메뉴 건너뛰기




Volumn 2018-December, Issue , 2018, Pages 5541-5552

To trust or not to trust a classifier

Author keywords

[No Author keywords available]

Indexed keywords

CLASSIFIER PERFORMANCE; CONFIDENCE SCORE; HIGH-PRECISION; MACHINE LEARNING RESEARCH; NEAREST NEIGHBOR CLASSIFIER; STATISTICAL CONSISTENCIES; TESTING EXAMPLES; TOPOLOGICAL DATA ANALYSIS;

EID: 85063928915     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (448)

References (58)
  • 1
    • 85049006775 scopus 로고    scopus 로고
    • On the safety of machine learning: Cyber-physical systems, decision sciences, and data products
    • Kush R Varshney and Homa Alemzadeh. On the safety of machine learning: Cyber-physical systems, decision sciences, and data products. Big data, 5(3):246-255, 2017.
    • (2017) Big Data , vol.5 , Issue.3 , pp. 246-255
    • Varshney, K.R.1    Alemzadeh, H.2
  • 2
    • 85010007963 scopus 로고    scopus 로고
    • Trust in automation: Designing for appropriate reliance
    • John D Lee and Katrina A See. Trust in automation: Designing for appropriate reliance. Human factors, 46(1):50-80, 2004.
    • (2004) Human Factors , vol.46 , Issue.1 , pp. 50-80
    • Lee, J.D.1    See, K.A.2
  • 6
    • 0002900357 scopus 로고    scopus 로고
    • The case against accuracy estimation for comparing induction algorithms
    • Foster J Provost, Tom Fawcett, and Ron Kohavi. The case against accuracy estimation for comparing induction algorithms. In ICML, volume 98, pages 445-453, 1998.
    • (1998) ICML , vol.98 , pp. 445-453
    • Provost, F.J.1    Fawcett, T.2    Kohavi, R.3
  • 9
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • John Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers, 10(3):61-74, 1999.
    • (1999) Advances in Large Margin Classifiers , vol.10 , Issue.3 , pp. 61-74
    • Platt, J.1
  • 14
    • 84965138919 scopus 로고    scopus 로고
    • Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
    • Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In International Conference on Machine Learning, pages 1050-1059, 2016.
    • (2016) International Conference on Machine Learning , pp. 1050-1059
    • Gal, Y.1    Ghahramani, Z.2
  • 15
    • 85046870000 scopus 로고    scopus 로고
    • What uncertainties do we need in Bayesian deep learning for computer vision?
    • Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning for computer vision? In Advances in Neural Information Processing Systems, pages 5580-5590, 2017.
    • (2017) Advances in Neural Information Processing Systems , pp. 5580-5590
    • Kendall, A.1    Gal, Y.2
  • 16
    • 50949100181 scopus 로고    scopus 로고
    • Classification with a reject option using a hinge loss
    • Aug
    • Peter L Bartlett and Marten H Wegkamp. Classification with a reject option using a hinge loss. Journal of Machine Learning Research, 9(Aug):1823-1840, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 1823-1840
    • Bartlett, P.L.1    Wegkamp, M.H.2
  • 17
    • 76749095443 scopus 로고    scopus 로고
    • Classification methods with reject option based on convex risk minimization
    • Jan
    • Ming Yuan and Marten Wegkamp. Classification methods with reject option based on convex risk minimization. Journal of Machine Learning Research, 11(Jan):111-130, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 111-130
    • Yuan, M.1    Wegkamp, M.2
  • 23
    • 0014710323 scopus 로고
    • On optimum recognition error and reject tradeoff
    • C Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory, 16(1):41-46, 1970.
    • (1970) IEEE Transactions on Information Theory , vol.16 , Issue.1 , pp. 41-46
    • Chow, C.1
  • 24
    • 0027242497 scopus 로고
    • A statistical decision rule with incomplete knowledge about classes
    • Bernard Dubuisson and Mylene Masson. A statistical decision rule with incomplete knowledge about classes. Pattern Recognition, 26(1):155-165, 1993.
    • (1993) Pattern Recognition , vol.26 , Issue.1 , pp. 155-165
    • Dubuisson, B.1    Masson, M.2
  • 29
    • 33646075077 scopus 로고    scopus 로고
    • The interaction between classification and reject performance for distance-based reject-option classifiers
    • Thomas CW Landgrebe, David MJ Tax, Pavel Paclík, and Robert PW Duin. The interaction between classification and reject performance for distance-based reject-option classifiers. Pattern Recognition Letters, 27(8):908-917, 2006.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 908-917
    • Landgrebe, T.C.W.1    Tax, D.M.J.2    Paclík, P.3    Duin, R.P.W.4
  • 30
    • 77953500857 scopus 로고    scopus 로고
    • On the foundations of noise-free selective classification
    • May
    • Ran El-Yaniv and Yair Wiener. On the foundations of noise-free selective classification. Journal of Machine Learning Research, 11(May):1605-1641, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 1605-1641
