and numerical simulation of dropwise condensation heat transfer. Int. J. Heat Mass Transfer 44, 4455–4464 (2001). DOI: 10.1016/S0017-9310(01)00085-0
-
(2001)
Int. J. Heat Mass Transfer
, vol.44
, pp. 4455-4464
-
-
Wu, Y.1
Yang, C.X.2
Yuan, X.G.3
-
88
-
-
1542285027
-
Computer simulations of homogeneous deposition of liquid droplets
-
Ulrich S., Stoll S., and Pefferkorn E.: Computer simulations of homogeneous deposition of liquid droplets. Langmuir 20, 1763–1771 (2004).
-
(2004)
Langmuir
-
-
Ulrich, S.1
Stoll, S.2
Pefferkorn, E.3
-
89
-
-
85141878223
-
Versuche über Tropfenkondensation, Allg
-
Wenzel H.: Versuche über Tropfenkondensation, Allg. Wärmetech 8, 839–845 (1957).
-
(1957)
Wärmetech
, vol.8
, pp. 839-845
-
-
Wenzel, H.1
-
90
-
-
84874746932
-
Correlation for dropwise condensation heat transfer: Water, organic fluids, and inclination
-
B onner R.W.: Correlation for dropwise condensation heat transfer: Water, organic fluids, and inclination. Int. J. Heat Mass Transfer 61, 245–253 (2013).
-
(2013)
Int. J. Heat Mass Transfer
-
-
Bonner, R.W.1
-
91
-
-
39749088714
-
Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation
-
COI: 1:CAS:528:DC%2BD1cXivFWnur8%3D
-
Ma X., Zhou X., Lan Z., Li Y.M., and Zhang Y.: Condensation heat transfer enhancement in the presence of non-condensable gas using the interfacial effect of dropwise condensation. Int. J. Heat Mass Transfer 51, 1728–1737 (2008). DOI: 10.1016/j.ijheatmasstransfer.2007.07.021
-
(2008)
Int. J. Heat Mass Transfer
, vol.51
, pp. 1728-1737
-
-
Ma, X.1
Zhou, X.2
Lan, Z.3
Li, Y.M.4
Zhang, Y.5
-
92
-
-
79960636512
-
Dropwise condensation from flowing air-steam mixtures: Diffusion resistance assessed by controlled drainage
-
Grooten M.H.M. and van der Geld C.W.M.: Dropwise condensation from flowing air-steam mixtures: Diffusion resistance assessed by controlled drainage. Int. J. Heat Mass Transfer 54, 4507–4517 (2011). DOI: 10.1016/j.ijheatmasstransfer.2011.06.029
-
(2011)
Int. J. Heat Mass Transfer
, vol.54
, pp. 4507-4517
-
-
Grooten, M.H.M.1
van der Geld, C.W.M.2
-
93
-
-
49949143090
-
Condensation heat transfer in the presence of non-condensables, interfacial resistance, super heating variable properties and diffusion
-
Minkowycz W.J. and Sparrow E.M.: Condensation heat transfer in the presence of non-condensables, interfacial resistance, super heating variable properties and diffusion. Int. J. Heat Mass Transfer 9, 1125–1144 (1966).
-
(1966)
Int. J. Heat Mass Transfer
-
-
Minkowycz, W.J.1
Sparrow, E.M.2
-
94
-
-
0142125875
-
Measurement of condensate film thickness for solutal Marangoni condensation applying laser extinction method
-
COI: 1:CAS:528:DC%2BD2cXosVKlsLk%3D
-
Utaka Y. and Nishikawa T.: Measurement of condensate film thickness for solutal Marangoni condensation applying laser extinction method. J. Enhanced Heat Transfer 10, 119–129 (2003). DOI: 10.1615/JEnhHeatTransf.v10.i2.10
-
(2003)
J. Enhanced Heat Transfer
, vol.10
, pp. 119-129
-
-
Utaka, Y.1
Nishikawa, T.2
-
95
-
-
58049201908
-
Condensate drop movement in Marangoni condensation by applying bulk temperature gradient on heat transfer surface
-
Utaka Y. and Kamiyama T.: Condensate drop movement in Marangoni condensation by applying bulk temperature gradient on heat transfer surface. Heat Transfer—Asian Res. 37, 387–397 (2008). DOI: 10.1002/htj.20218
-
(2008)
Heat Transfer—Asian Res.
, vol.37
, pp. 387-397
-
-
Utaka, Y.1
Kamiyama, T.2
-
96
-
-
77957098082
-
Advances in condensation heat transfer
-
Elsevier, New York
-
Tanasawa I.: Advances in condensation heat transfer. Advances in Heat Transfer, Vol. 21 (Elsevier, New York, 1991).
-
(1991)
Advances in Heat Transfer, Vol. 21
-
-
Tanasawa, I.1
-
97
-
-
0000755064
-
Die Oberflachen Kondensation des Wasserdampfes, Zeitschrift
-
Nusselt W.: Die Oberflachen Kondensation des Wasserdampfes, Zeitschrift. Ver. Dtsch. Ing. 60, 541–546 (1916).
-
(1916)
Ver. Dtsch. Ing.
, vol.60
, pp. 541-546
-
-
Nusselt, W.1
-
98
-
-
85136328148
-
Heat transfer and temperature distribution in laminar film condensation
-
COI: 1:CAS:528:DyaG2sXjvVGh
-
Rohsenow W.M.: Heat transfer and temperature distribution in laminar film condensation. Trans. ASME J. Fluids Eng. 78, 1645 (1956).
-
(1956)
Trans. ASME J. Fluids Eng.
, vol.78
, pp. 1645
-
-
Rohsenow, W.M.1
-
100
-
-
33645849239
-
Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model
-
Fortin G., Laforte J-L., and Ilinca A.: Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model. Int. J. Heat Mass Transfer 45, 595–606 (2006).
-
(2006)
Int. J. Heat Mass Transfer
, vol.45
, pp. 595-606
-
-
Fortin, G.1
Laforte, J.-L.2
Ilinca, A.3
-
101
-
-
7244260728
-
A critical review of properties and models for frost formation analysis
-
Iragorry J., Tao Y.X., and Jia S.: A critical review of properties and models for frost formation analysis. HVACR Res. 10, 393–420 (2004). DOI: 10.1080/10789669.2004.10391111
-
(2004)
HVACR Res.
, vol.10
, pp. 393-420
-
-
Iragorry, J.1
Tao, Y.X.2
Jia, S.3
-
102
-
-
49649107965
-
A study of frost nucleation on flat surfaces
-
Piucco R., Hermes C.J.L., Melo C., and Barbosa J.R. Jr.: A study of frost nucleation on flat surfaces. Exp. Therm. Fluid Sci. 32, 1710–1715 (2008). DOI: 10.1016/j.expthermflusci.2008.06.004
-
(2008)
Exp. Therm. Fluid Sci.
, vol.32
, pp. 1710-1715
-
-
Piucco, R.1
Hermes, C.J.L.2
Melo, C.3
Barbosa, J.R.4
-
103
-
-
78649785822
-
Ice protection of offshore platforms
-
Ryerson C.C.: Ice protection of offshore platforms. Cold Reg. Sci. Technol. 65, 97–110 (2011). DOI: 10.1016/j.coldregions.2010.02.006
-
(2011)
Cold Reg. Sci. Technol.
, vol.65
, pp. 97-110
-
-
Ryerson, C.C.1
-
104
-
-
0004223379
-
-
Cambridge University Press, London
-
Fletcher N.H.: The Chemical Physics of Ice (Cambridge University Press, London, 1970). DOI: 10.1017/CBO9780511735639
-
(1970)
The Chemical Physics of Ice
-
-
Fletcher, N.H.1
-
105
-
-
79952582740
-
Are superhydrophobic surfaces best for icephobicity?
-
COI: 1:CAS:528:DC%2BC3MXhvFWiur4%3D
-
Jung S., Dorrestijn M., Raps D., Das A., Megaridis C.M., and Poulikakos D.: Are superhydrophobic surfaces best for icephobicity? Langmuir 27, 3059–3066 (2011). DOI: 10.1021/la104762g
-
(2011)
Langmuir
, vol.27
, pp. 3059-3066
-
-
Jung, S.1
Dorrestijn, M.2
Raps, D.3
Das, A.4
Megaridis, C.M.5
Poulikakos, D.6
-
106
-
-
84856742922
-
Mechanism of supercooled droplet freezing on surfaces
-
COI: 1:CAS:528:DC%2BC38XltFSgtr4%3D
-
Jung S., Tiwari M., Doan N.V., and Poulikakos D.: Mechanism of supercooled droplet freezing on surfaces. Nat. Commun. 3, 615 (2012). DOI: 10.1038/ncomms1630
-
(2012)
Nat. Commun.
, vol.3
, pp. 615
-
-
Jung, S.1
Tiwari, M.2
Doan, N.V.3
Poulikakos, D.4
-
107
-
-
0041765020
-
A fundamental understanding of factors affecting frost nucleation
-
COI: 1:CAS:528:DC%2BD3sXltFKltbk%3D
-
Na B. and Webb R.L.: A fundamental understanding of factors affecting frost nucleation. Int. J. Heat Mass Transfer 46, 3797–3808 (2003). DOI: 10.1016/S0017-9310(03)00194-7
-
(2003)
Int. J. Heat Mass Transfer
, vol.46
, pp. 3797-3808
-
-
Na, B.1
Webb, R.L.2
-
108
-
-
78650358940
-
Frost formation and ice adhesion on superhydrophobic surfaces
-
COI: 1:CAS:528:DC%2BC3cXhsFCjs7zM
-
Varanasi K., Deng T., Smith J., Hsu M., and Bhate N.: Frost formation and ice adhesion on superhydrophobic surfaces. Appl. Phys. Lett. 97, 234102 (2010). DOI: 10.1063/1.3524513
-
(2010)
Appl. Phys. Lett.
, vol.97
, pp. 234102
-
-
Varanasi, K.1
Deng, T.2
Smith, J.3
Hsu, M.4
Bhate, N.5
-
109
-
-
4344697776
-
Frost formation on a plate with different surface hydrophilicity
-
COI: 1:CAS:528:DC%2BD2cXmvFyltrs%3D
-
Lee H., Shin J., Ha S., Choi B., and Lee J.: Frost formation on a plate with different surface hydrophilicity. Int. J. Heat Mass Transfer 47, 4881–4893 (2004). DOI: 10.1016/j.ijheatmasstransfer.2004.05.021
-
(2004)
Int. J. Heat Mass Transfer
, vol.47
, pp. 4881-4893
-
-
Lee, H.1
Shin, J.2
Ha, S.3
Choi, B.4
Lee, J.5
-
110
-
-
70449379836
-
Anti-icing superhydrophobic coatings
-
COI: 1:CAS:528:DC%2BD1MXht1WktLfN
-
Cao L., Jones A., Sikka V., Wu J.Z., and Gao D.: Anti-icing superhydrophobic coatings. Langmuir 25, 12444–12448 (2009). DOI: 10.1021/la902882b
-
(2009)
Langmuir
, vol.25
, pp. 12444-12448
-
-
Cao, L.1
Jones, A.2
Sikka, V.3
Wu, J.Z.4
Gao, D.5
-
111
-
-
84865211031
-
Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance
-
COI: 1:CAS:528:DC%2BC38XotlSmtr0%3D
-
Kim P., Wong T., Alvarenga J., Kreder M., Adorno-Martinez W.E., and Aizenberg J.: Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. ACS Nano 6, 6569–6577 (2012). DOI: 10.1021/nn302310q
-
(2012)
ACS Nano
, vol.6
, pp. 6569-6577
-
-
Kim, P.1
Wong, T.2
Alvarenga, J.3
Kreder, M.4
Adorno-Martinez, W.E.5
Aizenberg, J.6
-
112
-
-
84867051114
-
Frost halos from supercooled water droplets
-
COI: 1:CAS:528:DC%2BC38XhsFGhsLzL
-
Jung S., Tiwari M.K., and Poulikakos D.: Frost halos from supercooled water droplets. Proc. Natl. Acad. Sci. U. S. A. 109, 16073–16078 (2012). DOI: 10.1073/pnas.1206121109
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 16073-16078
-
-
Jung, S.1
Tiwari, M.K.2
Poulikakos, D.3
-
113
-
-
0345303940
-
Mass transfer on and within a frost layer
-
COI: 1:CAS:528:DC%2BD3sXovVejtbc%3D
-
Na B. and Webb R.L.: Mass transfer on and within a frost layer. Int. J. Heat Mass Transfer 47, 899–911 (2004). DOI: 10.1016/j.ijheatmasstransfer.2003.08.023
-
(2004)
Int. J. Heat Mass Transfer
, vol.47
, pp. 899-911
-
-
Na, B.1
Webb, R.L.2
-
114
-
-
34247336432
-
Influences of surface hydrophilicity on frost formation on a vertical cold plate under natural convection conditions
-
Liu Z., Zhang X., Wang H., Meng S., and Cheng S.: Influences of surface hydrophilicity on frost formation on a vertical cold plate under natural convection conditions. Exp. Therm. Fluid Sci. 31, 789–794 (2007). DOI: 10.1016/j.expthermflusci.2006.08.004
-
(2007)
Exp. Therm. Fluid Sci.
, vol.31
, pp. 789-794
-
-
Liu, Z.1
Zhang, X.2
Wang, H.3
Meng, S.4
Cheng, S.5
-
115
-
-
0031222952
-
Modelling of frost growth and densification
-
Le Gall R., Grillot J.M., and Jallut C.: Modelling of frost growth and densification. Int. J. Heat Mass Transfer 40, 3177–3187 (1997). DOI: 10.1016/S0017-9310(96)00359-6
-
(1997)
Int. J. Heat Mass Transfer
, vol.40
, pp. 3177-3187
-
-
Le Gall, R.1
Grillot, J.M.2
Jallut, C.3
-
116
-
-
0019342891
-
The evolution of enhanced surface geometries for nucleate boiling
-
Webb R.L.: The evolution of enhanced surface geometries for nucleate boiling. Heat Transfer Eng. 2, 46–69 (1981). DOI: 10.1080/01457638108962760
-
(1981)
Heat Transfer Eng.
, vol.2
, pp. 46-69
-
-
Webb, R.L.1
-
117
-
-
50549173949
-
Experiments on pool-boiling heat transfer
-
COI: 1:CAS:528:DyaF3sXhslSn
-
Berenson P.J.: Experiments on pool-boiling heat transfer. Int. J. Heat Mass Transfer 5, 985–999 (1962). DOI: 10.1016/0017-9310(62)90079-0
-
(1962)
Int. J. Heat Mass Transfer
, vol.5
, pp. 985-999
-
-
Berenson, P.J.1
-
119
-
-
84867308213
-
Electrodeposited MnO x films from ionic liquid for electrocatalytic water oxidation
-
COI: 1:CAS:528:DC%2BC38Xht1artLzL
-
Zhou F., Izgorodin A., Hocking R., Spiccia L., and MacFarlane D.: Electrodeposited MnO x films from ionic liquid for electrocatalytic water oxidation. Adv. Energy Mater. 2, 1013–1021 (2012). DOI: 10.1002/aenm.201100783
-
(2012)
Adv. Energy Mater.
, vol.2
, pp. 1013-1021
-
-
Zhou, F.1
Izgorodin, A.2
Hocking, R.3
Spiccia, L.4
MacFarlane, D.5
-
120
-
-
84886087015
-
Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts
-
COI: 1:CAS:528:DC%2BC3sXhs1WltLzL
-
Jiang Z., Tang Y., Tay Q., Zhang Y., Malyi O., Wang D., Deng J., Lai Y., Zhou H., Chen X., Dong Z., and Chen Z.: Understanding the role of nanostructures for efficient hydrogen generation on immobilized photocatalysts. Adv. Energy Mater. 3, 1368–1380 (2013). DOI: 10.1002/aenm.201300380
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 1368-1380
-
-
Jiang, Z.1
Tang, Y.2
Tay, Q.3
Zhang, Y.4
Malyi, O.5
Wang, D.6
Deng, J.7
Lai, Y.8
Zhou, H.9
Chen, X.10
Dong, Z.11
Chen, Z.12
-
122
-
-
80052354313
-
A novel cBN composite coating design and machine testing: A case study in turning
-
COI: 1:CAS:528:DC%2BC3MXhtFaitrnP
-
Jiang W. and Malshe A.P.: A novel cBN composite coating design and machine testing: A case study in turning. Surf. Coat. Technol. 206, 273–279 (2011). DOI: 10.1016/j.surfcoat.2011.07.008
-
(2011)
Surf. Coat. Technol.
, vol.206
, pp. 273-279
-
-
Jiang, W.1
Malshe, A.P.2
-
126
-
-
77954266775
-
Interference lithography: A powerful tool for fabricating periodic structures
-
COI: 1:CAS:528:DC%2BC3cXhtVCmtrvI
-
Lu C. and Lipson R.H.: Interference lithography: A powerful tool for fabricating periodic structures. Laser Photonics Rev. 4, 568–580 (2009). DOI: 10.1002/lpor.200810061
-
(2009)
Laser Photonics Rev.
