-
1
-
-
85049006775
-
On the safety of machine learning: Cyber-physical systems, decision sciences, and data products
-
Kush R Varshney and Homa Alemzadeh. On the safety of machine learning: Cyber-physical systems, decision sciences, and data products. Big data, 5(3):246-255, 2017.
-
(2017)
Big Data
, vol.5
, Issue.3
, pp. 246-255
-
-
Varshney, K.R.1
Alemzadeh, H.2
-
2
-
-
85010007963
-
Trust in automation: Designing for appropriate reliance
-
John D Lee and Katrina A See. Trust in automation: Designing for appropriate reliance. Human factors, 46(1):50-80, 2004.
-
(2004)
Human Factors
, vol.46
, Issue.1
, pp. 50-80
-
-
Lee, J.D.1
See, K.A.2
-
3
-
-
85010746053
-
-
CoRR, abs/1606.06565
-
Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F Christiano, John Schulman, and Dan Mané. Concrete problems in AI safety. CoRR, abs/1606.06565, 2016.
-
(2016)
Concrete Problems in AI Safety
-
-
Amodei, D.1
Olah, C.2
Steinhardt, J.3
Christiano, P.F.4
Schulman, J.5
Mané, D.6
-
6
-
-
0002900357
-
The case against accuracy estimation for comparing induction algorithms
-
Foster J Provost, Tom Fawcett, and Ron Kohavi. The case against accuracy estimation for comparing induction algorithms. In ICML, volume 98, pages 445-453, 1998.
-
(1998)
ICML
, vol.98
, pp. 445-453
-
-
Provost, F.J.1
Fawcett, T.2
Kohavi, R.3
-
9
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
John Platt. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers, 10(3):61-74, 1999.
-
(1999)
Advances in Large Margin Classifiers
, vol.10
, Issue.3
, pp. 61-74
-
-
Platt, J.1
-
14
-
-
84965138919
-
Dropout as a Bayesian approximation: Representing model uncertainty in deep learning
-
Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In International Conference on Machine Learning, pages 1050-1059, 2016.
-
(2016)
International Conference on Machine Learning
, pp. 1050-1059
-
-
Gal, Y.1
Ghahramani, Z.2
-
15
-
-
85046870000
-
What uncertainties do we need in Bayesian deep learning for computer vision?
-
Alex Kendall and Yarin Gal. What uncertainties do we need in Bayesian deep learning for computer vision? In Advances in Neural Information Processing Systems, pages 5580-5590, 2017.
-
(2017)
Advances in Neural Information Processing Systems
, pp. 5580-5590
-
-
Kendall, A.1
Gal, Y.2
-
16
-
-
50949100181
-
Classification with a reject option using a hinge loss
-
Aug
-
Peter L Bartlett and Marten H Wegkamp. Classification with a reject option using a hinge loss. Journal of Machine Learning Research, 9(Aug):1823-1840, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1823-1840
-
-
Bartlett, P.L.1
Wegkamp, M.H.2
-
17
-
-
76749095443
-
Classification methods with reject option based on convex risk minimization
-
Jan
-
Ming Yuan and Marten Wegkamp. Classification methods with reject option based on convex risk minimization. Journal of Machine Learning Research, 11(Jan):111-130, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 111-130
-
-
Yuan, M.1
Wegkamp, M.2
-
19
-
-
70049110659
-
Support vector machines with a reject option
-
Yves Grandvalet, Alain Rakotomamonjy, Joseph Keshet, and Stéphane Canu. Support vector machines with a reject option. In Advances in Neural Information Processing Systems, pages 537-544, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, pp. 537-544
-
-
Grandvalet, Y.1
Rakotomamonjy, A.2
Keshet, J.3
Canu, S.4
-
22
-
-
85064827962
-
-
arXiv preprint
-
Corinna Cortes, Giulia DeSalvo, Claudio Gentile, Mehryar Mohri, and Scott Yang. Online learning with abstention. arXiv preprint arXiv:1703.03478, 2017.
