-
1
-
-
84908514447
-
Why, when, and how did yeast evolve alcoholic fermentation?
-
Dashko S, Zhou N, Compagno C, Pisˇkur J. Why, when, and how did yeast evolve alcoholic fermentation? FEMS Yeast Res. 2014; 14: 826–832. https://doi.org/10.1111/1567-1364.12161 PMID: 24824836.
-
(2014)
FEMS Yeast Res
, vol.14
, pp. 826-832
-
-
Dashko, S.1
Zhou, N.2
Compagno, C.3
Pisˇkur, J.4
-
2
-
-
84880314011
-
Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication
-
Hagman A, Säll T, Compagno C, Piskur J. Yeast “make-accumulate-consume” life strategy evolved as a multi-step process that predates the whole genome duplication. PLoS ONE. 2013; 8: e68734. https://doi.org/10.1371/journal.pone.0068734 PMID: 23869229.
-
(2013)
Plos ONE
, vol.8
-
-
Hagman, A.1
Säll, T.2
Compagno, C.3
Piskur, J.4
-
3
-
-
84940403669
-
Evolution of ecological dominance of yeast species in high-sugar environments
-
Williams KM, Liu P, Fay JC. Evolution of ecological dominance of yeast species in high-sugar environments. Evolution. 2015; 69: 2079–2093. https://doi.org/10.1111/evo.12707 PMID: 26087012.
-
(2015)
Evolution
, vol.69
, pp. 2079-2093
-
-
Williams, K.M.1
Liu, P.2
Fay, J.C.3
-
5
-
-
84901925216
-
A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum
-
Almeida P, Gonçalves C, Teixeira S, Libkind D, Bontrager M, Masneuf-Pomarède I, et al. A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nat Commun. 2014; 5: 4044. https://doi.org/10.1038/ncomms5044 PMID: 24887054.
-
(2014)
Nat Commun
, vol.5
, pp. 4044
-
-
Almeida, P.1
Gonçalves, C.2
Teixeira, S.3
Libkind, D.4
Bontrager, M.5
Masneuf-Pomarède, I.6
-
6
-
-
33751260855
-
Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations
-
González SS, Barrio E, Gafner J, Querol A. Natural hybrids from Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces kudriavzevii in wine fermentations. FEMS Yeast Res. 2006; 6: 1221–1234. https://doi.org/10.1111/j.1567-1364.2006.00126.x PMID: 17156019.
-
(2006)
FEMS Yeast Res
, vol.6
, pp. 1221-1234
-
-
González, S.S.1
Barrio, E.2
Gafner, J.3
Querol, A.4
-
7
-
-
80052293238
-
Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast
-
Libkind D, Hittinger CT, Valério E, Gonçalves C, Dover J, Johnston M, et al. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci USA. 2011; 108: 14539–14544. https://doi.org/10.1073/pnas.1105430108 PMID: 21873232.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 14539-14544
-
-
Libkind, D.1
Hittinger, C.T.2
Valério, E.3
Gonçalves, C.4
Dover, J.5
Johnston, M.6
-
8
-
-
54049096710
-
Interspecies hybridization and recombination in Saccharomyces wine yeasts
-
Sipiczki M. Interspecies hybridization and recombination in Saccharomyces wine yeasts. FEMS Yeast Res. 2008; 8: 996–1007. https://doi.org/10.1111/j.1567-1364.2008.00369.x PMID: 18355270.
-
(2008)
FEMS Yeast Res
, vol.8
, pp. 996-1007
-
-
Sipiczki, M.1
-
9
-
-
84901060647
-
Evidence for a Far East Asian origin of lager beer yeast
-
Bing J, Han P-J, Liu W-Q, Wang Q-M, Bai F-Y. Evidence for a Far East Asian origin of lager beer yeast. Curr Biol. 2014; 24: R380–381. https://doi.org/10.1016/j.cub.2014.04.031 PMID: 24845661.
-
(2014)
Curr Biol
, vol.24
, pp. R380-R381
-
-
Bing, J.1
Han, P.-J.2
Liu, W.-Q.3
Wang, Q.-M.4
Bai, F.-Y.5
-
10
-
-
84982847704
-
Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus
-
Peris D, Langdon QK, Moriarty RV, Sylvester K, Bontrager M, Charron G, et al. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus. PLoS Genet. 2016; 12: e1006155. https://doi.org/10.1371/journal.pgen.1006155 PMID: 27385107.
-
(2016)
Plos Genet
, vol.12
-
-
Peris, D.1
Langdon, Q.K.2
Moriarty, R.V.3
Sylvester, K.4
Bontrager, M.5
Charron, G.6
-
11
-
-
53549098548
-
Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus
-
Dunn B, Sherlock G. Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res. 2008; 18: 1610–1623. https://doi.org/10.1101/gr.076075.108 PMID: 18787083.