    • El-Yaniv, R.1    Wiener, Y.2
  • 32
    • 44449153509 scopus 로고    scopus 로고
    • Growing a multi-class classifier with a reject option
    • David MJ Tax and Robert PW Duin. Growing a multi-class classifier with a reject option. Pattern Recognition Letters, 29(10):1565-1570, 2008.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.10 , pp. 1565-1570
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 35
    • 84954251639 scopus 로고    scopus 로고
    • Pruning and dynamic scheduling of cost-sensitive ensembles
    • Wei Fan, Fang Chu, Haixun Wang, and Philip S. Yu. Pruning and dynamic scheduling of cost-sensitive ensembles. AAAI, 2002.
    • (2002) AAAI
    • Fan, W.1    Chu, F.2    Wang, H.3    Yu, P.S.4
  • 38
    • 0000550189 scopus 로고    scopus 로고
    • A density-based algorithm for discovering clusters in large spatial databases with noise
    • Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd, pages 226-231, 1996.
    • (1996) Kdd , pp. 226-231
    • Ester, M.1    Kriegel, H.-P.2    Sander, J.3    Xu, X.4
  • 39
    • 0031478562 scopus 로고    scopus 로고
    • On nonparametric estimation of density level sets
    • Alexandre B Tsybakov et al. On nonparametric estimation of density level sets. The Annals of Statistics, 25(3):948-969, 1997.
    • (1997) The Annals of Statistics , vol.25 , Issue.3 , pp. 948-969
    • Tsybakov, A.B.1
  • 40
    • 69049106506 scopus 로고    scopus 로고
    • Adaptive Hausdorff estimation of density level sets
    • Aarti Singh, Clayton Scott, Robert Nowak, et al. Adaptive Hausdorff estimation of density level sets. The Annals of Statistics, 37(5B):2760-2782, 2009.
    • (2009) The Annals of Statistics , vol.37 , Issue.5 B , pp. 2760-2782
    • Singh, A.1    Scott, C.2    Nowak, R.3
  • 41
    • 77649197099 scopus 로고    scopus 로고
    • Optimal rates for plug-in estimators of density level sets
    • Philippe Rigollet, Régis Vert, et al. Optimal rates for plug-in estimators of density level sets. Bernoulli, 15(4):1154-1178, 2009.
    • (2009) Bernoulli , vol.15 , Issue.4 , pp. 1154-1178
    • Rigollet, P.1    Vert, R.2
  • 42
    • 85046995402 scopus 로고    scopus 로고
    • Density level set estimation on manifolds with DBSCAN
    • Heinrich Jiang. Density level set estimation on manifolds with DBSCAN. In International Conference on Machine Learning, pages 1684-1693, 2017.
    • (2017) International Conference on Machine Learning , pp. 1684-1693
    • Jiang, H.1
  • 43
    • 77957604813 scopus 로고    scopus 로고
    • Generalized density clustering
    • Alessandro Rinaldo and Larry Wasserman. Generalized density clustering. The Annals of Statistics, 38(5):2678-2722, 2010.
    • (2010) The Annals of Statistics , vol.38 , Issue.5 , pp. 2678-2722
    • Rinaldo, A.1    Wasserman, L.2
  • 44
    • 40349102105 scopus 로고    scopus 로고
    • Finding the homology of submanifolds with high confidence from random samples
    • Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds with high confidence from random samples. Discrete & Computational Geometry, 39(1-3):419-441, 2008.
    • (2008) Discrete & Computational Geometry , vol.39 , Issue.1-3 , pp. 419-441
    • Niyogi, P.1    Smale, S.2    Weinberger, S.3
  • 52
    • 84978884248 scopus 로고    scopus 로고
    • Very deep convolutional neural network based image classification using small training sample size
    • Shuying Liu and Weihong Deng. Very deep convolutional neural network based image classification using small training sample size. 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pages 730-734, 2015.
    • (2015) 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR) , pp. 730-734
    • Liu, S.1    Deng, W.2
  • 53
    • 84971640658 scopus 로고    scopus 로고
    • François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.
    • (2015) Keras
    • Chollet, F.1
  • 55
    • 21844511932 scopus 로고
    • On the strong universal consistency of nearest neighbor regression function estimates
    • Luc Devroye, Laszlo Gyorfi, Adam Krzyzak, and Gábor Lugosi. On the strong universal consistency of nearest neighbor regression function estimates. The Annals of Statistics, pages 1371-1385, 1994.
    • (1994) The Annals of Statistics , pp. 1371-1385
    • Devroye, L.1    Gyorfi, L.2    Krzyzak, A.3    Lugosi, G.4
  • 58
    • 85047003547 scopus 로고    scopus 로고
    • Uniform convergence rates for kernel density estimation
    • Heinrich Jiang. Uniform convergence rates for kernel density estimation. In International Conference on Machine Learning, pages 1694-1703, 2017.
    • (2017) International Conference on Machine Learning , pp. 1694-1703
    • Jiang, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.