, vol.4
, pp. 568-580
-
-
Lu, C.1
Lipson, R.H.2
-
128
-
-
79961207555
-
Fabrication of very-high-aspectratio micro metal posts and gratings by photoelectrochemical etching and electroplating
-
COI: 1:CAS:528:DC%2BC3MXhtFCqtLvO
-
Sun G., Hur J., Zhao X., and Kim C-J.: Fabrication of very-high-aspectratio micro metal posts and gratings by photoelectrochemical etching and electroplating. J. MEMS 20, 876–884 (2011). DOI: 10.1109/JMEMS.2011.2148163
-
(2011)
J. MEMS
, vol.20
, pp. 876-884
-
-
Sun, G.1
Hur, J.2
Zhao, X.3
Kim, C.-J.4
-
129
-
-
79953251995
-
Influence of surface hierarchy of superhydrophobic surfaces on liquid slip
-
COI: 1:CAS:528:DC%2BC3MXivVSjurk%3D
-
Lee C. and Kim C-J.: Influence of surface hierarchy of superhydrophobic surfaces on liquid slip. Langmuir 27, 4243–4248 (2011). DOI: 10.1021/la104368v
-
(2011)
Langmuir
, vol.27
, pp. 4243-4248
-
-
Lee, C.1
Kim, C.-J.2
-
130
-
-
84863230024
-
Carbon nanotube coatings for enhanced capillary-fed boiling from porous microstructures
-
COI: 1:CAS:528:DC%2BC38XjtV2gur8%3D
-
Weibel J., Kim S., Fisher T.S., and Garimella S.V.: Carbon nanotube coatings for enhanced capillary-fed boiling from porous microstructures. Nanoscale Microscale Thermophys. Eng. 16, 1–17 (2012). DOI: 10.1080/15567265.2011.646000
-
(2012)
Nanoscale Microscale Thermophys. Eng.
, vol.16
, pp. 1-17
-
-
Weibel, J.1
Kim, S.2
Fisher, T.S.3
Garimella, S.V.4
-
131
-
-
79957499650
-
Nanoscale surface modification techniques for pool boiling enhancement: A critical review and future directions
-
COI: 1:CAS:528:DC%2BC3MXmtF2htLg%3D
-
Lu Y-W. and Kandlikar S.G.: Nanoscale surface modification techniques for pool boiling enhancement: A critical review and future directions. Heat Transfer Eng. 32, 827–842 (2011). DOI: 10.1080/01457632.2011.548267
-
(2011)
Heat Transfer Eng.
, vol.32
, pp. 827-842
-
-
Lu, Y.-W.1
Kandlikar, S.G.2
-
132
-
-
75249097947
-
Biofabrication methods for the patterned assembly and synthesis of viral nanotemplates
-
COI: 1:STN:280:DC%2BC3c%2FgvVCrtA%3D%3D
-
Gerasopoulos K., McCarthy M., Banerjee P., Fan X., Culver J.N., and Ghodssi R.: Biofabrication methods for the patterned assembly and synthesis of viral nanotemplates. Nanotechnol. 21, 055304 (2010). DOI: 10.1088/0957-4484/21/5/055304
-
(2010)
Nanotechnol.
, vol.21
, pp. 055304
-
-
Gerasopoulos, K.1
McCarthy, M.2
Banerjee, P.3
Fan, X.4
Culver, J.N.5
Ghodssi, R.6
-
133
-
-
84863320371
-
Structured surfaces for enhanced pool boiling heat transfer
-
COI: 1:CAS:528:DC%2BC38Xot12gu74%3D
-
Chu K-H., Enright R., and Wang E.N.: Structured surfaces for enhanced pool boiling heat transfer. Appl. Phys. Lett. 100, 241603 (2012). DOI: 10.1063/1.4724190
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 241603
-
-
Chu, K.-H.1
Enright, R.2
Wang, E.N.3
-
134
-
-
33846088948
-
Fabrication of dense array of tall nanostructures over a very large sample area with sidewall profile and tip sharpness control
-
COI: 1:CAS:528:DC%2BD2sXisF2nug%3D%3D
-
Choi C-H. and Kim C.J.: Fabrication of dense array of tall nanostructures over a very large sample area with sidewall profile and tip sharpness control. Nanotechnol. 17, 5326–5333 (2006). DOI: 10.1088/0957-4484/17/21/007
-
(2006)
Nanotechnol.
, vol.17
, pp. 5326-5333
-
-
Choi, C.-H.1
Kim, C.J.2
-
135
-
-
79959247189
-
Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography
-
COI: 1:CAS:528:DC%2BC3MXovVCmsr8%3D
-
Du K., Wathuthanthri I., Mao W., Xu W., and Choi C.H.: Large-area pattern transfer of metallic nanostructures on glass substrates via interference lithography. Nanotechnol. 22, 285306 (2011). DOI: 10.1088/0957-4484/22/28/285306
-
(2011)
Nanotechnol.
, vol.22
, pp. 285306
-
-
Du, K.1
Wathuthanthri, I.2
Mao, W.3
Xu, W.4
Choi, C.H.5
-
136
-
-
0035974514
-
Wet chemical functional coatings for automotive glasses and cathode ray tubes
-
COI: 1:CAS:528:DC%2BD3MXkvVOqtrw%3D
-
Morimoto T., Sanada Y., and Tomonaga H.: Wet chemical functional coatings for automotive glasses and cathode ray tubes. Thin Solid Films 392, 214–222 (2001). DOI: 10.1016/S0040-6090(01)01030-6
-
(2001)
Thin Solid Films
, vol.392
, pp. 214-222
-
-
Morimoto, T.1
Sanada, Y.2
Tomonaga, H.3
-
137
-
-
0037186743
-
Cold plasma treatment of polypropylene surface: A study on wettability and adhesion
-
COI: 1:CAS:528:DC%2BD38XjvVGqtrs%3D
-
Carrino L., Moroni G., and Polini W.: Cold plasma treatment of polypropylene surface: A study on wettability and adhesion. J. Mater. Process. Technol. 121, 373–382 (2002). DOI: 10.1016/S0924-0136(01)01221-3
-
(2002)
J. Mater. Process. Technol.
, vol.121
, pp. 373-382
-
-
Carrino, L.1
Moroni, G.2
Polini, W.3
-
138
-
-
71949114094
-
Lubricated PVD CrAlN and WC/C coatings for automotive applications
-
COI: 1:CAS:528:DC%2BD1MXhsVGltLrP
-
Bobzin K., Bagcivan N., Goebbels N., Yilmaz K., Hoehn B., Michaelis K., and Hochmann M.: Lubricated PVD CrAlN and WC/C coatings for automotive applications. Surf. Coat. Technol. 204, 1097–1101 (2009). DOI: 10.1016/j.surfcoat.2009.07.045
-
(2009)
Surf. Coat. Technol.
, vol.204
, pp. 1097-1101
-
-
Bobzin, K.1
Bagcivan, N.2
Goebbels, N.3
Yilmaz, K.4
Hoehn, B.5
Michaelis, K.6
Hochmann, M.7
-
139
-
-
33751264386
-
Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review
-
COI: 1:CAS:528:DC%2BD2sXhvFKns7g%3D
-
Genzer J. and Efimenko K.: Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review. Biofouling 22, 339–360 (2006). DOI: 10.1080/08927010600980223
-
(2006)
Biofouling
, vol.22
, pp. 339-360
-
-
Genzer, J.1
Efimenko, K.2
-
140
-
-
38749112127
-
Transparent, conductive graphene electrodes for dye-sensitized solar cells
-
COI: 1:CAS:528:DC%2BD2sXhsVejtbnK
-
Wang X., Zhi L., and Mullen K.: Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2007). DOI: 10.1021/nl072838r
-
(2007)
Nano Lett.
, vol.8
, pp. 323-327
-
-
Wang, X.1
Zhi, L.2
Mullen, K.3
-
141
-
-
0030996119
-
Purity of the sacred lotus, or escape from contamination in biological surfaces
-
COI: 1:CAS:528:DyaK2sXjtFyis78%3D
-
Barthlott W. and Neinhuis C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 1–8 (1997). DOI: 10.1007/s004250050096
-
(1997)
Planta
, vol.202
, pp. 1-8
-
-
Barthlott, W.1
Neinhuis, C.2
-
142
-
-
0037126789
-
Super-hydrophobic surfaces: From natural to artificial
-
COI: 1:CAS:528:DC%2BD3sXitlOhsg%3D%3D
-
Feng L., Li S., Li Y., Li H., Zhang L., Zhai J., Song Y., Liu B., Jiang L., and Zhu D.: Super-hydrophobic surfaces: From natural to artificial. Adv. Mater. 14, 1857–1860 (2002). DOI: 10.1002/adma.200290020
-
(2002)
Adv. Mater.
, vol.14
, pp. 1857-1860
-
-
Feng, L.1
Li, S.2
Li, Y.3
Li, H.4
Zhang, L.5
Zhai, J.6
Song, Y.7
Liu, B.8
Jiang, L.9
Zhu, D.10
-
143
-
-
0347760121
-
Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films
-
COI: 1:CAS:528:DC%2BD3sXps1Gmt7s%3D
-
Feng X., Feng L., Jin M., Zhai J., Jiang L., and Zhu D.: Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films. J. Am. Chem. Soc. 126, 62–63 (2004). DOI: 10.1021/ja038636o
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 62-63
-
-
Feng, X.1
Feng, L.2
Jin, M.3
Zhai, J.4
Jiang, L.5
Zhu, D.6
-
144
-
-
0032522286
-
Effect of surface wettability on the adsorption of proteins and detergents
-
COI: 1:CAS:528:DyaK1cXit12murY%3D
-
Sigal G., Mrksich M., and Whitesides G.M.: Effect of surface wettability on the adsorption of proteins and detergents. J. Am. Chem. Soc. 120, 3464–3473 (1998). DOI: 10.1021/ja970819l
-
(1998)
J. Am. Chem. Soc.
, vol.120
, pp. 3464-3473
-
-
Sigal, G.1
Mrksich, M.2
Whitesides, G.M.3
-
145
-
-
1842695585
-
Wetting: Statics and dynamics
-
de Gennes P.G.: Wetting: Statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985). DOI: 10.1103/RevModPhys.57.827
-
(1985)
Rev. Mod. Phys.
, vol.57
, pp. 827-863
-
-
de Gennes, P.G.1
-
146
-
-
4043104154
-
-
Springer, New York
-
de Gennes P., Brochard-Wyart F., and Quéré D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, New York, 2004). DOI: 10.1007/978-0-387-21656-0
-
(2004)
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
-
-
de Gennes, P.1
Brochard-Wyart, F.2
Quéré, D.3
-
147
-
-
84869598077
-
Hydro- hygro- oleo- omni-phobic? Terminology of wettability classification
-
COI: 1:CAS:528:DC%2BC38XosFSntr4%3D
-
Marmur A.: Hydro- hygro- oleo- omni-phobic? Terminology of wettability classification. Soft Matter 8, 6867 (2012). DOI: 10.1039/c2sm25443c
-
(2012)
Soft Matter
, vol.8
, pp. 6867
-
-
Marmur, A.1
-
148
-
-
0003098343
-
An essay on the cohesion of fluids
-
Young T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. 95, 65–87 (1804).
-
(1804)
Philos. Trans. R. Soc.
, vol.95
, pp. 65-87
-
-
Young, T.1
-
150
-
-
85021792427
-
Resistance of solid surface to wetting by water
-
COI: 1:CAS:528:DyaA28Xkslentg%3D%3D
-
Wenzel R.N.: Resistance of solid surface to wetting by water. Ind. Eng. Chem. 28, 988–994 (1936). DOI: 10.1021/ie50320a024
-
(1936)
Ind. Eng. Chem.
, vol.28
, pp. 988-994
-
-
Wenzel, R.N.1
-
151
-
-
35648975505
-
Wettability of porous surfaces
-
COI: 1:CAS:528:DyaH2MXhsFKqsA%3D%3D
-
Cassie A.B.D. and Baxter S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546–551 (1944). DOI: 10.1039/tf9444000546
-
(1944)
Trans. Faraday Soc.
, vol.40
, pp. 546-551
-
-
Cassie, A.B.D.1
Baxter, S.2
-
152
-
-
33846133206
-
Design and creation of superwetting/antiwetting surfaces
-
COI: 1:CAS:528:DC%2BD2sXit1Cjug%3D%3D
-
Feng X.J. and Jiang L.: Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063–3078 (2006). DOI: 10.1002/adma.200501961
-
(2006)
Adv. Mater.
, vol.18
, pp. 3063-3078
-
-
Feng, X.J.1
Jiang, L.2
-
153
-
-
42449156352
-
Petal effect: A superhydrophobic state with high adhesive force
-
COI: 1:CAS:528:DC%2BD1cXisFyjtL4%3D
-
Feng L., Zhang Y., Xi J., Zhu Y., Wang N., Xia F., and Jiang L.: Petal effect: A superhydrophobic state with high adhesive force. Langmuir 24, 4114–4119 (2008). DOI: 10.1021/la703821h
-
(2008)
Langmuir
, vol.24
, pp. 4114-4119
-
-
Feng, L.1
Zhang, Y.2
Xi, J.3
Zhu, Y.4
Wang, N.5
Xia, F.6
Jiang, L.7
-
154
-
-
57849126752
-
Some thoughts on superhydrophobic wetting
-
COI: 1:CAS:528:DC%2BD1cXhsFWisLzP
-
Dorrer C. and Rühe J.: Some thoughts on superhydrophobic wetting. Soft Matter 5, 51 (2009). DOI: 10.1039/B811945G
-
(2009)
Soft Matter
, vol.5
, pp. 51
-
-
Dorrer, C.1
Rühe, J.2
-
155
-
-
34948871653
-
Biomimetic superhydrophobic surfaces: Multiscale approach
-
COI: 1:CAS:528:DC%2BD2sXptFSmsb4%3D
-
Nosonovsky M. and Bhushan B.: Biomimetic superhydrophobic surfaces: Multiscale approach. Nano Lett. 7, 2633–2637 (2007). DOI: 10.1021/nl071023f
-
(2007)
Nano Lett.
, vol.7
, pp. 2633-2637
-
-
Nosonovsky, M.1
Bhushan, B.2
-
156
-
-
33645517631
-
Nanoporositydriven superhydrophilicity: A means to create multifunctional antifogging coatings
-
COI: 1:CAS:528:DC%2BD28XhtlSktbw%3D
-
Cebeci F.Ç., Wu Z., Zhai L., Cohen R.E., and Rubner M.F.: Nanoporositydriven superhydrophilicity: A means to create multifunctional antifogging coatings. Langmuir 22, 2856–2 862 (2006). DOI: 10.1021/la053182p
-
(2006)
Langmuir
, vol.22
, pp. 2856-2 862
-
-
Cebeci, F.1
Wu, Z.2
Zhai, L.3
Cohen, R.E.4
Rubner, M.F.5
-
157
-
-
34147198176
-
Condensation and wetting transitions on microstructured ultrahydrophobic surfaces
-
COI: 1:CAS:528:DC%2BD2sXhvFKrurY%3D
-
Dorrer C. and Ruehe J.: Condensation and wetting transitions on microstructured ultrahydrophobic surfaces. Langmuir 23, 3820–3824 (2007). DOI: 10.1021/la063130f
-
(2007)
Langmuir
, vol.23
, pp. 3820-3824
-
-
Dorrer, C.1
Ruehe, J.2
-
158
-
-
84866164091
-
Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces
-
COI: 1:CAS:528:DC%2BC38Xhtlerur7E
-
Vakarelski I., Patankar N., Marston J., Chan D.Y., and Thoroddsen S.T.: Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature 489, 274–277 (2012). DOI: 10.1038/nature11418
-
(2012)
Nature
, vol.489
, pp. 274-277
-
-
Vakarelski, I.1
Patankar, N.2
Marston, J.3
Chan, D.Y.4
Thoroddsen, S.T.5
-
160
-
-
0038476893
-
Ultrahydrophobic surfaces. Effect of topography length scales on wettability
-
COI: 1:CAS:528:DC%2BD3cXlvFOqu7s%3D
-
Oner D. and McCarthy T.J.: Ultrahydrophobic surfaces. Effect of topography length scales on wettability. Langmuir 16, 7777–7782 (2000). DOI: 10.1021/la000598o
-
(2000)
Langmuir
, vol.16
, pp. 7777-7782
-
-
Oner, D.1
McCarthy, T.J.2
-
161
-
-
0033216547
-
Viscous drops rolling on a tilted non-wettable solid
-
COI: 1:CAS:528:DyaK1MXntF2it7g%3D
-
Richard D. and Quere D.: Viscous drops rolling on a tilted non-wettable solid. Europhys. Lett. 48, 286–291 (1999). DOI: 10.1209/epl/i1999-00479-1
-
(1999)
Europhys. Lett.
, vol.48
, pp. 286-291
-
-
Richard, D.1
Quere, D.2
-
162
-
-
0026371613
-
Nucleate and transition boiling heat transfer under pool and external flow conditions
-
COI: 1:CAS:528:DyaK38Xos1CntQ%3D%3D
-
Dhir V.K.: Nucleate and transition boiling heat transfer under pool and external flow conditions. Int. J. Heat Fluid Flow 12, 290–314 (1991). DOI: 10.1016/0142-727X(91)90018-Q
-
(1991)
Int. J. Heat Fluid Flow
, vol.12
, pp. 290-314
-
-
Dhir, V.K.1
-
163
-
-
9444233970
-
Effect of surface wettability on boiling and evaporation
-
COI: 1:CAS:528:DC%2BD2cXhtVSgsbvJ
-
Takata Y., Hidaka S., Cao J., Nakamura T., Yamamoto H., Masuda M., and Ito T.: Effect of surface wettability on boiling and evaporation. Energy 30, 209–220 (2005). DOI: 10.1016/j.energy.2004.05.004
-
(2005)
Energy
, vol.30
, pp. 209-220
-
-
Takata, Y.1
Hidaka, S.2
Cao, J.3
Nakamura, T.4
Yamamoto, H.5
Masuda, M.6
Ito, T.7
-
164
-
-
0030854750
-
Light-induced amphiphilic surfaces
-
COI: 1:CAS:528:DyaK2sXltFGmt70%3D
-
Wang R., Hashimoto K., Fujishima A., Chikuni M., Kojima E., Kitamura A., Shimohigoshi M., and Watanabe T.: Light-induced amphiphilic surfaces. Nature 388, 431–432 (1997). DOI: 10.1038/41233
-
(1997)
Nature
, vol.388
, pp. 431-432
-
-
Wang, R.1
Hashimoto, K.2
Fujishima, A.3
Chikuni, M.4
Kojima, E.5
Kitamura, A.6
Shimohigoshi, M.7
Watanabe, T.8
-
165
-
-
0001839574
-
-
American Chemical Society, Washington, DC
-
Zisman W.A.: Contact Angle, Wettability, and Adhesion, Ch. 2, pp. 1–51 (American Chemical Society, Washington, DC, 1964). DOI: 10.1021/ba-1964-0043.ch001
-
(1964)
Contact Angle, Wettability, and Adhesion
, pp. 1-51
-
-
Zisman, W.A.1
-
166
-
-
67650713730
-
How does surface wettability influence nucleate boiling?