-
(2008)
Genome Res
, vol.18
, pp. 1610-1623
-
-
Dunn, B.1
Sherlock, G.2
-
12
-
-
84986322634
-
Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts
-
Gallone B, Steensels J, Prahl T, Soriaga L, Saels V, Herrera-Malaver B, et al. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell. 2016; 166: 1397–1410.e16. https://doi.org/10.1016/j.cell.2016.08.020 PMID: 27610566.
-
(2016)
Cell
, vol.166
, pp. 1397-1410
-
-
Gallone, B.1
Steensels, J.2
Prahl, T.3
Soriaga, L.4
Saels, V.5
Herrera-Malaver, B.6
-
13
-
-
84992021857
-
Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts
-
Gonçalves M, Pontes A, Almeida P, Barbosa R, Serra M, Libkind D, et al. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts. Curr Biol. 2016; 26: 2750–2761. https://doi. org/10.1016/j.cub.2016.08.040 PMID: 27720622.
-
(2016)
Curr Biol
, vol.26
, pp. 2750-2761
-
-
Gonçalves, M.1
Pontes, A.2
Almeida, P.3
Barbosa, R.4
Serra, M.5
Libkind, D.6
-
14
-
-
85050020985
-
The origin and adaptive evolution of domesticated populations of yeast from Far East Asia
-
Duan S-F, Han P-J, Wang Q-M, Liu W-Q, Shi J-Y, Li K, et al. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat Commun. 2018; 9: 2690. https://doi.org/10.1038/s41467-018-05106-7 PMID: 30002370.
-
(2018)
Nat Commun
, vol.9
, pp. 2690
-
-
Duan, S.-F.1
Han, P.-J.2
Wang, Q.-M.3
Liu, W.-Q.4
Shi, J.-Y.5
Li, K.6
-
15
-
-
84907494489
-
Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome
-
Legras J-L, Erny C, Charpentier C. Population structure and comparative genome hybridization of European flor yeast reveal a unique group of Saccharomyces cerevisiae strains with few gene duplications in their genome. PLoS ONE. 2014; 9: e108089. https://doi.org/10.1371/journal.pone.0108089 PMID: 25272156.
-
(2014)
Plos ONE
, vol.9
-
-
Legras, J.-L.1
Erny, C.2
Charpentier, C.3
-
16
-
-
85045540242
-
Genome evolution across 1,011 Saccharomyces cerevisiae isolates
-
Peter J, De Chiara M, Friedrich A, Yue J-X, Pflieger D, Bergström A, et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature. 2018; 556: 339–344. https://doi.org/10.1038/s41586-018-0030-5 PMID: 29643504.
-
(2018)
Nature
, vol.556
, pp. 339-344
-
-
Peter, J.1
De Chiara, M.2
Friedrich, A.3
Yue, J.-X.4
Pflieger, D.5
Bergström, A.6
-
17
-
-
33645096818
-
Evidence for domesticated and wild populations of Saccharomyces cerevisiae
-
Fay JC, Benavides JA. Evidence for domesticated and wild populations of Saccharomyces cerevisiae. PLoS Genet. 2005; 1: 66–71. https://doi.org/10.1371/journal.pgen.0010005 PMID: 16103919.
-
(2005)
Plos Genet
, vol.1
, pp. 66-71
-
-
Fay, J.C.1
Benavides, J.A.2
-
18
-
-
34248192358
-
Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history
-
Legras J-L, Merdinoglu D, Cornuet J-M, Karst F. Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol. 2007; 16: 2091–2102. https://doi.org/10.1111/j.1365-294X.2007.03266.x PMID: 17498234.
-
(2007)
Mol Ecol
, vol.16
, pp. 2091-2102
-
-
Legras, J.-L.1
Merdinoglu, D.2
Cornuet, J.-M.3
Karst, F.4
-
19
-
-
85049474062
-
Adaptation of S. Cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication
-
Legras J-L, Galeote V, Bigey F, Camarasa C, Marsit S, Nidelet T, et al. Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication. Mol Biol Evol. 2018; 35: 1712–1727. https://doi.org/10.1093/molbev/msy066 PMID: 29746697.
-
(2018)
Mol Biol Evol
, vol.35
, pp. 1712-1727
-
-
Legras, J.-L.1
Galeote, V.2
Bigey, F.3
Camarasa, C.4
Marsit, S.5
Nidelet, T.6
-
20
-
-
84962191016
-
Independent Origins of Yeast Associated with Coffee and Cacao Fermentation
-
Ludlow CL, Cromie GA, Garmendia-Torres C, Sirr A, Hays M, Field C, et al. Independent Origins of Yeast Associated with Coffee and Cacao Fermentation. Curr Biol. 2016; 26: 965–971. https://doi.org/10.1016/j.cub.2016.02.012 PMID: 27020745.
