-
1
-
-
85054990472
-
What this computer needs is a physician: Humanism and artificial intelligence
-
Dec
-
A. Verghese, N. Shah, and R. Harrington, “What this computer needs is a physician: Humanism and artificial intelligence,” JAMA, Dec. 2017.
-
(2017)
JAMA
-
-
Verghese, A.1
Shah, N.2
Harrington, R.3
-
2
-
-
85054210503
-
Speech recognition for medical conversations
-
abs/1711.07274
-
C. C. Chiu, A. Tripathi, K. Chou, C. Co, N. Jaitly, D. Jaunzeikare, A. Kannan, P. Nguyen, H. Sak, A. Sankar, J. Tansuwan, and N. Wan, “Speech recognition for medical conversations,” CoRR, vol. abs/1711.07274, 2017.
-
(2017)
CoRR
-
-
Chiu, C.C.1
Tripathi, A.2
Chou, K.3
Co, C.4
Jaitly, N.5
Jaunzeikare, D.6
Kannan, A.7
Nguyen, P.8
Sak, H.9
Sankar, A.10
Tansuwan, J.11
Wan, N.12
-
3
-
-
84965138788
-
Semi-supervised sequence learning
-
A. M. Dai and Q. V. Le, “Semi-supervised sequence learning.,” NIPS, 2015.
-
(2015)
NIPS
-
-
Dai, A.M.1
Le, Q.V.2
-
4
-
-
85047004228
-
Unsupervised pretrain-ing for sequence to sequence learning
-
abs/1611.02683
-
P. Ramachandran, P. J. Liu, and Q. V. Le, “Unsupervised pretrain-ing for sequence to sequence learning,” CoRR, vol. abs/1611.02683, 2016.
-
(2016)
CoRR
-
-
Ramachandran, P.1
Liu, P.J.2
Le, Q.V.3
-
5
-
-
85041090883
-
Learning to generate reviews and discovering sentiment
-
abs/1704.01444
-
A. Radford, R. Jozefowicz, and I. Sutskever, “Learning to generate reviews and discovering sentiment,” CoRR, vol. abs/1704.01444, 2017.
-
(2017)
CoRR
-
-
Radford, A.1
Jozefowicz, R.2
Sutskever, I.3
-
6
-
-
84965153327
-
Skip-thought vectors
-
R. Kiros, Y. Zhu, R. Salakhutdinov, R. Zemel, A. Torralba, R. Ur-tasun, and S. Fidler, “Skip-thought vectors,” in Proceedings of NIPS, 2015.
-
(2015)
Proceedings of NIPS
-
-
Kiros, R.1
Zhu, Y.2
Salakhutdinov, R.3
Zemel, R.4
Torralba, A.5
Urtasun, R.6
Fidler, S.7
-
7
-
-
84994145330
-
Multi-task sequence to sequence learning
-
M. T. Luong, Q. V. Le, I. Sutskever, O. Vinyals, and L. Kaiser, “Multi-task sequence to sequence learning.,” in Proceedings of ICLR, 2015.
-
(2015)
Proceedings of ICLR
-
-
Luong, M.T.1
Le, Q.V.2
Sutskever, I.3
Vinyals, O.4
Kaiser, L.5
-
8
-
-
85072838695
-
Transfer learning for low-resource neural machine translation
-
B. Zoph, D. Yuret, J. May, and K. Knight, “Transfer learning for low-resource neural machine translation.,” in Proceedings of EMNLP, 2016.
-
(2016)
Proceedings of EMNLP
-
-
Zoph, B.1
Yuret, D.2
May, J.3
Knight, K.4
-
9
-
-
85024095465
-
Zero-resource translation with multilingual neural machine translation
-
O. Firat, B. Sankaran, Y. Al-Onaizan, F. Yarman-Vural, and K. Cho, “Zero-resource translation with multilingual neural machine translation.,” in Proceedings of EMNLP, 2016.
-
(2016)
Proceedings of EMNLP
-
-
Firat, O.1
Sankaran, B.2
Al-Onaizan, Y.3
Yarman-Vural, F.4
Cho, K.5
-
10
-
-
85019265504
-
Dual learning for machine translation
-
D. He, Y. Zia, T. Qin, L. Wang, N. Yu, T. Liu, and W. Ma, “Dual learning for machine translation.,” in Proceedings of NIPS, 2016.
-
(2016)
Proceedings of NIPS
-
-
He, D.1
Zia, Y.2
Qin, T.3
Wang, L.4
Yu, N.5
Liu, T.6
Ma, W.7
-
11
-
-
85054994570
-
Semi-supervised learning for neural machine translation
-
Y. Cheng, W. Xu, Z. He, W. He, H. Wu, M. Sun, and Y. Liu, “Semi-supervised learning for neural machine translation.,” in Proceedings of ICLR, 2018.