-
(2017)
Online Learning with Abstention
-
-
Cortes, C.1
DeSalvo, G.2
Gentile, C.3
Mohri, M.4
Yang, S.5
-
23
-
-
0014710323
-
On optimum recognition error and reject tradeoff
-
C Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory, 16(1):41-46, 1970.
-
(1970)
IEEE Transactions on Information Theory
, vol.16
, Issue.1
, pp. 41-46
-
-
Chow, C.1
-
24
-
-
0027242497
-
A statistical decision rule with incomplete knowledge about classes
-
Bernard Dubuisson and Mylene Masson. A statistical decision rule with incomplete knowledge about classes. Pattern Recognition, 26(1):155-165, 1993.
-
(1993)
Pattern Recognition
, vol.26
, Issue.1
, pp. 155-165
-
-
Dubuisson, B.1
Masson, M.2
-
29
-
-
33646075077
-
The interaction between classification and reject performance for distance-based reject-option classifiers
-
Thomas CW Landgrebe, David MJ Tax, Pavel Paclík, and Robert PW Duin. The interaction between classification and reject performance for distance-based reject-option classifiers. Pattern Recognition Letters, 27(8):908-917, 2006.
-
(2006)
Pattern Recognition Letters
, vol.27
, Issue.8
, pp. 908-917
-
-
Landgrebe, T.C.W.1
Tax, D.M.J.2
Paclík, P.3
Duin, R.P.W.4
-
30
-
-
77953500857
-
On the foundations of noise-free selective classification
-
May
-
Ran El-Yaniv and Yair Wiener. On the foundations of noise-free selective classification. Journal of Machine Learning Research, 11(May):1605-1641, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1605-1641
-
-
El-Yaniv, R.1
Wiener, Y.2
-
32
-
-
44449153509
-
Growing a multi-class classifier with a reject option
-
David MJ Tax and Robert PW Duin. Growing a multi-class classifier with a reject option. Pattern Recognition Letters, 29(10):1565-1570, 2008.
-
(2008)
Pattern Recognition Letters
, vol.29
, Issue.10
, pp. 1565-1570
-
-
Tax, D.M.J.1
Duin, R.P.W.2
-
34
-
-
84893460092
-
Classifying with confidence from incomplete information
-
December
-
Nathan Parrish, Hyrum S. Anderson, Maya R. Gupta, and Dun Yu Hsaio. Classifying with confidence from incomplete information. Journal of Machine Learning Research, 14(December):3561-3589, 2013.
-
(2013)
Journal of Machine Learning Research
, vol.14
, pp. 3561-3589
-
-
Parrish, N.1
Anderson, H.S.2
Gupta, M.R.3
Hsaio, D.Y.4
-
35
-
-
84954251639
-
Pruning and dynamic scheduling of cost-sensitive ensembles
-
Wei Fan, Fang Chu, Haixun Wang, and Philip S. Yu. Pruning and dynamic scheduling of cost-sensitive ensembles. AAAI, 2002.
-
(2002)
AAAI
-
-
Fan, W.1
Chu, F.2
Wang, H.3
Yu, P.S.4
-
38
-
-
0000550189
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In Kdd, pages 226-231, 1996.
-
(1996)
Kdd
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
39
-
-
0031478562
-
On nonparametric estimation of density level sets
-
Alexandre B Tsybakov et al. On nonparametric estimation of density level sets. The Annals of Statistics, 25(3):948-969, 1997.
-
(1997)
The Annals of Statistics
, vol.25
, Issue.3
, pp. 948-969
-
-
Tsybakov, A.B.1
-
40
-
-
69049106506
-
Adaptive Hausdorff estimation of density level sets
-
Aarti Singh, Clayton Scott, Robert Nowak, et al. Adaptive Hausdorff estimation of density level sets. The Annals of Statistics, 37(5B):2760-2782, 2009.
-
(2009)
The Annals of Statistics
, vol.37
, Issue.5 B
, pp. 2760-2782
-
-
Singh, A.1
Scott, C.2
Nowak, R.3
-
41
-
-
77649197099
-
Optimal rates for plug-in estimators of density level sets
-
Philippe Rigollet, Régis Vert, et al. Optimal rates for plug-in estimators of density level sets. Bernoulli, 15(4):1154-1178, 2009.