-
(2016)
Curr Biol
, vol.26
, pp. 965-971
-
-
Ludlow, C.L.1
Cromie, G.A.2
Garmendia-Torres, C.3
Sirr, A.4
Hays, M.5
Field, C.6
-
21
-
-
84945452256
-
A population genomics insight into the Mediterranean origins of wine yeast domestication
-
Almeida P, Barbosa R, Zalar P, Imanishi Y, Shimizu K, Turchetti B, et al. A population genomics insight into the Mediterranean origins of wine yeast domestication. Mol Ecol. 2015; 24: 5412–5427. https://doi.org/10.1111/mec.13341 PMID: 26248006.
-
(2015)
Mol Ecol
, vol.24
, pp. 5412-5427
-
-
Almeida, P.1
Barbosa, R.2
Zalar, P.3
Imanishi, Y.4
Shimizu, K.5
Turchetti, B.6
-
22
-
-
84878462125
-
Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards
-
Hyma KE, Fay JC. Mixing of vineyard and oak-tree ecotypes of Saccharomyces cerevisiae in North American vineyards. Mol Ecol. 2013; 22: 2917–2930. https://doi.org/10.1111/mec.12155 PMID: 23286354.
-
(2013)
Mol Ecol
, vol.22
, pp. 2917-2930
-
-
Hyma, K.E.1
Fay, J.C.2
-
23
-
-
0036224204
-
Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics
-
Sniegowski PD, Dombrowski PG, Fingerman E. Saccharomyces cerevisiae and Saccharomyces paradoxus coexist in a natural woodland site in North America and display different levels of reproductive isolation from European conspecifics. FEM Yeast Res. 2002; 1: 299–306.
-
(2002)
FEM Yeast Res
, vol.1
, pp. 299-306
-
-
Sniegowski, P.D.1
Dombrowski, P.G.2
Fingerman, E.3
-
24
-
-
84868206362
-
Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity
-
Wang Q-M, Liu W-Q, Liti G, Wang S-A, Bai F-Y. Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol Ecol. 2012; 21: 5404–5417. https://doi.org/10.1111/j.1365-294X.2012.05732.x PMID: 22913817.
-
(2012)
Mol Ecol
, vol.21
, pp. 5404-5417
-
-
Wang, Q.-M.1
Liu, W.-Q.2
Liti, G.3
Wang, S.-A.4
Bai, F.-Y.5
-
25
-
-
84890831000
-
Genomic sequence diversity and population structure of Saccharomyces cerevisiae assessed by RAD-seq
-
Cromie GA, Hyma KE, Ludlow CL, Garmendia-Torres C, Gilbert TL, May P, et al. Genomic sequence diversity and population structure of Saccharomyces cerevisiae assessed by RAD-seq. G3 (Bethesda). 2013; 3: 2163–2171. https://doi.org/10.1534/g3.113.007492 PMID: 24122055.
-
(2013)
G3 (Bethesda)
, vol.3
, pp. 2163-2171
-
-
Cromie, G.A.1
Hyma, K.E.2
Ludlow, C.L.3
Garmendia-Torres, C.4
Gilbert, T.L.5
May, P.6
-
26
-
-
85029093726
-
Habitat Predicts Levels of Genetic Admixture in Saccharomyces cerevisiae
-
Tilakaratna V, Bensasson D. Habitat Predicts Levels of Genetic Admixture in Saccharomyces cerevisiae. G3 (Bethesda). 2017; 7: 2919–2929. https://doi.org/10.1534/g3.117.041806 PMID: 28696926.
-
(2017)
G3 (Bethesda)
, vol.7
, pp. 2919-2929
-
-
Tilakaratna, V.1
Bensasson, D.2
-
27
-
-
62649089109
-
Population genomics of domestic and wild yeasts
-
Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, et al. Population genomics of domestic and wild yeasts. Nature. 2009; 458: 337–41. https://doi.org/10.1038/nature07743 PMID: 19212322.
-
(2009)
Nature
, vol.458
, pp. 337-341
-
-
Liti, G.1
Carter, D.M.2
Moses, A.M.3
Warringer, J.4
Parts, L.5
James, S.A.6
-
28
-
-
62649126517
-
Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae
-
Schacherer J, Shapiro JA, Ruderfer DM, Kruglyak L. Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. Nature. 2009; 458: 342–5. https://doi.org/10.1038/nature07670 PMID: 19212320.