-
(2018)
Proceedings of ICLR
-
-
Cheng, Y.1
Xu, W.2
He, Z.3
He, W.4
Wu, H.5
Sun, M.6
Liu, Y.7
-
12
-
-
85083952512
-
Unsupervised neural machine translation
-
M. Artetxe, G. Labaka, E. Agirre, and K. Cho, “Unsupervised neural machine translation,” in Proceedings of ICLR, 2018.
-
(2018)
Proceedings of ICLR
-
-
Artetxe, M.1
Labaka, G.2
Agirre, E.3
Cho, K.4
-
13
-
-
84906237242
-
Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding
-
G. Mesnil,, X. He, L. Deng, and Y. Bengio, “Investigation of recurrent-neural-network architectures and learning methods for spoken language understanding,” Interspeech, 2013.
-
(2013)
Interspeech
-
-
Mesnil, G.1
He, X.2
Deng, L.3
Bengio, Y.4
-
14
-
-
84923922436
-
Using recurrent neural networks for slot filling in spoken language understanding
-
G. Mesnil, Y. Dauphin, K. Yao, Y. Bengio, L. Deng, Hakkani-Tur D, X. He, L. Heck, G. Tur, D. Yu, and G. Zweig, “Using recurrent neural networks for slot filling in spoken language understanding,” IEEE/ACM Trans. on Audio, Speech, and Language Processing, 2015.
-
(2015)
IEEE/ACM Trans. on Audio, Speech, and Language Processing
-
-
Mesnil, G.1
Dauphin, Y.2
Yao, K.3
Bengio, Y.4
Deng, L.5
Hakkani-Tur, D.6
He, X.7
Heck, L.8
Tur, G.9
Yu, D.10
Zweig, G.11
-
15
-
-
85055009191
-
Recurrent neural networks for language understanding in interspeech
-
K. Yao, G. Zweig, M-Y. Hwang, Y. Shi, and D. Yu, “Recurrent neural networks for language understanding in interspeech,” Interspeech, 2013.
-
(2013)
Interspeech
-
-
Yao, K.1
Zweig, G.2
Hwang, M.-Y.3
Shi, Y.4
Yu, D.5
-
16
-
-
84951321278
-
Spoken language understanding using long short-term memory neural networks
-
K. Yao, B. Peng, Y. Zhang, D. Yu, G. Zweig, and Y. Shi, “Spoken language understanding using long short-term memory neural networks,” IEEE SLT, 2014.
-
(2014)
IEEE SLT
-
-
Yao, K.1
Peng, B.2
Zhang, Y.3
Yu, D.4
Zweig, G.5
Shi, Y.6
-
17
-
-
85039152638
-
Towards end-to-end spoken dialogue systems with turn embeddings
-
A. Bayer, E. Stepanov, and G. Riccardi, “Towards end-to-end spoken dialogue systems with turn embeddings,” in Proc. Interspeech 2017, 2017, pp. 2516-2520.
-
(2017)
Proc. Interspeech 2017
, pp. 2516-2520
-
-
Bayer, A.1
Stepanov, E.2
Riccardi, G.3
-
19
-
-
84961291190
-
Learning phrase representations using RNN encoder-decoder for statistical machine translation
-
K. Cho, B. van Merriënboer, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation,” in Proc. EMNLP, 2014.
-
(2014)
Proc. EMNLP
-
-
Cho, K.1
Van Merriënboer, B.2
Bahdanau, D.3
Bougares, F.4
Schwenk, H.5
Bengio, Y.6
-
21
-
-
84960121226
-
A neural network approach to context-sensitive generation of conversation responses
-
A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell, J. Nie, J. Gao, and B. Dolan, “A neural network approach to context-sensitive generation of conversation responses,” in Proceedings of NAACL-HLT, 2015.
-
(2015)
Proceedings of NAACL-HLT
-
-
Sordoni, A.1
Galley, M.2
Auli, M.3
Brockett, C.4
Ji, Y.5
Mitchell, M.6
Nie, J.7
Gao, J.8
Dolan, B.9
-
22
-
-
84943801401
-
Neural responding machine for short-text conversation
-
L. Shang, Z. Lu, and H. Li, “Neural responding machine for short-text conversation,” in Proceedings of ACL-IJCNLP, 2015.
-
(2015)
Proceedings of ACL-IJCNLP
-
-
Shang, L.1
Lu, Z.2
Li, H.3
-
23
-
-
84984987697
-
-
arXiv preprint
-
I. V. Serban, A. Sordoni, Y. Bengio, A. Courville, and J. Pineau, “Hierarchical neural network generative models for movie dialogues,” in arXiv preprint arXiv:1507.04808, 2015.
-
(2015)
Hierarchical Neural Network Generative Models for Movie Dialogues
-
-
Serban, I.V.1
Sordoni, A.2
Bengio, Y.3
Courville, A.4
Pineau, J.5
-
24
-
-
85083951332
-
Efficient estimation of word representations in vector space
-
T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” in Proceedings of ICLR Workshop, 2013.
-
(2013)
Proceedings of ICLR Workshop
-
-
Mikolov, T.1
Chen, K.2
Corrado, G.3
Dean, J.4
-
25
-
-
0031573117
-
Long short-term memory
-
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997.
-
(1997)
Neural Computation
, vol.9
, Issue.8
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
|