-
2
-
-
2342565172
-
The effects of adding noise during backpropagation training on a generalization performance
-
Guozhong An. The effects of adding noise during backpropagation training on a generalization performance. Neural Comput., 1996.
-
(1996)
Neural Comput
-
-
An, G.1
-
4
-
-
84986274465
-
Deep residual learning for image recognition
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In CVPR, 2016a.
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
5
-
-
84990068011
-
Identity mappings in deep residual networks
-
Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual networks. In ECCV, 2016b.
-
(2016)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
7
-
-
84984824417
-
Deep networks with stochastic depth
-
Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q. Weinberger. Deep networks with stochastic depth. In ECCV, 2016b.
-
(2016)
ECCV
-
-
Huang, G.1
Sun, Y.2
Liu, Z.3
Sedra, D.4
Weinberger, K.Q.5
-
8
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
12
-
-
84937834115
-
Microsoft COCO: Common objects in context
-
Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common objects in context. In ECCV, 2014.
-
(2014)
ECCV
-
-
Lin, T.-Y.1
Maire, M.2
Belongie, S.J.3
Bourdev, L.D.4
Girshick, R.B.5
Hays, J.6
Perona, P.7
Ramanan, D.8
Dollár, P.9
Lawrence Zitnick, C.10
-
14
-
-
84998585218
-
-
arXiv preprint
-
Arvind Neelakantan, Luke Vilnis, Quoc V Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and James Martens. Adding gradient noise improves learning for very deep networks. arXiv preprint arXiv:1511.06807, 2015.
-
(2015)
Adding Gradient Noise Improves Learning for Very Deep Networks
-
-
Neelakantan, A.1
Vilnis, L.2
Le, Q.V.3
Sutskever, I.4
Kaiser, L.5
Kurach, K.6
Martens, J.7
-
15
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015.
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
16
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15:1929-1958, 2014.
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
17
-
-
84983383396
-
Inception-v4, inception-resnet and the impact of residual connections on learning
-
Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex A. Alemi. Inception-v4, inception-resnet and the impact of residual connections on learning. In ICLR 2016 Workshop, 2016.
-
(2016)
ICLR 2016 Workshop
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
Alemi, A.A.4
-
18
-
-
85027970290
-
-
arXiv preprint
-
Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations for deep neural networks. arXiv preprint arXiv:1611.05431, 2016.
-
(2016)
Aggregated Residual Transformations for Deep Neural Networks
-
-
Xie, S.1
Girshick, R.2
Dollár, P.3
Tu, Z.4
He, K.5
|