-
COI: 1:CAS:528:DC%2BD1MXhtVWntbzO
-
Phan H., Caney N., Marty P., Colasson S., and Gavillet J.: How does surface wettability influence nucleate boiling? C. R. Mécanique 337, 251–259 (2009). DOI: 10.1016/j.crme.2009.06.032
-
(2009)
C. R. Mécanique
, vol.337
, pp. 251-259
-
-
Phan, H.1
Caney, N.2
Marty, P.3
Colasson, S.4
Gavillet, J.5
-
167
-
-
69949093627
-
Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism
-
COI: 1:CAS:528:DC%2BD1MXhtFaktb3N
-
Phan H., Caney N., Marty P., Colasson S., and Gavillet J.: Surface wettability control by nanocoating: The effects on pool boiling heat transfer and nucleation mechanism. Int. J. Heat Mass Transfer 52, 5459–5471 (2009). DOI: 10.1016/j.ijheatmasstransfer.2009.06.032
-
(2009)
Int. J. Heat Mass Transfer
, vol.52
, pp. 5459-5471
-
-
Phan, H.1
Caney, N.2
Marty, P.3
Colasson, S.4
Gavillet, J.5
-
168
-
-
0022892252
-
Effect of surface wettability on transition boiling heat transfer from a vertical surface
-
San Francisco, CA
-
Liaw S.P. and Dhir V.K.: Effect of surface wettability on transition boiling heat transfer from a vertical surface. In Proceedings of 8th International Heat Transfer Conference, Vol. 4, San Francisco, CA, 1986.
-
(1986)
Proceedings of 8Th International Heat Transfer Conference
, vol.4
-
-
Liaw, S.P.1
Dhir, V.K.2
-
169
-
-
0033867888
-
Advances in dropwise condensation heat transfer: Chinese research
-
COI: 1:CAS:528:DC%2BD3cXksFertr4%3D
-
Ma X., Rose J., Xu D., Lin J.F., and Wang B.X.: Advances in dropwise condensation heat transfer: Chinese research. Chem. Eng. J. 78, 87–93 (2000). DOI: 10.1016/S1385-8947(00)00155-8
-
(2000)
Chem. Eng. J.
, vol.78
, pp. 87-93
-
-
Ma, X.1
Rose, J.2
Xu, D.3
Lin, J.F.4
Wang, B.X.5
-
170
-
-
0028499459
-
Dropwise condensation of steam on ion-implanted condenser surfaces
-
COI: 1:CAS:528:DyaK2MXitVWltrY%3D
-
Zhao Q. and Burnside B.M.: Dropwise condensation of steam on ion-implanted condenser surfaces. Heat Recovery Syst. CHP 14, 525–534 (1994). DOI: 10.1016/0890-4332(94)90055-8
-
(1994)
Heat Recovery Syst. CHP
, vol.14
, pp. 525-534
-
-
Zhao, Q.1
Burnside, B.M.2
-
171
-
-
84875453705
-
Hydrophobicity of rare-earth oxide ceramics
-
COI: 1:CAS:528:DC%2BC3sXhtFSls7w%3D
-
Azimi G., Dhiman R., Kwon H-M., Paxson A.T., and Varanasi K.K.: Hydrophobicity of rare-earth oxide ceramics. Nat. Mater. 12, 315–320 (2013). DOI: 10.1038/nmat3545
-
(2013)
Nat. Mater.
, vol.12
, pp. 315-320
-
-
Azimi, G.1
Dhiman, R.2
Kwon, H.-M.3
Paxson, A.T.4
Varanasi, K.K.5
-
172
-
-
0001673512
-
Pool boiling heat transfer from Teflon-coated stainless steel
-
COI: 1:CAS:528:DyaF1MXltVemt7k%3D
-
Vachon R., Nix G., Tanger G.E., and Cobb R.O.: Pool boiling heat transfer from Teflon-coated stainless steel. J. Heat Transfer 91, 364–369 (1969). DOI: 10.1115/1.3580179
-
(1969)
J. Heat Transfer
, vol.91
, pp. 364-369
-
-
Vachon, R.1
Nix, G.2
Tanger, G.E.3
Cobb, R.O.4
-
173
-
-
1942481178
-
Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold
-
COI: 1:CAS:528:DyaL1MXivFCgtQ%3D%3D
-
Bain C., Troughton E., Tao Y., Evall J., Whitesides G.M., and Nuzzo R.G.: Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111, 321–335 (1989). DOI: 10.1021/ja00183a049
-
(1989)
J. Am. Chem. Soc.
, vol.111
, pp. 321-335
-
-
Bain, C.1
Troughton, E.2
Tao, Y.3
Evall, J.4
Whitesides, G.M.5
Nuzzo, R.G.6
-
174
-
-
28044469680
-
Nanosecond imaging of microboiling behavior on pulsed-heated Au films modified with hydrophilic and hydrophobic self-assembled monolayers
-
COI: 1:CAS:528:DC%2BD2MXptVCntLc%3D
-
Balss K., Avedisian C., Cavicchi R.E., and Tarlov M.J.: Nanosecond imaging of microboiling behavior on pulsed-heated Au films modified with hydrophilic and hydrophobic self-assembled monolayers. Langmuir 21, 10459–10467 (2005). DOI: 10.1021/la040137t
-
(2005)
Langmuir
, vol.21
, pp. 10459-10467
-
-
Balss, K.1
Avedisian, C.2
Cavicchi, R.E.3
Tarlov, M.J.4
-
175
-
-
84855935530
-
Influence of the wettability on the boiling onset
-
COI: 1:CAS:528:DC%2BC3MXhs1ajsLnO
-
Bourdon B., Rioboo R., Marengo M., Gosselin E., and De Coninck J.: Influence of the wettability on the boiling onset. Langmuir 28, 1618–1624 (2012). DOI: 10.1021/la203636a
-
(2012)
Langmuir
, vol.28
, pp. 1618-1624
-
-
Bourdon, B.1
Rioboo, R.2
Marengo, M.3
Gosselin, E.4
De Coninck, J.5
-
176
-
-
0042843572
-
Effect of surface wettability on fast transient microboiling behavior
-
COI: 1:CAS:528:DC%2BD3sXkvVaisbY%3D
-
Thomas O., Cavicchi R.E., and Tarlov M.J.: Effect of surface wettability on fast transient microboiling behavior. Langmuir 19, 6168–6177 (2003). DOI: 10.1021/la030147e
-
(2003)
Langmuir
, vol.19
, pp. 6168-6177
-
-
Thomas, O.1
Cavicchi, R.E.2
Tarlov, M.J.3
-
177
-
-
0009186362
-
An investigation of compounds promoting the dropwise condensation of steam
-
COI: 1:CAS:528:DyaG2sXotlWgtA%3D%3D
-
Blackman L.C.F., Dewar M.J.S., and Hampson H.: An investigation of compounds promoting the dropwise condensation of steam. J. Appl. Chem. 7, 160–171 (1957). DOI: 10.1002/jctb.5010070403
-
(1957)
J. Appl. Chem.
, vol.7
, pp. 160-171
-
-
Blackman, L.C.F.1
Dewar, M.J.S.2
Hampson, H.3
-
178
-
-
0009270366
-
Heat transfer in dropwise condensation—Part II surface chemistry
-
COI: 1:CAS:528:DyaF2MXktFGjtbk%3D
-
Tanner D., Pope D., Potter C.J., and West D.: Heat transfer in dropwise condensation—Part II surface chemistry. Int. J. Heat Mass Transfer 8, 427–436 (1965). DOI: 10.1016/0017-9310(65)90006-2
-
(1965)
Int. J. Heat Mass Transfer
, vol.8
, pp. 427-436
-
-
Tanner, D.1
Pope, D.2
Potter, C.J.3
West, D.4
-
179
-
-
33947470885
-
Properties of films of adsorbed fluorinated acids
-
COI: 1:CAS:528:DyaG2cXjsl2ksA%3D%3D
-
Hare E., Shafrin E.G., and Zisman W.A.: Properties of films of adsorbed fluorinated acids. J. Phys. Chem. 58, 236–239 (1954). DOI: 10.1021/j150513a011
-
(1954)
J. Phys. Chem.
, vol.58
, pp. 236-239
-
-
Hare, E.1
Shafrin, E.G.2
Zisman, W.A.3
-
180
-
-
0030399346
-
Dropwise condensation on L-B film surface
-
COI: 1:CAS:528:DyaK28XntlKqsbg%3D
-
Zhao Q., Zhang D., Lin J.F., and Wang G.M.: Dropwise condensation on L-B film surface. Chem. Eng. Process. 35, 473–477 (1996). DOI: 10.1016/S0255-2701(96)04158-X
-
(1996)
Chem. Eng. Process.
, vol.35
, pp. 473-477
-
-
Zhao, Q.1
Zhang, D.2
Lin, J.F.3
Wang, G.M.4
-
181
-
-
71749116907
-
Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings
-
Forrest E., Williamson E., Buongiorno J., Hu L-W., Rubner M., and Cohen R.: Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings. Int. J. Heat Mass Transfer 53, 58–67 (2010).
-
(2010)
Int. J. Heat Mass Transfer
-
-
Forrest, E.1
Williamson, E.2
Buongiorno, J.3
Hu, L.-W.4
Rubner, M.5
Cohen, R.6
-
182
-
-
84859709983
-
Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings
-
COI: 1:CAS:528:DC%2BC38Xnt1CgtLk%3D
-
Hsu C-C. and Chen P-H.: Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings. Int. J. Heat Mass Transfer 55, 3713–3719 (2012). DOI: 10.1016/j.ijheatmasstransfer.2012.03.003
-
(2012)
Int. J. Heat Mass Transfer
, vol.55
, pp. 3713-3719
-
-
Hsu, C.-C.1
Chen, P.-H.2
-
183
-
-
84859779951
-
Hydrate-phobic surfaces: Fundamental studies in clathrate hydrate adhesion reduction
-
COI: 1:CAS:528:DC%2BC38XkvFyiur4%3D
-
Smith J., Meuler A., Bralower H., Venkatesan R., Subramanian S., Cohen R., McKinley G.H., and Varanasi K.K.: Hydrate-phobic surfaces: Fundamental studies in clathrate hydrate adhesion reduction. Phys. Chem. Chem. Phys. 14, 6013–6020 (2012). DOI: 10.1039/c2cp40581d
-
(2012)
Phys. Chem. Chem. Phys.
, vol.14
, pp. 6013-6020
-
-
Smith, J.1
Meuler, A.2
Bralower, H.3
Venkatesan, R.4
Subramanian, S.5
Cohen, R.6
McKinley, G.H.7
Varanasi, K.K.8
-
184
-
-
84892552345
-
Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films
-
COI: 1:CAS:528:DC%2BC3sXhsF2gtLzF
-
Paxson A., Yagüe J., Gleason K.K., and Varanasi K.K.: Stable dropwise condensation for enhancing heat transfer via the initiated chemical vapor deposition (iCVD) of grafted polymer films. Adv. Mater. 26, 418–423 (2013). DOI: 10.1002/adma.201303065
-
(2013)
Adv. Mater.
, vol.26
, pp. 418-423
-
-
Paxson, A.1
Yagüe, J.2
Gleason, K.K.3
Varanasi, K.K.4
-
185
-
-
0037127784
-
Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions
-
COI: 1:CAS:528:DC%2BD38XotVarsQ%3D%3D
-
Wen D.S. and Wang B.X.: Effects of surface wettability on nucleate pool boiling heat transfer for surfactant solutions. Int. J. Heat Mass Transfer 45, 1739–1747 (2002). DOI: 10.1016/S0017-9310(01)00251-4
-
(2002)
Int. J. Heat Mass Transfer
, vol.45
, pp. 1739-1747
-
-
Wen, D.S.1
Wang, B.X.2
-
186
-
-
39749085731
-
Surface-chemical and -morphological gradients
-
COI: 1:CAS:528:DC%2BD1cXitlCisrg%3D
-
Morgenthaler S., Zink C., and Spencer N.D.: Surface-chemical and -morphological gradients. Soft Matter 4, 419–434 (2008). DOI: 10.1039/b715466f
-
(2008)
Soft Matter
, vol.4
, pp. 419-434
-
-
Morgenthaler, S.1
Zink, C.2
Spencer, N.D.3
-
187
-
-
33745783951
-
Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib Desert Beetle
-
COI: 1:CAS:528:DC%2BD28XjvFKqtL8%3D
-
Zhai L., Berg M., Cebeci F., Kim Y., Milwid J., Rubner M.F., and Cohen R.E.: Patterned superhydrophobic surfaces: Toward a synthetic mimic of the Namib Desert Beetle. Nano Lett. 6, 1213–1217 (2006). DOI: 10.1021/nl060644q
-
(2006)
Nano Lett.
, vol.6
, pp. 1213-1217
-
-
Zhai, L.1
Berg, M.2
Cebeci, F.3
Kim, Y.4
Milwid, J.5
Rubner, M.F.6
Cohen, R.E.7
-
188
-
-
0035498821
-
Water capture by a desert beetle
-
COI: 1:CAS:528:DC%2BD3MXot1Wrs7o%3D
-
Parker A.R. and Lawrence C.R.: Water capture by a desert beetle. Nature 414, 33–34 (2001). DOI: 10.1038/35102108
-
(2001)
Nature
, vol.414
, pp. 33-34
-
-
Parker, A.R.1
Lawrence, C.R.2
-
189
-
-
0001324365
-
How to make water run uphill
-
COI: 1:CAS:528:DyaK38XkslOgurc%3D
-
Chaudhury M.K. and Whitesides G.M.: How to make water run uphill. Science 256, 1539–1541 (1992). DOI: 10.1126/science.256.5063.1539
-
(1992)
Science
, vol.256
, pp. 1539-1541
-
-
Chaudhury, M.K.1
Whitesides, G.M.2
-
190
-
-
85141864794
-
Method and means for increasing the heat transfer coefficient between a wall and boiling liquid
-
Gaertner R.F.: Method and means for increasing the heat transfer coefficient between a wall and boiling liquid. U.S. Patent No. 3301314, 1967.
-
(1967)
U.S. Patent No. 3301314
-
-
Gaertner, R.F.1
-
191
-
-
0027926177
-
Imaging of features on surfaces by condensation figures
-
COI: 1:CAS:528:DyaK3sXis1Wmt78%3D
-
Lopez G., Biebuyck H., Frisbie C.D., and Whitesides G.M.: Imaging of features on surfaces by condensation figures. Science 260, 647–649 (1993). DOI: 10.1126/science.8480175
-
(1993)
Science
, vol.260
, pp. 647-649
-
-
Lopez, G.1
Biebuyck, H.2
Frisbie, C.D.3
Whitesides, G.M.4
-
192
-
-
0000148195
-
Manipulation of the wettability of surfaces on the 0.1-micrometer to 1-micrometer scale through micromachining and molecular self-assembly
-
COI: 1:CAS:528:DyaK38Xmt1Sktrg%3D
-
Abbott N., Folkers J.P., and Whitesides G.M.: Manipulation of the wettability of surfaces on the 0.1-micrometer to 1-micrometer scale through micromachining and molecular self-assembly. Science 257, 1380–1382 (1992). DOI: 10.1126/science.257.5075.1380
-
(1992)
Science
, vol.257
, pp. 1380-1382
-
-
Abbott, N.1
Folkers, J.P.2
Whitesides, G.M.3
-
193
-
-
80051710732
-
Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films
-
COI: 1:CAS:528:DC%2BC3MXovVCmtbo%3D
-
Thickett S., Neto C., and Harris A.T.: Biomimetic surface coatings for atmospheric water capture prepared by dewetting of polymer films. Adv. Mater. 23, 3718–3722 (2011). DOI: 10.1002/adma.201100290
-
(2011)
Adv. Mater.
, vol.23
, pp. 3718-3722
-
-
Thickett, S.1
Neto, C.2
Harris, A.T.3
-
194
-
-
69949164066
-
Spatial control in the heterogeneous nucleation of water
-
COI: 1:CAS:528:DC%2BD1MXhtFSntLjL
-
Varanasi K., Hsu M., Bhate N., Yang W., and Deng T.: Spatial control in the heterogeneous nucleation of water. Appl. Phys. Lett. 95, 094101 (2009). DOI: 10.1063/1.3200951
-
(2009)
Appl. Phys. Lett.
, vol.95
, pp. 094101
-
-
Varanasi, K.1
Hsu, M.2
Bhate, N.3
Yang, W.4
Deng, T.5
-
195
-
-
85141852449
-
Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches
-
Mishchenko L., Aizenberg J., and Hatton B.D.: Spatial control of condensation and freezing on superhydrophobic surfaces with hydrophilic patches. Adv. Funct. Mater. 40, 546–551 (2013).
-
(2013)
Adv. Funct. Mater.