-
(2009)
Bernoulli
, vol.15
, Issue.4
, pp. 1154-1178
-
-
Rigollet, P.1
Vert, R.2
-
42
-
-
85046995402
-
Density level set estimation on manifolds with DBSCAN
-
Heinrich Jiang. Density level set estimation on manifolds with DBSCAN. In International Conference on Machine Learning, pages 1684-1693, 2017.
-
(2017)
International Conference on Machine Learning
, pp. 1684-1693
-
-
Jiang, H.1
-
43
-
-
77957604813
-
Generalized density clustering
-
Alessandro Rinaldo and Larry Wasserman. Generalized density clustering. The Annals of Statistics, 38(5):2678-2722, 2010.
-
(2010)
The Annals of Statistics
, vol.38
, Issue.5
, pp. 2678-2722
-
-
Rinaldo, A.1
Wasserman, L.2
-
44
-
-
40349102105
-
Finding the homology of submanifolds with high confidence from random samples
-
Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds with high confidence from random samples. Discrete & Computational Geometry, 39(1-3):419-441, 2008.
-
(2008)
Discrete & Computational Geometry
, vol.39
, Issue.1-3
, pp. 419-441
-
-
Niyogi, P.1
Smale, S.2
Weinberger, S.3
-
45
-
-
84862015357
-
Minimax manifold estimation
-
May
-
Christopher Genovese, Marco Perone-Pacifico, Isabella Verdinelli, and Larry Wasserman. Minimax manifold estimation. Journal of Machine Learning Research, 13(May):1263-1291, 2012.
-
(2012)
Journal of Machine Learning Research
, vol.13
, pp. 1263-1291
-
-
Genovese, C.1
Perone-Pacifico, M.2
Verdinelli, I.3
Wasserman, L.4
-
46
-
-
84898982288
-
Cluster trees on manifolds
-
Sivaraman Balakrishnan, Srivatsan Narayanan, Alessandro Rinaldo, Aarti Singh, and Larry Wasserman. Cluster trees on manifolds. In Advances in Neural Information Processing Systems, pages 2679-2687, 2013.
-
(2013)
Advances in Neural Information Processing Systems
, pp. 2679-2687
-
-
Balakrishnan, S.1
Narayanan, S.2
Rinaldo, A.3
Singh, A.4
Wasserman, L.5
-
49
-
-
84865114495
-
-
Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in natural images with unsupervised feature learning. 2011.
-
(2011)
Reading Digits in Natural Images with Unsupervised Feature Learning
-
-
Netzer, Y.1
Wang, T.2
Coates, A.3
Bissacco, A.4
Wu, B.5
Ng, A.Y.6
-
52
-
-
84978884248
-
Very deep convolutional neural network based image classification using small training sample size
-
Shuying Liu and Weihong Deng. Very deep convolutional neural network based image classification using small training sample size. 2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR), pages 730-734, 2015.
-
(2015)
2015 3rd IAPR Asian Conference on Pattern Recognition (ACPR)
, pp. 730-734
-
-
Liu, S.1
Deng, W.2
-
53
-
-
84971640658
-
-
François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.
-
(2015)
Keras
-
-
Chollet, F.1
-
55
-
-
21844511932
-
On the strong universal consistency of nearest neighbor regression function estimates
-
Luc Devroye, Laszlo Gyorfi, Adam Krzyzak, and Gábor Lugosi. On the strong universal consistency of nearest neighbor regression function estimates. The Annals of Statistics, pages 1371-1385, 1994.
-
(1994)
The Annals of Statistics
, pp. 1371-1385
-
-
Devroye, L.1
Gyorfi, L.2
Krzyzak, A.3
Lugosi, G.4
-
58
-
-
85047003547
-
Uniform convergence rates for kernel density estimation
-
Heinrich Jiang. Uniform convergence rates for kernel density estimation. In International Conference on Machine Learning, pages 1694-1703, 2017.
-
(2017)
International Conference on Machine Learning
, pp. 1694-1703
-
-
Jiang, H.1
|