, vol.40
, pp. 546-551
-
-
Mishchenko, L.1
Aizenberg, J.2
Hatton, B.D.3
-
196
-
-
54949087122
-
Complex droplets on chemically modified silicon nanograss
-
COI: 1:CAS:528:DC%2BD1cXht1SgtbvN
-
Jokinen V., Sainiemi L., and Franssila S.: Complex droplets on chemically modified silicon nanograss. Adv. Mater. 20, 3453–3456 (2008). DOI: 10.1002/adma.200800160
-
(2008)
Adv. Mater.
, vol.20
, pp. 3453-3456
-
-
Jokinen, V.1
Sainiemi, L.2
Franssila, S.3
-
197
-
-
84863746475
-
Water harvest via dewing
-
COI: 1:CAS:528:DC%2BC38XptF2nsrw%3D
-
Lee A., Moon M-W., Lim H., Kim W-D., and Kim H-Y.: Water harvest via dewing. Langmuir 28, 10183–10191 (2012). DOI: 10.1021/la3013987
-
(2012)
Langmuir
, vol.28
, pp. 10183-10191
-
-
Lee, A.1
Moon, M.-W.2
Lim, H.3
Kim, W.-D.4
Kim, H.-Y.5
-
198
-
-
0033802971
-
Superhydrophobicsuperhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method
-
COI: 1:CAS:528:DC%2BD3cXpvFansg%3D%3D
-
Tadanaga K., Morinaga J., Matsuda A., and Minami T.: Superhydrophobicsuperhydrophilic micropatterning on flowerlike alumina coating film by the sol-gel method. Chem. Mater. 12, 590–592 (2000). DOI: 10.1021/cm990643h
-
(2000)
Chem. Mater.
, vol.12
, pp. 590-592
-
-
Tadanaga, K.1
Morinaga, J.2
Matsuda, A.3
Minami, T.4
-
199
-
-
84857763926
-
-
Branson E., Shah P., Singh S., and Brinker C.J.: Preparation of hydrophobic coatings. U.S. Patent No. 7,485,343, 2009.
-
(2009)
Preparation of hydrophobic coatings
-
-
Branson, E.1
Shah, P.2
Singh, S.3
Brinker, C.J.4
-
200
-
-
33846876313
-
Mimicking a stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobicsuperhydrophilic surfaces
-
COI: 1:CAS:528:DC%2BD28Xht12itbfP
-
Garrod R., Harris L., Schofield W.C.E., McGettrick J., Ward L., Teare D.O.H., and Badyal J.P.S.: Mimicking a stenocara beetle’s back for microcondensation using plasmachemical patterned superhydrophobicsuperhydrophilic surfaces. Langmuir 23, 689–693 (2007). DOI: 10.1021/la0610856
-
(2007)
Langmuir
, vol.23
, pp. 689-693
-
-
Garrod, R.1
Harris, L.2
Schofield, W.C.E.3
McGettrick, J.4
Ward, L.5
Teare, D.O.H.6
Badyal, J.P.S.7
-
201
-
-
41549100592
-
A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides
-
COI: 1:CAS:528:DC%2BD1cXjtFSksrg%3D
-
Pastine S., Okawa D., Kessler B., Rolandi M., Llorente M., Zettl A., and Frechet J.M.J.: A facile and patternable method for the surface modification of carbon nanotube forests using perfluoroarylazides. J. Am. Chem. Soc. 130, 4238–4239 (2008). DOI: 10.1021/ja8003446
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 4238-4239
-
-
Pastine, S.1
Okawa, D.2
Kessler, B.3
Rolandi, M.4
Llorente, M.5
Zettl, A.6
Frechet, J.M.J.7
-
202
-
-
84859860214
-
Bioinspired steel surfaces with extreme wettability contrast
-
COI: 1:CAS:528:DC%2BC38XlsFers7s%3D
-
Her E., Ko T., Lee K., Oh K.H., and Moon M.W.: Bioinspired steel surfaces with extreme wettability contrast. Nanoscale 4, 2900–2905 (2012). DOI: 10.1039/c2nr11934j
-
(2012)
Nanoscale
, vol.4
, pp. 2900-2905
-
-
Her, E.1
Ko, T.2
Lee, K.3
Oh, K.H.4
Moon, M.W.5
-
203
-
-
84867014360
-
Patterned superomniphobic-superomniphilic surfaces: Templates for site-selective self-assembly
-
COI: 1:CAS:528:DC%2BC38Xht12js7jF
-
Kobaku S.P.R., Kota A., Lee D., Mabry J.M., and Tuteja A.: Patterned superomniphobic-superomniphilic surfaces: Templates for site-selective self-assembly. Angew. Chem. Int. Ed. 51, 10109–10113 (2012). DOI: 10.1002/anie.201202823
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, pp. 10109-10113
-
-
Kobaku, S.P.R.1
Kota, A.2
Lee, D.3
Mabry, J.M.4
Tuteja, A.5
-
204
-
-
84865177260
-
Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films
-
COI: 1:CAS:528:DC%2BC38XhtFOmsrvI
-
Schutzius T., Bayer I., Jursich G., Das A., and Megaridis C.M.: Superhydrophobic-superhydrophilic binary micropatterns by localized thermal treatment of polyhedral oligomeric silsesquioxane (POSS)-silica films. Nanoscale 4, 5378–5385 (2012). DOI: 10.1039/c2nr30979c
-
(2012)
Nanoscale
, vol.4
, pp. 5378-5385
-
-
Schutzius, T.1
Bayer, I.2
Jursich, G.3
Das, A.4
Megaridis, C.M.5
-
205
-
-
84874818676
-
Emerging applications of superhydrophilicsuperhydrophobic micropatterns
-
COI: 1:CAS:528:DC%2BC3sXht1GitrY%3D
-
Ueda E. and Levkin P.A.: Emerging applications of superhydrophilicsuperhydrophobic micropatterns. Adv. Mater. 25, 1234–1247 (2013). DOI: 10.1002/adma.201204120
-
(2013)
Adv. Mater.
, vol.25
, pp. 1234-1247
-
-
Ueda, E.1
Levkin, P.A.2
-
206
-
-
34247483520
-
Subcooled flow boiling CHF enhancement with porous surface coatings
-
COI: 1:CAS:528:DC%2BD2sXkvF2msL4%3D
-
Sarwar M., Jeong Y.H., and Chang S.H.: Subcooled flow boiling CHF enhancement with porous surface coatings. Int. J. Heat Mass Transfer 50, 3649–3657 (2007). DOI: 10.1016/j.ijheatmasstransfer.2006.09.011
-
(2007)
Int. J. Heat Mass Transfer
, vol.50
, pp. 3649-3657
-
-
Sarwar, M.1
Jeong, Y.H.2
Chang, S.H.3
-
207
-
-
0031386633
-
Pool boiling heat transfer from a horizontal tube coated with oxide ceramics
-
COI: 1:CAS:528:DyaK1cXisFGgurY%3D
-
Zhou X. and Bier K.: Pool boiling heat transfer from a horizontal tube coated with oxide ceramics. Int. J. Refrig. 20, 552–560 (1997). DOI: 10.1016/S0140-7007(97)00023-6
-
(1997)
Int. J. Refrig.
, vol.20
, pp. 552-560
-
-
Zhou, X.1
Bier, K.2
-
208
-
-
39749163996
-
Patterned superfunctional surfaces based on a silicone nanofilament coating
-
COI: 1:CAS:528:DC%2BD1cXitlCis7g%3D
-
Zimmermann J., Rabe M., Artus G.R.J., and Seeger S.: Patterned superfunctional surfaces based on a silicone nanofilament coating. Soft Matter 4, 450–452 (2008). DOI: 10.1039/b717734h
-
(2008)
Soft Matter
, vol.4
, pp. 450-452
-
-
Zimmermann, J.1
Rabe, M.2
Artus, G.R.J.3
Seeger, S.4
-
209
-
-
51249193601
-
Versuche über den Verdampfungsvorgang
-
Jakob M. and Fritz W.: Versuche über den Verdampfungsvorgang. Forsch. Ingenieurwes. 2, 435–447 (1931). DOI: 10.1007/BF02578808
-
(1931)
Forsch. Ingenieurwes.
, vol.2
, pp. 435-447
-
-
Jakob, M.1
Fritz, W.2
-
210
-
-
0003057990
-
Surface variables in nucleate boiling
-
COI: 1:CAS:528:DyaG28Xjt1Gl
-
Corty C. and Foust A.S.: Surface variables in nucleate boiling. Chem. Eng. Prog., Symp. Ser. 51, 1–12 (1955).
-
(1955)
Chem. Eng. Prog., Symp. Ser.
, vol.51
, pp. 1-12
-
-
Corty, C.1
Foust, A.S.2
-
211
-
-
84984086937
-
The effects of superheat and surface roughness on boiling coefficients
-
COI: 1:CAS:528:DyaF38XisVCgsQ%3D%3D
-
Kurihara H.M. and Myers J.E.: The effects of superheat and surface roughness on boiling coefficients. AIChE J. 6, 83–91 (1960). DOI: 10.1002/aic.690060117
-
(1960)
AIChE J.
, vol.6
, pp. 83-91
-
-
Kurihara, H.M.1
Myers, J.E.2
-
212
-
-
84879035105
-
Current progress and new developments in enhanced heat and mass transfer
-
Bergles A.E. and Manglik R.M.: Current progress and new developments in enhanced heat and mass transfer. J. Enhanced Heat Transfer 20, 1–15 (2013). DOI: 10.1615/JEnhHeatTransf.2013006989
-
(2013)
J. Enhanced Heat Transfer
, vol.20
, pp. 1-15
-
-
Bergles, A.E.1
Manglik, R.M.2
-
213
-
-
84984084940
-
Entrapment of gas in the spreading of a liquid over a rough surface
-
COI: 1:CAS:528:DyaG1cXkvVWnsQ%3D%3D
-
Bankoff S.G.: Entrapment of gas in the spreading of a liquid over a rough surface. AIChE J. 4 (1), 24–26 (1958). DOI: 10.1002/aic.690040105
-
(1958)
AIChE J.
, vol.4
, Issue.1
, pp. 24-26
-
-
Bankoff, S.G.1
-
214
-
-
85136092199
-
Ebullition from solid surfaces in the presence of pre-existing gaseous phase
-
COI: 1:CAS:528:DyaG2sXkvF2isQ%3D%3D
-
Bankoff S.G.: Ebullition from solid surfaces in the presence of pre-existing gaseous phase. Trans. ASME 79, 735 (1957).
-
(1957)
Trans. ASME
, vol.79
, pp. 735
-
-
Bankoff, S.G.1
-
216
-
-
84867495921
-
Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling
-
COI: 1:CAS:528:DC%2BC38Xht1CgurnF
-
Zhang B., Kim K.J., and Yoon H.: Enhanced heat transfer performance of alumina sponge-like nano-porous structures through surface wettability control in nucleate pool boiling. Int. J. Heat Mass Transfer 55, 7487–7498 (2012). DOI: 10.1016/j.ijheatmasstransfer.2012.07.053
-
(2012)
Int. J. Heat Mass Transfer
, vol.55
, pp. 7487-7498
-
-
Zhang, B.1
Kim, K.J.2
Yoon, H.3
-
218
-
-
0000984862
-
Active sites for nucleate boiling
-
Clark H., Strenge P.S., and Westwater J.: Active sites for nucleate boiling. Chem. Eng. Prog., Symp. Ser. 55, 103–110 (1959).
-
(1959)
Chem. Eng. Prog., Symp. Ser.
, vol.55
, pp. 103-110
-
-
Clark, H.1
Strenge, P.S.2
Westwater, J.3
-
219
-
-
0024032606
-
A mathematical model of the nucleation site density in terms of the surface characteristics
-
COI: 1:CAS:528:DyaL1cXltlWntLs%3D
-
Yang S.R. and Kim R.H.: A mathematical model of the nucleation site density in terms of the surface characteristics. Int. J. Heat Mass Transfer 31, 1127–1135 (1988). DOI: 10.1016/0017-9310(88)90055-5
-
(1988)
Int. J. Heat Mass Transfer
, vol.31
, pp. 1127-1135
-
-
Yang, S.R.1
Kim, R.H.2
-
221
-
-
0346056655
-
Studies of boiling chaos: A review
-
COI: 1:CAS:528:DC%2BD2cXns1Sj
-
Shoji M.: Studies of boiling chaos: A review. Int. J. Heat Mass Transfer 47, 1105–1128 (2004). DOI: 10.1016/j.ijheatmasstransfer.2003.09.024
-
(2004)
Int. J. Heat Mass Transfer
, vol.47
, pp. 1105-1128
-
-
Shoji, M.1
-
222
-
-
84994012006
-
Effects of surface conditions on nucleate pool boiling of sodium
-
COI: 1:CAS:528:DyaF28XktFOktr8%3D
-
Marto P.J. and Rohsenow W.: Effects of surface conditions on nucleate pool boiling of sodium. J. Heat Transfer 88, 196–203 (1966). DOI: 10.1115/1.3691514
-
(1966)
J. Heat Transfer
, vol.88
, pp. 196-203
-
-
Marto, P.J.1
Rohsenow, W.2
-
226
-
-
0010302283
-
Visualization of pool boiling on enhanced surfaces
-
COI: 1:CAS:528:DyaK1cXktlersb4%3D
-
Chien L.H. and Webb R.L.: Visualization of pool boiling on enhanced surfaces. Exp. Therm. Fluid Sci. 16, 332–341 (1998). DOI: 10.1016/S0894-1777(97)10032-2
-
(1998)
Exp. Therm. Fluid Sci.
, vol.16
, pp. 332-341
-
-
Chien, L.H.1
Webb, R.L.2
-
227
-
-
0032125280
-
A nucleate boiling model for structured enhanced surfaces
-
COI: 1:CAS:528:DyaK1cXjslCjs7s%3D
-
Chien L-H. and Webb R.L.: A nucleate boiling model for structured enhanced surfaces. Int. J. Heat Mass Transfer 41, 2183–2195 (1998). DOI: 10.1016/S0017-9310(97)00302-5
-
(1998)
Int. J. Heat Mass Transfer
, vol.41
, pp. 2183-2195
-
-
Chien, L.-H.1
Webb, R.L.2
-
228
-
-
34248334110
-
Effect of carbon nanotube arrays on nucleate pool boiling
-
COI: 1:CAS:528:DC%2BD2sXlsFaltrk%3D
-
Ujereh S., Fisher T.S., and Mudawar I.: Effect of carbon nanotube arrays on nucleate pool boiling. Int. J. Heat Mass Transfer 50, 4023–4038 (2007). DOI: 10.1016/j.ijheatmasstransfer.2007.01.030
-
(2007)
Int. J. Heat Mass Transfer
, vol.50
, pp. 4023-4038
-
-
Ujereh, S.1
Fisher, T.S.2
Mudawar, I.3
-
230
-
-
84878888161
-
Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces
-
COI: 1:CAS:528:DC%2BC3sXnvVaqsbY%3D
-
Bourdon B., Di Marco P., Rioboo R., Marengo M., and De Coninck J.: Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces. Int. Commun. Heat Mass Transfer 45, 11–15 (2013). DOI: 10.1016/j.icheatmasstransfer.2013.04.009
-
(2013)
Int. Commun. Heat Mass Transfer
, vol.45
, pp. 11-15
-
-
Bourdon, B.1
Di Marco, P.2
Rioboo, R.3
Marengo, M.4
De Coninck, J.5
-
231
-
-
33746330779
-
Boiling feature on a super water-repellent surface
-
COI: 1:CAS:528:DC%2BD28Xot1yrsL8%3D
-
Takata Y., Hidaka S., and Uraguchi T.: Boiling feature on a super water-repellent surface. Heat Transfer Eng. 27, 25–30 (2006). DOI: 10.1080/01457630600793962
-
(2006)
Heat Transfer Eng.
, vol.27
, pp. 25-30
-
-
Takata, Y.1
Hidaka, S.2
Uraguchi, T.3
-
232
-
-
84860394168
-
Critical heat flux of pool boiling on Si nanowire array-coated surfaces
-
COI: 1:CAS:528:DC%2BC3MXht1antrnK
-
Lu M-C., Chen R., Srinivasan V., Carey V.P., and Majumdar A.: Critical heat flux of pool boiling on Si nanowire array-coated surfaces. Int. J. Heat Mass Transfer 54, 5359–5367 (2011). DOI: 10.1016/j.ijheatmasstransfer.2011.08.007
-
(2011)
Int. J. Heat Mass Transfer
, vol.54
, pp. 5359-5367
-
-
Lu, M.-C.1
Chen, R.2
Srinivasan, V.3
Carey, V.P.4
Majumdar, A.5
-
233
-
-
65249083335
-
Nanowires for enhanced boiling heat transfer
-
COI: 1:CAS:528:DC%2BD1MXmvVWntw%3D%3D
-
Chen R., Lu M., Srinivasan V., Wang Z., Cho H.H., and Majumdar A.: Nanowires for enhanced boiling heat transfer. Nano Lett. 9, 548–553 (2009). DOI: 10.1021/nl8026857
-
(2009)
Nano Lett.
, vol.9
, pp. 548-553
-
-
Chen, R.1
Lu, M.2
Srinivasan, V.3
Wang, Z.4
Cho, H.H.5
Majumdar, A.6
-
234
-
-
80051910301
-
Effects of nanowire height on pool boiling performance of water on silicon chips
-
COI: 1:CAS:528:DC%2BC3MXhtVGktr%2FN
-
Yao Z., Lu Y.W., and Kandlikar S.G.: Effects of nanowire height on pool boiling performance of water on silicon chips. Int. J. Therm. Sci. 50, 2084–2090 (2011). DOI: 10.1016/j.ijthermalsci.2011.06.009
-
(2011)
Int. J. Therm. Sci.
, vol.50
, pp. 2084-2090
-
-
Yao, Z.1
Lu, Y.W.2
Kandlikar, S.G.3
-
235
-
-
84862908040
-
Direct growth of copper nanowires on a substrate for boiling applications
-
COI: 1:CAS:528:DC%2BC3MXhtFWrt7%2FE
-
Yao Z., Lu Y-W., and Kandlikar S.G.: Direct growth of copper nanowires on a substrate for boiling applications. Micro Nano Lett. 6, 563–566 (2011). DOI: 10.1049/mnl.2011.0136
-
(2011)
Micro Nano Lett.
, vol.6
, pp. 563-566
-
-
Yao, Z.1
Lu, Y.-W.2
Kandlikar, S.G.3
-
236
-
-
84877006779
-
Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings
-
COI: 1:CAS:528:DC%2BC3sXms1Kms7s%3D
-
Dai X., Huang X., Yang F., Li X., Sightler J., Yang Y., and Li C.: Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings. Appl. Phys. Lett. 102, 161605 (2013). DOI: 10.1063/1.4802804
-
(2013)
Appl. Phys. Lett.
, vol.102
, pp. 161605
-
-
Dai, X.1
Huang, X.2
Yang, F.3
Li, X.4
Sightler, J.5
Yang, Y.6
Li, C.7
-
237
-
-
77953290837
-
Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper
-
COI: 1:CAS:528:DC%2BC3cXmtFOhs7k%3D
-
Hendricks T., Krishnan S., Choi C., Chang C-H., and Paul B.: Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper. Int. J. Heat Mass Transfer 53, 3357–3365 (2010). DOI: 10.1016/j.ijheatmasstransfer.2010.02.025
-
(2010)
Int. J. Heat Mass Transfer
, vol.53
, pp. 3357-3365
-
-
Hendricks, T.1
Krishnan, S.2
Choi, C.3
Chang, C.-H.4
Paul, B.5
-
238
-
-
50249158588
-
Natureinspired boiling enhancement by novel nanostructured macroporous surfaces
-
COI: 1:CAS:528:DC%2BD1cXhtVykt7rK
-
Li S., Furberg R., Toprak M., Palm B., and Muhammed M.: Natureinspired boiling enhancement by novel nanostructured macroporous surfaces. Adv. Funct. Mater. 18, 2215–2220 (2008). DOI: 10.1002/adfm.200701405
-
(2008)
Adv. Funct. Mater.
, vol.18
, pp. 2215-2220
-
-
Li, S.1
Furberg, R.2
Toprak, M.3
Palm, B.4
Muhammed, M.5
-
239
-
-
77955289061
-
The use of a nano- and microporous surface layer to enhance boiling in a plate heat exchanger
-
COI: 1:CAS:528:DC%2BD1MXpslCks70%3D
-
Furberg R., Palm B., Li S., Toprak M., and Muhammed M.: The use of a nano- and microporous surface layer to enhance boiling in a plate heat exchanger. J. Heat Transfer-Trans. ASME 131, 101010 (2009). DOI: 10.1115/1.3180702
-
(2009)
J. Heat Transfer-Trans. ASME
, vol.131
, pp. 101010
-
-
Furberg, R.1
Palm, B.2
Li, S.3
Toprak, M.4
Muhammed, M.5
-
240
-
-
79951922663
-
Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling
-
COI: 1:CAS:528:DC%2BC3MXhvFCnsrk%3D
-
Ahn H., Jo H., Kang S.H., and Kim M.H.: Effect of liquid spreading due to nano/microstructures on the critical heat flux during pool boiling. Appl. Phys. Lett. 98, 071908 (2011). DOI: 10.1063/1.3555430
-
(2011)
Appl. Phys. Lett.
, vol.98
, pp. 071908
-
-
Ahn, H.1
Jo, H.2
Kang, S.H.3
Kim, M.H.4
-
241
-
-
77249127943
-
Simultaneous droplet impingement dynamics and heat transfer on nano-structured surfaces
-
COI: 1:CAS:528:DC%2BC3cXis1CmsLk%3D
-
Shen J., Graber C., Liburdy J., Pence D., and Narayanan V.: Simultaneous droplet impingement dynamics and heat transfer on nano-structured surfaces. Exp. Therm. Fluid Sci. 34, 496–503 (2010). DOI: 10.1016/j.expthermflusci.2009.02.003
-
(2010)
Exp. Therm. Fluid Sci.
, vol.34
, pp. 496-503
-
-
Shen, J.1
Graber, C.2
Liburdy, J.3
Pence, D.4
Narayanan, V.5
-
242
-
-
77954540014
-
Pool boiling heat transfer with nano-porous surface
-
COI: 1:CAS:528:DC%2BC3cXos1Wmtbo%3D
-
Lee C., Bhuiya M.M.H., and Kim K.J.: Pool boiling heat transfer with nano-porous surface. Int. J. Heat Mass Transfer 53, 4274–4279 (2010). DOI: 10.1016/j.ijheatmasstransfer.2010.05.054
-
(2010)
Int. J. Heat Mass Transfer
, vol.53
, pp. 4274-4279
-
-
Lee, C.1
Bhuiya, M.M.H.2
Kim, K.J.3
-
243
-
-
70049110498
-
Subcooled pool boiling experiments on horizontal heaters coated with carbon nanotubes
-
COI: 1:CAS:528:DC%2BD1MXmt1aqtrw%3D
-
Sathyamurthi V., Ahn H., Banerjee D., and Lau S.C.: Subcooled pool boiling experiments on horizontal heaters coated with carbon nanotubes. J. Heat Transfer-Trans. ASME 131, 071501 (2009). DOI: 10.1115/1.3000595
-
(2009)
J. Heat Transfer-Trans. ASME
, vol.131
, pp. 071501
-
-
Sathyamurthi, V.1
Ahn, H.2
Banerjee, D.3
Lau, S.C.4
-
244
-
-
36049044170
-
Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids
-
COI: 1:CAS:528:DC%2BD2sXotVCqu7g%3D
-
Kim H.D. and Kim M.H.: Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids. Appl. Phys. Lett. 91, 014104 (2007). DOI: 10.1063/1.2754644
-
(2007)
Appl. Phys. Lett.
, vol.91
, pp. 014104
-
-
Kim, H.D.1
Kim, M.H.2
-
245
-
-
0031280131
-
Boiling heat transfer phenomena from micro-porous and porous surfaces in saturated FC-72
-
COI: 1:CAS:528:DyaK2sXmt1ajs7o%3D
-
Chang J.Y. and You S.M.: Boiling heat transfer phenomena from micro-porous and porous surfaces in saturated FC-72. Int. J. Heat Mass Transfer 40, 4437–4447 (1997). DOI: 10.1016/S0017-9310(97)00055-0
-
(1997)
Int. J. Heat Mass Transfer
, vol.40
, pp. 4437-4447
-
-
Chang, J.Y.1
You, S.M.2
-
246
-
-
84886406381
-
Pool boiling heat transfer characteristics of HFO-1234yf on plain and microporous-enhanced surfaces
-
COI: 1:CAS:528:DC%2BC3sXhvVGhtbzJ
-
Moreno G., Narumanchi S., and King C.: Pool boiling heat transfer characteristics of HFO-1234yf on plain and microporous-enhanced surfaces. J. Heat Transfer 135, 111014 (2013). DOI: 10.1115/1.4024622
-
(2013)
J. Heat Transfer
, vol.135
, pp. 111014
-
-
Moreno, G.1
Narumanchi, S.2
King, C.3
-
247
-
-
84857008816
-
Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina
-
COI: 1:CAS:528:DC%2BC38XhslCnsr8%3D
-
Feng B., Weaver K., and Peterson G.P.: Enhancement of critical heat flux in pool boiling using atomic layer deposition of alumina. Appl. Phys. Lett. 100, 053120 (2012). DOI: 10.1063/1.3681943
-
(2012)
Appl. Phys. Lett.
, vol.100
, pp. 053120
-
-
Feng, B.1
Weaver, K.2
Peterson, G.P.3
-
248
-
-
33750628133
-
Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement
-
COI: 1:CAS:528:DC%2BD28XhtF2jsLbJ
-
Launay S., Fedorov A., Joshi Y., Cao A., and Ajayan P.M.: Hybrid micro-nano structured thermal interfaces for pool boiling heat transfer enhancement. Microelectron. J. 37, 1158–1164 (2006). DOI: 10.1016/j.mejo.2005.07.016
-
(2006)
Microelectron. J.
, vol.37
, pp. 1158-1164
-
-
Launay, S.1
Fedorov, A.2
Joshi, Y.3
Cao, A.4
Ajayan, P.M.5
-
249
-
-
21544441469
-
Odyssey of the enhanced boiling surface
-
Webb R.L.: Odyssey of the enhanced boiling surface. ASME Conf. Proc. 2004, 961–969 (2004).
-
(2004)
ASME Conf. Proc.
, vol.2004
, pp. 961-969
-
-
Webb, R.L.1
-
250
-
-
0035909086
-
Pool-boiling CHF enhancement by modulated porous-layer coating: Theory and experiment
-
COI: 1:CAS:528:DC%2BD3MXkvVeitr0%3D
-
Liter S.G. and Kaviany M.: Pool-boiling CHF enhancement by modulated porous-layer coating: Theory and experiment. Int. J. Heat Mass Transfer 44, 4287–4311 (2001). DOI: 10.1016/S0017-9310(01)00084-9
-
(2001)
Int. J. Heat Mass Transfer
, vol.44
, pp. 4287-4311
-
-
Liter, S.G.1
Kaviany, M.2
-
251
-
-
77249134996
-
Effects of nano-fluid and surfaces with nano structure on the increase of CHF
-
COI: 1:CAS:528:DC%2BC3cXis1CmsLg%3D
-
Kim S., Kim H., Kim H., Ahn H., Jo H., Kim J., and Kim M.H.: Effects of nano-fluid and surfaces with nano structure on the increase of CHF. Exp. Therm. Fluid Sci. 34, 487–495 (2010). DOI: 10.1016/j.expthermflusci.2009.05.006
-
(2010)
Exp. Therm. Fluid Sci.
, vol.34
, pp. 487-495
-
-
Kim, S.1
Kim, H.2
Kim, H.3
Ahn, H.4
Jo, H.5
Kim, J.6
Kim, M.H.7
-
252
-
-
51749104398
-
Bubble nucleation on hydrophobic islands provides evidence to anomalously high contact angles of nanobubbles
-
COI: 1:CAS:528:DC%2BD1cXhtFWmu7zP
-
Nam Y. and Ju Y.S.: Bubble nucleation on hydrophobic islands provides evidence to anomalously high contact angles of nanobubbles. Appl. Phys. Lett. 93, 103115 (2008). DOI: 10.1063/1.2981572
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 103115
-
-
Nam, Y.1
Ju, Y.S.2
-
253
-
-
84881569822
-
Effects of hydrophobic-spot periphery and subcooling on nucleate pool boiling from a mixed-wettability surface
-
COI: 1:CAS:528:DC%2BC3sXht1ygtLzP
-
Suroto B., Tashiro M., Hirabayashi S., Hidaka S., Kohno M., and Takata Y.: Effects of hydrophobic-spot periphery and subcooling on nucleate pool boiling from a mixed-wettability surface. J. Therm. Sci. Technol. 8, 294–308 (2013). DOI: 10.1299/jtst.8.294
-
(2013)
J. Therm. Sci. Technol.
, vol.8
, pp. 294-308
-
-
Suroto, B.1
Tashiro, M.2
Hirabayashi, S.3
Hidaka, S.4
Kohno, M.5
Takata, Y.6
-
254
-
-
84876583087
-
An experimental study of bubble formation on a microwire coated with superhydrophobic micropatterns
-
COI: 1:CAS:528:DC%2BC3sXotFOjurk%3D
-
Wang X., Song Y., and Wang H.: An experimental study of bubble formation on a microwire coated with superhydrophobic micropatterns. Heat Transfer Res. 44, 59–70 (2013). DOI: 10.1615/HeatTransRes.2012005689
-
(2013)
Heat Transfer Res.
, vol.44
, pp. 59-70
-
-
Wang, X.1
Song, Y.2
Wang, H.3
-
257
-
-
33744758794
-
Film condensation on finely rippled surfaces with consideration of surface tension
-
Gregorig R.: Film condensation on finely rippled surfaces with consideration of surface tension. Z. Angew. Math. Phys. 5, 36–49 (1954). DOI: 10.1007/BF01600263
-
(1954)
Z. Angew. Math. Phys.
, vol.5
, pp. 36-49
-
-
Gregorig, R.1
-
258
-
-
68949105405
-
Measurement of heat transfer during drop-wise condensation of water on polyethylene
-
COI: 1:CAS:528:DC%2BD1MXpsFyhtr0%3D
-
Bansal G., Khandekar S., and Muralidhar K.: Measurement of heat transfer during drop-wise condensation of water on polyethylene. Nanoscale Microscale Thermophys. Eng. 13, 184–201 (2009). DOI: 10.1080/15567260903077751
-
(2009)
Nanoscale Microscale Thermophys. Eng.
, vol.13
, pp. 184-201
-
-
Bansal, G.1
Khandekar, S.2
Muralidhar, K.3
-
259
-
-
85141846039
-
-
Enright R., Miljkovic N., Alvarado J., Kim K., and Rose J.W.: Dropwise condensation on micro- and nanostructured surfaces. Nanoscale Microscale Thermophys. Eng. 18 (3), (2014).
-
(2014)
Nanoscale Microscale Thermophys. Eng.
, vol.18
, Issue.3
-
-
-
260
-
-
84857714888
-
Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces
-
COI: 1:CAS:528:DC%2BC38XhsVylu7g%3D
-
Miljkovic N., Enright R., and Wang E.N.: Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces. ACS Nano 6, 1776–1785 (2012). DOI: 10.1021/nn205052a
-
(2012)
ACS Nano
, vol.6
, pp. 1776-1785
-
-
Miljkovic, N.1
Enright, R.2
Wang, E.N.3
-
261
-
-
84883679800
-
Dewetting transitions on superhydrophobic surfaces: When are Wenzel drops reversible?
-
COI: 1:CAS:528:DC%2BC3sXht1Cqtb%2FO
-
Boreyko J.B. and Collier C.P.: Dewetting transitions on superhydrophobic surfaces: When are Wenzel drops reversible? J. Phys. Chem. C 117 (35), 18084–18090 (2013). DOI: 10.1021/jp4053083
-
(2013)
J. Phys. Chem. C
, vol.117
, Issue.35
, pp. 18084-18090
-
-
Boreyko, J.B.1
Collier, C.P.2
-
262
-
-
0026382023
-
The effect of polyvinylidene chloride coating thickness on promotion of dropwise steam condensation
-
COI: 1:CAS:528:DyaK38XhsFCntbk%3D
-
Haraguchi T., Shimada R., Kumagai S., and Takeyama T.: The effect of polyvinylidene chloride coating thickness on promotion of dropwise steam condensation. Int. J. Heat Mass Transfer 34, 3047–3054 (1991). DOI: 10.1016/0017-9310(91)90074-O
-
(1991)
Int. J. Heat Mass Transfer
, vol.34
, pp. 3047-3054
-
-
Haraguchi, T.1
Shimada, R.2
Kumagai, S.3
Takeyama, T.4
-
263
-
-
0022769782
-
Evaluation of organic coatings for the promotion of dropwise condensation of steam
-
COI: 1:CAS:528:DyaL28XlsFGhtLc%3D
-
Marto P., Looney D., Rose J.W., and Wanniarachchi A.S.: Evaluation of organic coatings for the promotion of dropwise condensation of steam. Int. J. Heat Mass Transfer 29, 1109–1117 (1986). DOI: 10.1016/0017-9310(86)90142-0
-
(1986)
Int. J. Heat Mass Transfer
, vol.29
, pp. 1109-1117
-
-
Marto, P.1
Looney, D.2
Rose, J.W.3
Wanniarachchi, A.S.4
-
264
-
-
31744433962
-
An experimental and theoretical study on the concept of dropwise condensation
-
COI: 1:CAS:528:DC%2BD28XhtVGhsLo%3D
-
Vemuri S. and Kim K.J.: An experimental and theoretical study on the concept of dropwise condensation. Int. J. Heat Mass Transfer 49, 649–657 (2006). DOI: 10.1016/j.ijheatmasstransfer.2005.08.016
-
(2006)
Int. J. Heat Mass Transfer
, vol.49
, pp. 649-657
-
-
Vemuri, S.1
Kim, K.J.2
-
265
-
-
27544508395
-
Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan
-
COI: 1:CAS:528:DC%2BD2MXhtFGrt73L
-
Vemuri S., Kim K., Wood B., Govindaraju S., and Bell T.W.: Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan. Appl. Therm. Eng. 26, 421–429 (2006). DOI: 10.1016/j.applthermaleng.2005.05.022
-
(2006)
Appl. Therm. Eng.
, vol.26
, pp. 421-429
-
-
Vemuri, S.1
Kim, K.2
Wood, B.3
Govindaraju, S.4
Bell, T.W.5
-
266
-
-
9244249882
-
An integrated study of dropwise condensation heat transfer on self-assembled organic surfaces through Fourier transform infra-red spectroscopy and ellipsometry
-
COI: 1:CAS:528:DC%2BD2cXhtVWjurzJ
-
Pang G., Dale J.D., and Kwok D.Y.: An integrated study of dropwise condensation heat transfer on self-assembled organic surfaces through Fourier transform infra-red spectroscopy and ellipsometry. Int. J. Heat Mass Transfer 48, 307–316 (2005). DOI: 10.1016/j.ijheatmasstransfer.2004.08.029
-
(2005)
Int. J. Heat Mass Transfer
, vol.48
, pp. 307-316
-
-
Pang, G.1
Dale, J.D.2
Kwok, D.Y.3
-
267
-
-
33747724048
-
Dropwise condensation on SAM and electroless composite coating surfaces
-
COI: 1:CAS:528:DC%2BD28XpvFais7k%3D
-
Yang Q. and Gu A.: Dropwise condensation on SAM and electroless composite coating surfaces. J. Chem. Eng. Jpn. 39, 826–830 (2006). DOI: 10.1252/jcej.39.826
-
(2006)
J. Chem. Eng. Jpn.
, vol.39
, pp. 826-830
-
-
Yang, Q.1
Gu, A.2
-
268
-
-
84856211230
-
Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings
-
COI: 1:CAS:528:DC%2BC38Xhs1Kltbg%3D
-
Yin L., Wang Y., Ding J., Wang Q., and Chen Q.: Water condensation on superhydrophobic aluminum surfaces with different low-surface-energy coatings. Appl. Surf. Sci. 258, 4063–4068 (2012). DOI: 10.1016/j.apsusc.2011.12.100
-
(2012)
Appl. Surf. Sci.
, vol.258
, pp. 4063-4068
-
-
Yin, L.1
Wang, Y.2
Ding, J.3
Wang, Q.4
Chen, Q.5
-
269
-
-
78650065041
-
Dropwise condensation underneath chemically textured surfaces: Simulation and experiments
-
COI: 1:CAS:528:DC%2BC3cXhtl2ltb7L
-
Sikarwar B., Battoo N., Khandekar S., and Muralidhar K.: Dropwise condensation underneath chemically textured surfaces: Simulation and experiments. Journal of Heat Transfer-Trans. ASME 133, 021501 (2011). DOI: 10.1115/1.4002396
-
(2011)
Journal of Heat Transfer-Trans. ASME
, vol.133
, pp. 021501
-
-
Sikarwar, B.1
Battoo, N.2
Khandekar, S.3
Muralidhar, K.4
-
270
-
-
0348172131
-
Heat transfer enhancement of dropwise condensation on a vertical surface with round shaped grooves
-
COI: 1:CAS:528:DC%2BD3sXpvVWqtrg%3D
-
Izumi M., Kumagai S., Shimada R., and Yamakawa N.: Heat transfer enhancement of dropwise condensation on a vertical surface with round shaped grooves. Exp. Therm. Fluid Sci. 28, 243–248 (2004). DOI: 10.1016/S0894-1777(03)00046-3
-
(2004)
Exp. Therm. Fluid Sci.
, vol.28
, pp. 243-248
-
-
Izumi, M.1
Kumagai, S.2
Shimada, R.3
Yamakawa, N.4
-
271
-
-
33745794065
-
Water condensation on a super-hydrophobic spike surface
-
COI: 1:CAS:528:DC%2BD28XnsVyjsb8%3D
-
Narhe R.D. and Beysens D.A.: Water condensation on a super-hydrophobic spike surface. Europhys. Lett. 75, 98–104 (2006). DOI: 10.1209/epl/i2006-10069-9
-
(2006)
Europhys. Lett.
, vol.75
, pp. 98-104
-
-
Narhe, R.D.1
Beysens, D.A.2
-
272
-
-
37349132446
-
Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces
-
COI: 1:CAS:528:DC%2BD1cXit12htLc%3D
-
Jung Y.C. and Bhushan B.: Wetting behaviour during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces. J. Microsc. 229, 127–140 (2008). DOI: 10.1111/j.1365-2818.2007.01875.x
-
(2008)
J. Microsc.
, vol.229
, pp. 127-140
-
-
Jung, Y.C.1
Bhushan, B.2
-
273
-
-
84867474136
-
Condensation on superhydrophobic surfaces: The role of local energy barriers and structure length scale
-
COI: 1:CAS:528:DC%2BC38Xht1OksbvL
-
Enright R., Miljkovic N., Al-Obeidi A., Thompson C.V., and Wang E.N.: Condensation on superhydrophobic surfaces: The role of local energy barriers and structure length scale. Langmuir 28, 14424–14432 (2012). DOI: 10.1021/la302599n
-
(2012)
Langmuir
, vol.28
, pp. 14424-14432
-
-
Enright, R.1
Miljkovic, N.2
Al-Obeidi, A.3
Thompson, C.V.4
Wang, E.N.5
-
274
-
-
84864682268
-
How nanorough is rough enough to make a surface superhydrophobic during water condensation?
-
COI: 1:CAS:528:DC%2BC38XhtFCjsrfP
-
Rykaczewski K., Osborn W., Chinn J., Walker M., Scott J.H.J., Jones W., Hao C., Yao S.H., and Wang Z.K.: How nanorough is rough enough to make a surface superhydrophobic during water condensation? Soft Matter 8, 8786–8794 (2012). DOI: 10.1039/c2sm25502b
-
(2012)
Soft Matter
, vol.8
, pp. 8786-8794
-
-
Rykaczewski, K.1
Osborn, W.2
Chinn, J.3
Walker, M.4
Scott, J.H.J.5
Jones, W.6
Hao, C.7
Yao, S.H.8
Wang, Z.K.9
-
275
-
-
33645533801
-
Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant
-
COI: 1:CAS:528:DC%2BD28XhsVWjsrg%3D
-
Wier K.A. and McCarthy T.J.: Condensation on ultrahydrophobic surfaces and its effect on droplet mobility: Ultrahydrophobic surfaces are not always water repellant. Langmuir 22, 2433–2436 (2006). DOI: 10.1021/la0525877
-
(2006)
Langmuir
, vol.22
, pp. 2433-2436
-
-
Wier, K.A.1
McCarthy, T.J.2
-
276
-
-
0041764362
-
Superhydrophobic states
-
COI: 1:CAS:528:DC%2BD3sXls1elsL0%3D
-
Lafuma A. and Quere D.: Superhydrophobic states. Nat. Mater. 2, 457–460 (2003). DOI: 10.1038/nmat924
-
(2003)
Nat. Mater.
, vol.2
, pp. 457-460
-
-
Lafuma, A.1
Quere, D.2
-
277
-
-
19444372520
-
Nucleation and growth on a superhydrophobic grooved surface
-
COI: 1:STN:280:DC%2BD2cvitVKqtA%3D%3D
-
Narhe R.D. and Beysens D.A.: Nucleation and growth on a superhydrophobic grooved surface. Phys. Rev. Lett. 93, 076103 (2004). DOI: 10.1103/PhysRevLett.93.076103
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 076103
-
-
Narhe, R.D.1
Beysens, D.A.2
-
278
-
-
34250616728
-
Growth dynamics of water drops on a square-pattern rough hydrophobic surface
-
COI: 1:CAS:528:DC%2BD2sXkslOls7k%3D
-
Narhe R.D. and Beysens D.A.: Growth dynamics of water drops on a square-pattern rough hydrophobic surface. Langmuir 23, 6486–6489 (2007). DOI: 10.1021/la062021y
-
(2007)
Langmuir
, vol.23
, pp. 6486-6489
-
-
Narhe, R.D.1
Beysens, D.A.2
-
279
-
-
27644568864
-
Microscopic observations of condensation of water on lotus leaves
-
COI: 1:CAS:528:DC%2BD2MXht1KrsbjP
-
Cheng Y., Rodak D., Angelopoulos A., and Gacek T.: Microscopic observations of condensation of water on lotus leaves. Appl. Phys. Lett. 87, 194112 (2005). DOI: 10.1063/1.2130392
-
(2005)
Appl. Phys. Lett.
, vol.87
, pp. 194112
-
-
Cheng, Y.1
Rodak, D.2
Angelopoulos, A.3
Gacek, T.4
-
280
-
-
0347992816
-
Superhydrophobic carbon nanotube forests
-
COI: 1:CAS:528:DC%2BD3sXot12rtLg%3D
-
Lau K.K.S., Bico J., Teo K.B.K., Chhowalla M., Amaratunga G.A.J., Milne W., McKinley G.H., and Gleason K.K.: Superhydrophobic carbon nanotube forests. Nano Lett. 3, 1701–1705 (2003). DOI: 10.1021/nl034704t
-
(2003)
Nano Lett.
, vol.3
, pp. 1701-1705
-
-
Lau, K.K.S.1
Bico, J.2
Teo, K.B.K.3
Chhowalla, M.4
Amaratunga, G.A.J.5
Milne, W.6
McKinley, G.H.7
Gleason, K.K.8
-
281
-
-
21644431718
-
Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure
-
COI: 1:CAS:528:DC%2BD2MXmsFeju70%3D
-
Journet C., Moulinet S., Ybert C., Purcell S.T., and Bocquet L.: Contact angle measurements on superhydrophobic carbon nanotube forests: Effect of fluid pressure. Europhys. Lett. 71, 104–109 (2005). DOI: 10.1209/epl/i2005-10068-4
-
(2005)
Europhys. Lett.
, vol.71
, pp. 104-109
-
-
Journet, C.1
Moulinet, S.2
Ybert, C.3
Purcell, S.T.4
Bocquet, L.5
-
282
-
-
83455181937
-
Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of noncondensable gas
-
COI: 1:CAS:528:DC%2BC3MXhs1Ois7%2FJ
-
Ma X., Wang S., Lan Z., Peng B., Ma H.B., and Cheng P.: Wetting mode evolution of steam dropwise condensation on superhydrophobic surface in the presence of noncondensable gas. J. Heat Transfer-Trans. ASME 134, 021501 (2012). DOI: 10.1115/1.4005094
-
(2012)
J. Heat Transfer-Trans. ASME
, vol.134
, pp. 021501
-
-
Ma, X.1
Wang, S.2
Lan, Z.3
Peng, B.4
Ma, H.B.5
Cheng, P.6
-
283
-
-
84880379086
-
Heat transfer measurement during dropwise condensation using micro/nano-scale porous surface
-
COI: 1:CAS:528:DC%2BC3sXht12itrvM
-
Lee S., Cheng K., Palmre V., Bhuiya M., Kim K., Zhang B.J., and Yoon H.: Heat transfer measurement during dropwise condensation using micro/nano-scale porous surface. Int. J. Heat Mass Transfer 65, 619–626 (2013). DOI: 10.1016/j.ijheatmasstransfer.2013.06.016
-
(2013)
Int. J. Heat Mass Transfer
, vol.65
, pp. 619-626
-
-
Lee, S.1
Cheng, K.2
Palmre, V.3
Bhuiya, M.4
Kim, K.5
Zhang, B.J.6
Yoon, H.7
-
284
-
-
0026258927
-
Experimental verification of constriction resistance theory in dropwise condensation heat transfer
-
COI: 1:CAS:528:DyaK38XhtlWrs78%3D
-
Tsuruta T., Tanaka H., and Togashi S.: Experimental verification of constriction resistance theory in dropwise condensation heat transfer. Int. J. Heat Mass Transfer 34, 2787–2796 (1991). DOI: 10.1016/0017-9310(91)90238-A
-
(1991)
Int. J. Heat Mass Transfer
, vol.34
, pp. 2787-2796
-
-
Tsuruta, T.1
Tanaka, H.2
Togashi, S.3
-
285
-
-
0026257783
-
A theoretical study on the constriction resistance in dropwise condensation
-
COI: 1:CAS:528:DyaK38XhtlWrs74%3D
-
Tsuruta T. and Tanaka H.: A theoretical study on the constriction resistance in dropwise condensation. Int. J. Heat Mass Transfer 34, 2779–2786 (1991). DOI: 10.1016/0017-9310(91)90237-9
-
(1991)
Int. J. Heat Mass Transfer
, vol.34
, pp. 2779-2786
-
-
Tsuruta, T.1
Tanaka, H.2
-
286
-
-
84861401093
-
Microdroplet growth mechanism during water condensation on superhydrophobic surfaces
-
COI: 1:CAS:528:DC%2BC38XmtlCkt7Y%3D
-
Rykaczewski K.: Microdroplet growth mechanism during water condensation on superhydrophobic surfaces. L angmuir 28, 7720–7729 (2012). DOI: 10.1021/la301618h
-
(2012)
Langmuir
, vol.28
, pp. 7720-7729
-
-
Rykaczewski, K.1
-
287
-
-
85008346014
-
Liquid evaporation on superhydrophobic and superhydrophilic nanostructured surfaces
-
COI: 1:CAS:528:DC%2BC3MXlslCitLk%3D
-
Miljkovic N., Enright R., Maroo S., Cho H.J., and Wang E.N.: Liquid evaporation on superhydrophobic and superhydrophilic nanostructured surfaces. J. Heat Transfer-Trans. ASME 133, 080903 (2011). DOI: 10.1115/1.4003890
-
(2011)
J. Heat Transfer-Trans. ASME
, vol.133
, pp. 080903
-
-
Miljkovic, N.1
Enright, R.2
Maroo, S.3
Cho, H.J.4
Wang, E.N.5
-
288
-
-
84872118091
-
Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces
-
COI: 1:CAS:528:DC%2BC38XhsleqtL%2FJ
-
Miljkovic N., Enright R., Nam Y., Lopez K., Dou N., Sack J., and Wang E.N.: Jumping-droplet-enhanced condensation on scalable superhydrophobic nanostructured surfaces. Nano Lett. 13, 179–187 (2013). DOI: 10.1021/nl303835d
-
(2013)
Nano Lett.
, vol.13
, pp. 179-187
-
-
Miljkovic, N.1
Enright, R.2
Nam, Y.3
Lopez, K.4
Dou, N.5
Sack, J.6
Wang, E.N.7
-
289
-
-
83655191385
-
Nanograssed micropyramidal architectures for continuous dropwise condensation
-
COI: 1:CAS:528:DC%2BC3MXhtFylsr3M
-
Chen X., Wu J., Ma R., Hua M., Koratkar N., Yao S., and Wang Z.: Nanograssed micropyramidal architectures for continuous dropwise condensation. Adv. Funct. Mater. 21, 4617–4623 (2011). DOI: 10.1002/adfm.201101302
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 4617-4623
-
-
Chen, X.1
Wu, J.2
Ma, R.3
Hua, M.4
Koratkar, N.5
Yao, S.6
Wang, Z.7
-
290
-
-
84872114045
-
Condensation heat transfer on two-tier superhydrophobic surfaces
-
COI: 1:CAS:528:DC%2BC38XhsVals7rJ
-
Cheng J., Vandadi A., and Chen C-L.: Condensation heat transfer on two-tier superhydrophobic surfaces. Appl. Phys. Lett. 101, 131909 (2012). DOI: 10.1063/1.4756800
-
(2012)
Appl. Phys. Lett.
, vol.101
, pp. 131909
-
-
Cheng, J.1
Vandadi, A.2
Chen, C.-L.3
-
291
-
-
77956576996
-
Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state
-
COI: 1:CAS:528:DC%2BC3cXhtVGrsLvF
-
Liu T., Sun W., Sun X., and Ai H.: Thermodynamic analysis of the effect of the hierarchical architecture of a superhydrophobic surface on a condensed drop state. Langmuir 26, 14835–14841 (2010). DOI: 10.1021/la101845t
-
(2010)
Langmuir
, vol.26
, pp. 14835-14841
-
-
Liu, T.1
Sun, W.2
Sun, X.3
Ai, H.4
-
292
-
-
84868311282
-
Mechanism study of condensed drops jumping on super-hydrophobic surfaces
-
COI: 1:CAS:528:DC%2BC38Xhs1Wgu7zO
-
Liu T., Sun W., Sun X.Y., and Ai H.R.: Mechanism study of condensed drops jumping on super-hydrophobic surfaces. Colloids Surf., A 414, 366–374 (2012). DOI: 10.1016/j.colsurfa.2012.08.063
-
(2012)
Colloids Surf., A
, vol.414
, pp. 366-374
-
-
Liu, T.1
Sun, W.2
Sun, X.Y.3
Ai, H.R.4
-
293
-
-
84872702245
-
Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces
-
COI: 1:CAS:528:DC%2BC38XhvVOrsbvI
-
Rykaczewski K., Paxson A., Anand S., Chen X., Wang Z.K., and Varanasit K.K.: Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Langmuir 29, 881–891 (2013). DOI: 10.1021/la304264g
-
(2013)
Langmuir
, vol.29
, pp. 881-891
-
-
Rykaczewski, K.1
Paxson, A.2
Anand, S.3
Chen, X.4
Wang, Z.K.5
Varanasit, K.K.6
-
294
-
-
0028766963
-
Patterned condensation figures as optical diffraction gratings
-
COI: 1:CAS:528:DyaK2cXhslOmsb4%3D
-
Kumar A. and Whitesides G.M.: Patterned condensation figures as optical diffraction gratings. Science 263, 60–62 (1994). DOI: 10.1126/science.263.5143.60
-
(1994)
Science
, vol.263
, pp. 60-62
-
-
Kumar, A.1
Whitesides, G.M.2
-
295
-
-
0035951466
-
Fast drop movements resulting from the phase change on a gradient surface
-
COI: 1:CAS:528:DC%2BD3MXntlWlsQ%3D%3D
-
Daniel S., Chaudhury M.K., and Chen J.C.: Fast drop movements resulting from the phase change on a gradient surface. Science 291, 633–636 (2001). DOI: 10.1126/science.291.5504.633
-
(2001)
Science
, vol.291
, pp. 633-636
-
-
Daniel, S.1
Chaudhury, M.K.2
Chen, J.C.3
-
296
-
-
84885409955
-
Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns
-
COI: 1:CAS:528:DC%2BC3sXhslyqurfN
-
Derby M., Chatterjee A., Peles A., and Jensen M.K.: Flow condensation heat transfer enhancement in a mini-channel with hydrophobic and hydrophilic patterns. Int. J. Heat Mass Transfer 68, 151–160 (2014). DOI: 10.1016/j.ijheatmasstransfer.2013.09.024
-
(2014)
Int. J. Heat Mass Transfer
, vol.68
, pp. 151-160
-
-
Derby, M.1
Chatterjee, A.2
Peles, A.3
Jensen, M.K.4
-
297
-
-
84879634199
-
Immersion condensation on oil-infused heterogeneous surface for enhanced heat transfer
-
Xiao R., Miljkovic N., Enright R., and Wang E.: Immersion condensation on oil-infused heterogeneous surface for enhanced heat transfer. Sci. Rep. 3, 1988 (2013). DOI: 10.1038/srep01988
-
(2013)
Sci. Rep.
, vol.3
, pp. 1988
-
-
Xiao, R.1
Miljkovic, N.2
Enright, R.3
Wang, E.4
-
298
-
-
84866323987
-
Droplet contact angle behavior on a hybrid surface with hydrophobic and hydrophilic properties
-
COI: 1:CAS:528:DC%2BC38XhtlCjtb3O
-
Yao C., Garvin T., Alvarado J., Jacobi A., Jones B.G., and Marsh C.P.: Droplet contact angle behavior on a hybrid surface with hydrophobic and hydrophilic properties. Appl. Phys. Lett. 101, 111605 (2012). DOI: 10.1063/1.4752470
-
(2012)
Appl. Phys. Lett.
, vol.101
, pp. 111605
-
-
Yao, C.1
Garvin, T.2
Alvarado, J.3
Jacobi, A.4
Jones, B.G.5
Marsh, C.P.6
-
299
-
-
0003172336
-
Adhesion of ice to coatings and the performance of ice release coatings
-
COI: 1:CAS:528:DyaK3sXkvFOqu70%3D
-
Croutch V.K. and Hartley R.A.: Adhesion of ice to coatings and the performance of ice release coatings. J. Coat. Technol. 64, 41–53 (1992).
-
(1992)
J. Coat. Technol.
, vol.64
, pp. 41-53
-
-
Croutch, V.K.1
Hartley, R.A.2
-
300
-
-
0035423656
-
A hydrophobic self-assembled monolayer with improved adhesion to aluminum for deicing application
-
Somlo B. and Gupta V.: A hydrophobic self-assembled monolayer with improved adhesion to aluminum for deicing application. Mech. Mater. 33, 471–480 (2001). DOI: 10.1016/S0167-6636(01)00068-0
-
(2001)
Mech. Mater.
, vol.33
, pp. 471-480
-
-
Somlo, B.1
Gupta, V.2
-
301
-
-
84864338458
-
Investigating the effects of solid surfaces on ice nucleation
-
COI: 1:CAS:528:DC%2BC38XpsVGmurg%3D
-
Li K., Xu S., Shi W., He M., Li H., Li S., Zhou X., Wang J., and Song Y.: Investigating the effects of solid surfaces on ice nucleation. Langmuir 28, 10749–10754 (2012). DOI: 10.1021/la3014915
-
(2012)
Langmuir
, vol.28
, pp. 10749-10754
-
-
Li, K.1
Xu, S.2
Shi, W.3
He, M.4
Li, H.5
Li, S.6
Zhou, X.7
Wang, J.8
Song, Y.9
-
302
-
-
33748967772
-
Water- and ice-repellent coatings
-
COI: 1:CAS:528:DyaK2sXjvVWks7s%3D
-
Saito H., Takai K., and Yamauchi G.: Water- and ice-repellent coatings. JOCCA-Surf. Coat. Int. 80, 168–171 (1997). DOI: 10.1007/BF02692637
-
(1997)
JOCCA-Surf. Coat. Int.
, vol.80
, pp. 168-171
-
-
Saito, H.1
Takai, K.2
Yamauchi, G.3
-
303
-
-
84873741594
-
Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces
-
COI: 1:CAS:528:DC%2BC38XhvVamtbrN
-
Charpentier T., Neville A., Millner P., Hewson R.W., and Morina A.: Development of anti-icing materials by chemical tailoring of hydrophobic textured metallic surfaces. J. Colloid Interface Sci. 394, 539–544 (2013). DOI: 10.1016/j.jcis.2012.11.021
-
(2013)
J. Colloid Interface Sci.
, vol.394
, pp. 539-544
-
-
Charpentier, T.1
Neville, A.2
Millner, P.3
Hewson, R.W.4
Morina, A.5
-
304
-
-
84871935675
-
Hydrophobic and ice-retarding properties of doped silicone rubber coatings
-
COI: 1:CAS:528:DC%2BC38XhvVCgurbE
-
Arianpour F., Farzaneh M., and Kulinich S.A.: Hydrophobic and ice-retarding properties of doped silicone rubber coatings. Appl. Surf. Sci. 265, 546–552 (2013). DOI: 10.1016/j.apsusc.2012.11.042
-
(2013)
Appl. Surf. Sci.
, vol.265
, pp. 546-552
-
-
Arianpour, F.1
Farzaneh, M.2
Kulinich, S.A.3
-
305
-
-
84874399344
-
Delayed frost growth on jumping-drop superhydrophobic surfaces
-
COI: 1:CAS:528:DC%2BC3sXitVehuw%3D%3D
-
Boreyko J.B. and Collier C.P.: Delayed frost growth on jumping-drop superhydrophobic surfaces. ACS Nano 7, 1618–1627 (2013). DOI: 10.1021/nn3055048
-
(2013)
ACS Nano
, vol.7
, pp. 1618-1627
-
-
Boreyko, J.B.1
Collier, C.P.2
-
306
-
-
84876940451
-
Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets
-
COI: 1:CAS:528:DC%2BC3sXmtlerur8%3D
-
Zhang Q., He M., Chen J., Wang J., Song Y., and Jiang L.: Anti-icing surfaces based on enhanced self-propelled jumping of condensed water microdroplets. Chem. Commun. 49, 4516–4518 (2013). DOI: 10.1039/c3cc40592c
-
(2013)
Chem. Commun.
, vol.49
, pp. 4516-4518
-
-
Zhang, Q.1
He, M.2
Chen, J.3
Wang, J.4
Song, Y.5
Jiang, L.6
-
307
-
-
79953758742
-
Super-hydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation
-
COI: 1:CAS:528:DC%2BC3MXkt1KjsrY%3D
-
He M., Wang J., Li H., and Song Y.: Super-hydrophobic surfaces to condensed micro-droplets at temperatures below the freezing point retard ice/frost formation. Soft Matter 7, 3993 (2011). DOI: 10.1039/c0sm01504k
-
(2011)
Soft Matter
, vol.7
, pp. 3993
-
-
He, M.1
Wang, J.2
Li, H.3
Song, Y.4
-
308
-
-
84864437025
-
Condensation mode determines the freezing of condensed water on solid surfaces
-
COI: 1:CAS:528:DC%2BC38XhtV2gu7zP
-
Zhang Q., He M., Zeng X., Li K., Cui D., Chen J., Wang J., Song Y., and Jiang L.: Condensation mode determines the freezing of condensed water on solid surfaces. Soft Matter 8, 8285 (2012). DOI: 10.1039/c2sm26206a
-
(2012)
Soft Matter
, vol.8
, pp. 8285
-
-
Zhang, Q.1
He, M.2
Zeng, X.3
Li, K.4
Cui, D.5
Chen, J.6
Wang, J.7
Song, Y.8
Jiang, L.9
-
309
-
-
77955664692
-
In situ investigation of ice formation on surfaces with representative wettability
-
COI: 1:CAS:528:DC%2BC3cXnsl2qsLc%3D
-
Yin L., Xia Q., Xue J., Yang S., Wang Q., and Chen Q.: In situ investigation of ice formation on surfaces with representative wettability. Appl. Surf. Sci. 256, 6764–6769 (2010). DOI: 10.1016/j.apsusc.2010.04.086
-
(2010)
Appl. Surf. Sci.
, vol.256
, pp. 6764-6769
-
-
Yin, L.1
Xia, Q.2
Xue, J.3
Yang, S.4
Wang, Q.5
Chen, Q.6
-
310
-
-
84861029419
-
Icephobic/anti-icing properties of micro/nanostructured surfaces
-
COI: 1:CAS:528:DC%2BC38Xlt1Klsb8%3D
-
Guo P., Zheng Y., Wen M., Song C., Lin Y., and Jiang L.: Icephobic/anti-icing properties of micro/nanostructured surfaces. Adv. Mater. 24, 2642–2648 (2012). DOI: 10.1002/adma.201104412
-
(2012)
Adv. Mater.
, vol.24
, pp. 2642-2648
-
-
Guo, P.1
Zheng, Y.2
Wen, M.3
Song, C.4
Lin, Y.5
Jiang, L.6
-
311
-
-
84893018770
-
Adhesive strength of the contact of ice with a superhydrophobic coating
-
COI: 1:CAS:528:DC%2BC3sXjslKhsrw%3D
-
Boinovich L., Zhevnenko S., Emel’yanenko A., Gol’dshtein R.V., and Epifanov V.P.: Adhesive strength of the contact of ice with a superhydrophobic coating. Dokl. Chem. 448, 71–75 (2013). DOI: 10.1134/S0012500813020079
-
(2013)
Dokl. Chem.
, vol.448
, pp. 71-75
-
-
Boinovich, L.1
Zhevnenko, S.2
Emel’yanenko, A.3
Gol’dshtein, R.V.4
Epifanov, V.P.5
-
312
-
-
78049273244
-
Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings
-
COI: 1:CAS:528:DC%2BC3cXhtlaks7fM
-
Jafari R., Menini R., and Farzaneh M.: Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings. Appl. Surf. Sci. 257, 1540–1543 (2010). DOI: 10.1016/j.apsusc.2010.08.092
-
(2010)
Appl. Surf. Sci.
, vol.257
, pp. 1540-1543
-
-
Jafari, R.1
Menini, R.2
Farzaneh, M.3
-
313
-
-
67549112058
-
Ice adhesion on super-hydrophobic surfaces
-
COI: 1:CAS:528:DC%2BD1MXnsl2jsL8%3D
-
Kulinich S.A. and Farzaneh M.: Ice adhesion on super-hydrophobic surfaces. Appl. Surf. Sci. 255, 8153–8157 (2009). DOI: 10.1016/j.apsusc.2009.05.033
-
(2009)
Appl. Surf. Sci.
, vol.255
, pp. 8153-8157
-
-
Kulinich, S.A.1
Farzaneh, M.2
-
314
-
-
61849139043
-
Elaboration of Al2O3/PTFE icephobic coatings for protecting aluminum surfaces
-
COI: 1:CAS:528:DC%2BD1MXjtFOjsr8%3D
-
Menini R. and Farzaneh M.: Elaboration of Al2O3/PTFE icephobic coatings for protecting aluminum surfaces. Surf. Coat. Technol. 203, 1941–1946 (2009). DOI: 10.1016/j.surfcoat.2009.01.030
-
(2009)
Surf. Coat. Technol.
, vol.203
, pp. 1941-1946
-
-
Menini, R.1
Farzaneh, M.2
-
315
-
-
77649214375
-
Superhydrophobic coatings with reduced ice adhesion
-
COI: 1:CAS:528:DC%2BD1MXovVKkurk%3D
-
Sarkar D.K. and Farzaneh M.: Superhydrophobic coatings with reduced ice adhesion. J. Adhes. Sci. Technol. 23, 1215–1237 (2009). DOI: 10.1163/156856109X433964
-
(2009)
J. Adhes. Sci. Technol.
, vol.23
, pp. 1215-1237
-
-
Sarkar, D.K.1
Farzaneh, M.2
-
316
-
-
78649688223
-
Prevention of ice accretion on aluminum surfaces by enhancing their hydrophobic properties
-
COI: 1:CAS:528:DC%2BC3MXivVWgsrk%3D
-
Saleema N., Farzaneh M., Paynter R.W., and Sarkar D.K.: Prevention of ice accretion on aluminum surfaces by enhancing their hydrophobic properties. J. Adhes. Sci. Technol. 25, 27–40 (2011). DOI: 10.1163/016942410X508064
-
(2011)
J. Adhes. Sci. Technol.
, vol.25
, pp. 27-40
-
-
Saleema, N.1
Farzaneh, M.2
Paynter, R.W.3
Sarkar, D.K.4
-
317
-
-
68649096184
-
How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces
-
COI: 1:CAS:528:DC%2BD1MXot1egs78%3D
-
Kulinich S.A. and Farzaneh M.: How wetting hysteresis influences ice adhesion strength on superhydrophobic surfaces. Langmuir 25, 8854–8856 (2009). DOI: 10.1021/la901439c
-
(2009)
Langmuir
, vol.25
, pp. 8854-8856
-
-
Kulinich, S.A.1
Farzaneh, M.2
-
318
-
-
84867786246
-
Why superhydrophobic surfaces are not always icephobic
-
COI: 1:CAS:528:DC%2BC38Xhtl2rt7%2FM
-
Nosonovsky M. and Hejazi V.: Why superhydrophobic surfaces are not always icephobic. ACS Nano 6, 8488–8491 (2012). DOI: 10.1021/nn302138r
-
(2012)
ACS Nano
, vol.6
, pp. 8488-8491
-
-
Nosonovsky, M.1
Hejazi, V.2
-
319
-
-
78650369110
-
Relationships between water wettability and ice adhesion
-
COI: 1:CAS:528:DC%2BC3cXht12jur7K
-
Meuler A., Smith J., Varanasi K., Mabry J., McKinley G.H., and Cohen R.E.: Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 2, 3100–3110 (2010). DOI: 10.1021/am1006035
-
(2010)
ACS Appl. Mater. Interfaces
, vol.2
, pp. 3100-3110
-
-
Meuler, A.1
Smith, J.2
Varanasi, K.3
Mabry, J.4
McKinley, G.H.5
Cohen, R.E.6
-
320
-
-
78650697694
-
Superhydrophobic surfaces: Are they really ice-repellent?
-
COI: 1:CAS:528:DC%2BC3cXhsFakt7jE
-
Kulinich S., Farhadi S., Nose K., and Du X.W.: Superhydrophobic surfaces: Are they really ice-repellent? Langmuir 27, 25–29 (2011). DOI: 10.1021/la104277q
-
(2011)
Langmuir
, vol.27
, pp. 25-29
-
-
Kulinich, S.1
Farhadi, S.2
Nose, K.3
Du, X.W.4
-
321
-
-
79951676502
-
Research on the icephobic properties of fluoropolymer-based materials
-
COI: 1:CAS:528:DC%2BC3MXitFehsrk%3D
-
Yang S., Xia Q., Zhu L., Xue J., Wang Q., and Chen Q-M.: Research on the icephobic properties of fluoropolymer-based materials. Appl. Surf. Sci. 257, 4956–4962 (2011). DOI: 10.1016/j.apsusc.2011.01.003
-
(2011)
Appl. Surf. Sci.
, vol.257
, pp. 4956-4962
-
-
Yang, S.1
Xia, Q.2
Zhu, L.3
Xue, J.4
Wang, Q.5
Chen, Q.-M.6
-
322
-
-
79960995436
-
The superhydrophobicity of polymer surfaces: Recent developments
-
COI: 1:CAS:528:DC%2BC3MXntVCnt7o%3D
-
Shirtcliffe N., McHale G., and Newton M.I.: The superhydrophobicity of polymer surfaces: Recent developments. J. Polym. Sci. Part B: Polym. Phys. 49, 1203–1217 (2011). DOI: 10.1002/polb.22286
-
(2011)
J. Polym. Sci. Part B: Polym. Phys.
, vol.49
, pp. 1203-1217
-
-
Shirtcliffe, N.1
McHale, G.2
Newton, M.I.3
-
323
-
-
84866013523
-
Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade
-
COI: 1:CAS:528:DC%2BC38XhtFOmtrjP
-
Peng C., Xing S., Yuan Z., Xiao J., Wang C., and Zeng J.: Preparation and anti-icing of superhydrophobic PVDF coating on a wind turbine blade. Appl. Surf. Sci. 259, 764–768 (2012). DOI: 10.1016/j.apsusc.2012.07.118
-
(2012)
Appl. Surf. Sci.
, vol.259
, pp. 764-768
-
-
Peng, C.1
Xing, S.2
Yuan, Z.3
Xiao, J.4
Wang, C.5
Zeng, J.6
-
324
-
-
84877579112
-
Frosting and defrosting on rigid superhydrophobic surface
-
COI: 1:CAS:528:DC%2BC3sXlsl2jsr4%3D
-
Jing T., Kim Y., Lee S., Kim D., Kim J., and Hwang W.: Frosting and defrosting on rigid superhydrophobic surface. Appl. Surf. Sci. 276, 37–42 (2013). DOI: 10.1016/j.apsusc.2013.02.105
-
(2013)
Appl. Surf. Sci.
, vol.276
, pp. 37-42
-
-
Jing, T.1
Kim, Y.2
Lee, S.3
Kim, D.4
Kim, J.5
Hwang, W.6
-
325
-
-
78650735093
-
Exploiting topographical texture to impart icephobicity
-
COI: 1:CAS:528:DC%2BC3cXhsF2ms7jN
-
Meuler A., McKinley G.H., and Cohen R.E.: Exploiting topographical texture to impart icephobicity. ACS Nano 4, 7048–7052 (2010). DOI: 10.1021/nn103214q
-
(2010)
ACS Nano
, vol.4
, pp. 7048-7052
-
-
Meuler, A.1
McKinley, G.H.2
Cohen, R.E.3
-
326
-
-
77951937910
-
Ice accretion on superhydrophobic aluminum surfaces under low-temperature conditions
-
Wang F., Li C., Lv Y., Lv F., and Du Y.: Ice accretion on superhydrophobic aluminum surfaces under low-temperature conditions. Cold Reg. Sci. Technol. 62, 29–33 (2010). DOI: 10.1016/j.coldregions.2010.02.005
-
(2010)
Cold Reg. Sci. Technol.
, vol.62
, pp. 29-33
-
-
Wang, F.1
Li, C.2
Lv, Y.3
Lv, F.4
Du, Y.5
-
327
-
-
82455172068
-
Predictive model for ice formation on superhydrophobic surfaces
-
COI: 1:CAS:528:DC%2BC3MXhsVCrs7fF
-
Bahadur V., Mishchenko L., Hatton B., Taylor J., Aizenberg J., and Krupenkin T.: Predictive model for ice formation on superhydrophobic surfaces. Langmuir 27, 14143–14150 (2011). DOI: 10.1021/la200816f
-
(2011)
Langmuir
, vol.27
, pp. 14143-14150
-
-
Bahadur, V.1
Mishchenko, L.2
Hatton, B.3
Taylor, J.4
Aizenberg, J.5
Krupenkin, T.6
-
328
-
-
84878254972
-
Effects of contact angle hysteresis on ice adhesion and growth on superhydrophobic surfaces under dynamic flow conditions
-
COI: 1:CAS:528:DC%2BC38Xht1Wrt7zK
-
Sarshar M., Swarctz C., Hunter S., Simpson J., and Choi C-H.: Effects of contact angle hysteresis on ice adhesion and growth on superhydrophobic surfaces under dynamic flow conditions. Colloid Polym. Sci. 291, 427–435 (2012). DOI: 10.1007/s00396-012-2753-4
-
(2012)
Colloid Polym. Sci.
, vol.291
, pp. 427-435
-
-
Sarshar, M.1
Swarctz, C.2
Hunter, S.3
Simpson, J.4
Choi, C.-H.5
-
329
-
-
84863399640
-
Dynamics of ice nucleation on water repellent surfaces
-
COI: 1:CAS:528:DC%2BC38XlvVSltw%3D%3D
-
Alizadeh A., Yamada M., Li R., Shang W., Otta S., Zhong S., Ge L., Dhinojwala A., Conway K., Bahadur V., Vinciquerra A., Stephens B., and Blohm M.L.: Dynamics of ice nucleation on water repellent surfaces. Langmuir 28, 3180–3186 (2012). DOI: 10.1021/la2045256
-
(2012)
Langmuir
, vol.28
, pp. 3180-3186
-
-
Alizadeh, A.1
Yamada, M.2
Li, R.3
Shang, W.4
Otta, S.5
Zhong, S.6
Ge, L.7
Dhinojwala, A.8
Conway, K.9
Bahadur, V.10
Vinciquerra, A.11
Stephens, B.12
Blohm, M.L.13
-
330
-
-
79954671386
-
Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems
-
Antonini C., Innocenti M., Horn T., Marengo M., and Amirfazli A.: Understanding the effect of superhydrophobic coatings on energy reduction in anti-icing systems. Cold Reg. Sci. Technol. 67, 58–67 (2011). DOI: 10.1016/j.coldregions.2011.02.006
-
(2011)
Cold Reg. Sci. Technol.
, vol.67
, pp. 58-67
-
-
Antonini, C.1
Innocenti, M.2
Horn, T.3
Marengo, M.4
Amirfazli, A.5
-
331
-
-
84857842654
-
Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes
-
COI: 1:CAS:528:DC%2BC38XislSrsb4%3D
-
Xiao J. and Chaudhuri S.: Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes. Langmuir 28, 4434–4446 (2012). DOI: 10.1021/la2034565
-
(2012)
Langmuir
, vol.28
, pp. 4434-4446
-
-
Xiao, J.1
Chaudhuri, S.2
-
332
-
-
0035255060
-
Ice nucleation on soot particles
-
COI: 1:CAS:528:DC%2BD3MXktlyntg%3D%3D
-
Gorbunov B., Baklanov A., Kakutkina N., Windsor H.L., and Toumi R.: Ice nucleation on soot particles. J. Aerosol Sci. 32, 199–215 (2001). DOI: 10.1016/S0021-8502(00)00077-X
-
(2001)
J. Aerosol Sci.
, vol.32
, pp. 199-215
-
-
Gorbunov, B.1
Baklanov, A.2
Kakutkina, N.3
Windsor, H.L.4
Toumi, R.5
-
333
-
-
84892170671
-
On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature
-
COI: 1:CAS:528:DC%2BC3sXhvFSqsLnK
-
Maitra T., Tiwari M., Antonini C., Schoch P., Jung S., Eberle P., and Poulikakos D.: On the nanoengineering of superhydrophobic and impalement resistant surface textures below the freezing temperature. Nano Lett. 14, 172–182 (2014). DOI: 10.1021/nl4037092
-
(2014)
Nano Lett.
, vol.14
, pp. 172-182
-
-
Maitra, T.1
Tiwari, M.2
Antonini, C.3
Schoch, P.4
Jung, S.5
Eberle, P.6
Poulikakos, D.7
-
334
-
-
84888071056
-
Reducing the contact time of a bouncing drop
-
COI: 1:CAS:528:DC%2BC3sXhvVWnsr%2FE
-
Bird J., Dhiman R., Kwon H.M., and Varanasi K.K.: Reducing the contact time of a bouncing drop. Nature 503, 385–388 (2013). DOI: 10.1038/nature12740
-
(2013)
Nature
, vol.503
, pp. 385-388
-
-
Bird, J.1
Dhiman, R.2
Kwon, H.M.3
Varanasi, K.K.4
-
335
-
-
84862527201
-
Facile fabrication of superhydrophobic nanostructures on aluminum foils with controlled-condensation and delayed-icing effects
-
COI: 1:CAS:528:DC%2BC38Xns1WkurY%3D
-
Zhang Y., Yu X., Wu H., and Wu J.: Facile fabrication of superhydrophobic nanostructures on aluminum foils with controlled-condensation and delayed-icing effects. Appl. Surf. Sci. 258, 8253–8257 (2012). DOI: 10.1016/j.apsusc.2012.05.032
-
(2012)
Appl. Surf. Sci.
, vol.258
, pp. 8253-8257
-
-
Zhang, Y.1
Yu, X.2
Wu, H.3
Wu, J.4
-
336
-
-
84870950865
-
Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS)
-
COI: 1:CAS:528:DC%2BC38XhvVSmsLnP
-
Wilson P., Lu W., Xu H., Kim P., Kreder M., Alvarenga J., and Aizenberg J.: Inhibition of ice nucleation by slippery liquid-infused porous surfaces (SLIPS). Phys. Chem. Chem. Phys. 15, 581–585 (2013). DOI: 10.1039/C2CP43586A
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 581-585
-
-
Wilson, P.1
Lu, W.2
Xu, H.3
Kim, P.4
Kreder, M.5
Alvarenga, J.6
Aizenberg, J.7
-
337
-
-
84877045610
-
Mechanism of frost formation on lubricant-impregnated surfaces
-
COI: 1:CAS:528:DC%2BC3sXlsFWntbc%3D
-
Rykaczewski K., Anand S., Subramanyam S.B., and Varanasi K.K.: Mechanism of frost formation on lubricant-impregnated surfaces. Langmuir 29, 5230–5238 (2013). DOI: 10.1021/la400801s
-
(2013)
Langmuir
, vol.29
, pp. 5230-5238
-
-
Rykaczewski, K.1
Anand, S.2
Subramanyam, S.B.3
Varanasi, K.K.4
-
338
-
-
84875651077
-
Zwitter-wettability and antifogging coatings with frost-resisting capabilities
-
COI: 1:CAS:528:DC%2BC3sXhsFGksbk%3D
-
Lee H., Alcaraz M., Rubner M.F., and Cohen R.E.: Zwitter-wettability and antifogging coatings with frost-resisting capabilities. ACS Nano 7, 2172–2185 (2013). DOI: 10.1021/nn3057966
-
(2013)
ACS Nano
, vol.7
, pp. 2172-2185
-
-
Lee, H.1
Alcaraz, M.2
Rubner, M.F.3
Cohen, R.E.4
-
343
-
-
85141880181
-
-
Pittsburgh, PA
-
Thevenin R., Wu Z., Keller P., Cohen R., Clanet C., and Quere D.: New Thermal-Sensitive Superhydrophobic Material (Pittsburgh, PA, 2013).
-
(2013)
New Thermal-Sensitive Superhydrophobic Material
-
-
Thevenin, R.1
Wu, Z.2
Keller, P.3
Cohen, R.4
Clanet, C.5
Quere, D.6
-
344
-
-
84894454431
-
Dynamic nanofin heat sinks
-
Yi P., Khoshmanesh K., Chrimes A., Campbell J., Ghorbani K., Nahavandi S., Rosengarten G., and Kalantar-zadeh K.: Dynamic nanofin heat sinks. Adv. Energy Mater. 4, n/a-n/a (2014).
-
(2014)
Adv. Energy Mater.
-
-
Yi, P.1
Khoshmanesh, K.2
Chrimes, A.3
Campbell, J.4
Ghorbani, K.5
Nahavandi, S.6
Rosengarten, G.7
Kalantar-zadeh, K.8
-
345
-
-
79551656521
-
Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method
-
Agbaglah G., Delaux S., Fuster D., Hoepffner J., Josserand C., Popinet S., Ray P., Scardovelli R., and Zaleski S.: Parallel simulation of multiphase flows using octree adaptivity and the volume-of-fluid method. C. R. Mécanique 339, 194–207 (2011). DOI: 10.1016/j.crme.2010.12.006
-
(2011)
C. R. Mécanique
, vol.339
, pp. 194-207
-
-
Agbaglah, G.1
Delaux, S.2
Fuster, D.3
Hoepffner, J.4
Josserand, C.5
Popinet, S.6
Ray, P.7
Scardovelli, R.8
Zaleski, S.9
-
346
-
-
84862792995
-
Contact line behavior for a highly wetting fluid under superheated conditions
-
COI: 1:CAS:528:DC%2BC38XjtlSls78%3D
-
Raj R., Kunkelmann C., Stephan P., Plawsky J., and Kim J.: Contact line behavior for a highly wetting fluid under superheated conditions. Int. J. Heat Mass Transfer 55, 2664–2675 (2012). DOI: 10.1016/j.ijheatmasstransfer.2011.12.026
-
(2012)
Int. J. Heat Mass Transfer
, vol.55
, pp. 2664-2675
-
-
Raj, R.1
Kunkelmann, C.2
Stephan, P.3
Plawsky, J.4
Kim, J.5
-
347
-
-
14544289547
-
Multiscale flow simulations using particles
-
Koumoutsakos P.: Multiscale flow simulations using particles. Annu. Rev. Fluid Mech. 37, 457–487 (2005). DOI: 10.1146/annurev.fluid.37.061903.175753
-
(2005)
Annu. Rev. Fluid Mech.
, vol.37
, pp. 457-487
-
-
Koumoutsakos, P.1
-
348
-
-
74249085751
-
Review of nucleate pool boiling bubble heat transfer mechanisms
-
COI: 1:CAS:528:DC%2BD1MXht1Wiu73M
-
Kim J.: Review of nucleate pool boiling bubble heat transfer mechanisms. Int. J. Multiphase Flow 35, 1067–1076 (2009). DOI: 10.1016/j.ijmultiphaseflow.2009.07.008
-
(2009)
Int. J. Multiphase Flow
, vol.35
, pp. 1067-1076
-
-
Kim, J.1
-
349
-
-
84894578048
-
Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: Getting the basics right
-
COI: 1:CAS:528:DC%2BC2cXhs12qsb4%3D
-
Law K-Y.: Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity: Getting the basics right. J. Phys. Chem. Lett. 5, 686–688 (2014). DOI: 10.1021/jz402762h
-
(2014)
J. Phys. Chem. Lett.
, vol.5
, pp. 686-688
-
-
Law, K.-Y.1
-
350
-
-
84896773187
-
Dropwise condensation of low surface tension fluids on omniphobic surfaces
-
COI: 1:CAS:528:DC%2BC2cXht1WjurjF
-
Rykaczewski K., Paxson A., Staymates M., Walker M., Sun X., Anand S., Srinivasan S., McKinley G., Chinn J., Scott J.H.J., and Varanasi K.K.: Dropwise condensation of low surface tension fluids on omniphobic surfaces. Sci. Rep. 4, 4158 (4151–4158) (2014). DOI: 10.1038/srep04158
-
(2014)
Sci. Rep.
, vol.4
, pp. 4158
-
-
Rykaczewski, K.1
Paxson, A.2
Staymates, M.3
Walker, M.4
Sun, X.5
Anand, S.6
Srinivasan, S.7
McKinley, G.8
Chinn, J.9
Scott, J.H.J.10
Varanasi, K.K.11
-
351
-
-
79953024541
-
Anti-icing performance of superhydrophobic surfaces
-
COI: 1:CAS:528:DC%2BC3MXjsFaqurY%3D
-
Farhadi S., Farzaneh M., and Kulinich S.A.: Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 257, 6264–6269 (2011). DOI: 10.1016/j.apsusc.2011.02.057
-
(2011)
Appl. Surf. Sci.
, vol.257
, pp. 6264-6269
-
-
Farhadi, S.1
Farzaneh, M.2
Kulinich, S.A.3
-
352
-
-
84876713372
-
Verification of icephobic/anti-icing properties of a superhydrophobic surface
-
COI: 1:CAS:528:DC%2BC3sXkslWgsbY%3D
-
Wang Y., Xue J., Wang Q., Chen Q., and Ding J.: Verification of icephobic/anti-icing properties of a superhydrophobic surface. ACS Appl. Mater. Interfaces 5, 3370–3381 (2013). DOI: 10.1021/am400429q
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 3370-3381
-
-
Wang, Y.1
Xue, J.2
Wang, Q.3
Chen, Q.4
Ding, J.5
-
353
-
-
37549060043
-
A transparent and photo-patternable superhydrophobic film
-
COI: 1:CAS:528:DC%2BD2sXhsVOgtLvP
-
Zhang X., Kono H., Liu Z., Nishimoto S., Tryk D., Murakami T., Sakai H., Abe M., and Fujishima A.: A transparent and photo-patternable superhydrophobic film. Chem. Commun. 46, 4949–4951 (2007). DOI: 10.1039/b713432k
-
(2007)
Chem. Commun.
, vol.46
, pp. 4949-4951
-
-
Zhang, X.1
Kono, H.2
Liu, Z.3
Nishimoto, S.4
Tryk, D.5
Murakami, T.6
Sakai, H.7
Abe, M.8
Fujishima, A.9
-
354
-
-
0034667110
-
Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements
-
COI: 1:CAS:528:DC%2BD3cXntlagu70%3D
-
Zhang M., Efremov M., Schiettekatte F., Olson E., Kwan A., Lai S., Wisleder T., Greene J.E., and Allen L.H.: Size-dependent melting point depression of nanostructures: Nanocalorimetric measurements. Phys. Rev. B 62, 10548–10557 (2000). DOI: 10.1103/PhysRevB.62.10548
-
(2000)
Phys. Rev. B
, vol.62
, pp. 10548-10557
-
-
Zhang, M.1
Efremov, M.2
Schiettekatte, F.3
Olson, E.4
Kwan, A.5
Lai, S.6
Wisleder, T.7
Greene, J.E.8
Allen, L.H.9
-
356
-
-
79960466832
-
Nanostructured materials for water desalination
-
COI: 1:STN:280:DC%2BC3MnisVSnsA%3D%3D
-
Humplik T., Lee J., O’Hern S., Fellman B., Baig M., Hassan S., Atieh M., Rahman F., Laoui T., Karnik R., and Wang E.N.: Nanostructured materials for water desalination. Nanotechnol. 22, 292001 (2011). DOI: 10.1088/0957-4484/22/29/292001
-
(2011)
Nanotechnol.
, vol.22
, pp. 292001
-
-
Humplik, T.1
Lee, J.2
O’Hern, S.3
Fellman, B.4
Baig, M.5
Hassan, S.6
Atieh, M.7
Rahman, F.8
Laoui, T.9
Karnik, R.10
Wang, E.N.11
-
357
-
-
84868201835
-
-
Nosonovsky M. and Bhushan B. eds.; Springer: Heidelberg, Germany
-
Choi C-H. and Kim C-J.: Green Tribology–Biomimetics, Energy Conservation, and Sustainability, Nosonovsky M. and Bhushan B. eds.; Springer: Heidelberg, Germany, 2012; pp. 79–104.
-
(2012)
Green Tribology–Biomimetics, Energy Conservation, and Sustainability
, pp. 79-104
-
-
Choi, C.-H.1
Kim, C.-J.2
-
358
-
-
84894476452
-
Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects
-
Heo S., Koh J., Kang G., Ahn S., Chi W., Kim K., and Kim J.H.: Bifunctional moth-eye nanopatterned dye-sensitized solar cells: Light-harvesting and self-cleaning effects. Adv. Energy Mater. 4, n/a-n/a (2014).
-
(2014)
Adv. Energy Mater.
-
-
Heo, S.1
Koh, J.2
Kang, G.3
Ahn, S.4
Chi, W.5
Kim, K.6
Kim, J.H.7
-
360
-
-
0023259636
-
Enhanced boiling of mixtures
-
COI: 1:CAS:528:DyaL2sXlsFOgsb0%3D
-
Thome J.R.: Enhanced boiling of mixtures. Chem. Eng. Sci. 42, 1909–1917 (1987). DOI: 10.1016/0009-2509(87)80137-9
-
(1987)
Chem. Eng. Sci.
, vol.42
, pp. 1909-1917
-
-
Thome, J.R.1
-
361
-
-
79952277845
-
Mini review: Biomimetic models and bioinspired surfaces for fouling control
-
COI: 1:CAS:528:DC%2BC3cXhsFantrzO
-
Scardino A.J. and de Nys R.: Mini review: Biomimetic models and bioinspired surfaces for fouling control. Biofouling 27, 73–86 (2011). DOI: 10.1080/08927014.2010.536837
-
(2011)
Biofouling
, vol.27
, pp. 73-86
-
-
Scardino, A.J.1
de Nys, R.2
|