-
(2009)
Nature
, vol.458
, pp. 342-345
-
-
Schacherer, J.1
Shapiro, J.A.2
Ruderfer, D.M.3
Kruglyak, L.4
-
29
-
-
84929658508
-
The 100-genomes strains, an S. Cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen
-
Strope PK, Skelly DA, Kozmin SG, Mahadevan G, Stone EA, Magwene PM, et al. The 100-genomes strains, an S. cerevisiae resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Res. 2015; 25: 762–774. https://doi.org/10.1101/gr.185538.114 PMID: 25840857.
-
(2015)
Genome Res
, vol.25
, pp. 762-774
-
-
Strope, P.K.1
Skelly, D.A.2
Kozmin, S.G.3
Mahadevan, G.4
Stone, E.A.5
Magwene, P.M.6
-
30
-
-
84869026948
-
Inference of population splits and mixtures from genome-wide allele frequency data
-
Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012; 8: e1002967. https://doi.org/10.1371/journal.pgen.1002967 PMID: 23166502.
-
(2012)
Plos Genet
, vol.8
-
-
Pickrell, J.K.1
Pritchard, J.K.2
-
31
-
-
84978827983
-
Admixture, Population Structure, and F-Statistics
-
Peter BM. Admixture, Population Structure, and F-Statistics. Genetics. 2016; 202: 1485–1501. https://doi.org/10.1534/genetics.115.183913 PMID: 26857625.
-
(2016)
Genetics
, vol.202
, pp. 1485-1501
-
-
Peter, B.M.1
-
32
-
-
70349472875
-
Reconstructing Indian population history
-
Reich D, Thangaraj K, Patterson N, Price AL, Singh L. Reconstructing Indian population history. Nature. 2009; 461: 489–494. https://doi.org/10.1038/nature08365 PMID: 19779445.
-
(2009)
Nature
, vol.461
, pp. 489-494
-
-
Reich, D.1
Thangaraj, K.2
Patterson, N.3
Price, A.L.4
Singh, L.5
-
33
-
-
77952136530
-
A draft sequence of the Neandertal genome
-
Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome. Science. 2010; 328: 710–722. https://doi.org/10.1126/science.1188021 PMID: 20448178.
-
(2010)
Science
, vol.328
, pp. 710-722
-
-
Green, R.E.1
Krause, J.2
Briggs, A.W.3
Maricic, T.4
Stenzel, U.5
Kircher, M.6
-
34
-
-
70350397498
-
Evidence for autotetraploidy associated with reproductive isolation in Saccharomyces cerevisiae: Towards a new domesticated species
-
Albertin W, Marullo P, Aigle M, Bourgais A, Bely M, Dillmann C, et al. Evidence for autotetraploidy associated with reproductive isolation in Saccharomyces cerevisiae: towards a new domesticated species. J Evol Biol. 2009; 22: 2157–2170. https://doi.org/10.1111/j.1420-9101.2009.01828.x PMID: 19765175.
-
(2009)
J Evol Biol
, vol.22
, pp. 2157-2170
-
-
Albertin, W.1
Marullo, P.2
Aigle, M.3
Bourgais, A.4
Bely, M.5
Dillmann, C.6
-
35
-
-
0030831182
-
Genetic and physical maps of Saccharomyces cerevisiae
-
Cherry J, Ball C, Weng S, Juvik G, Schmidt R, Adler C, et al. Genetic and physical maps of Saccharomyces cerevisiae. Nature. 1997; 387(6632 Suppl): 67–73. PMID: 9169866.
-
(1997)
Nature
, vol.387
, Issue.6632
, pp. 67-73
-
-
Cherry, J.1
Ball, C.2
Weng, S.3
Juvik, G.4
Schmidt, R.5
Adler, C.6
-
36
-
-
85020808664
-
The evolutionary significance of polyploidy
-
Van de Peer Y, Mizrachi E, Marchal K. The evolutionary significance of polyploidy. Nat Rev Genet. 2017; 18: 411–424. https://doi.org/10.1038/nrg.2017.26 PMID: 28502977.
-
(2017)
Nat Rev Genet
, vol.18
, pp. 411-424
-
-
Van De Peer, Y.1
Mizrachi, E.2
Marchal, K.3
-
37
-
-
0028923892
-
Meiotic chromosome pairing in triploid and tetraploid Saccharomyces cerevisiae
-
Loidl J. Meiotic chromosome pairing in triploid and tetraploid Saccharomyces cerevisiae. Genetics. 1995; 139: 1511–1520. PMID: 7789756.
-
(1995)
Genetics
, vol.139
, pp. 1511-1520
-
-
Loidl, J.1
-
38
-
-
0019579741
-
Differential mitotic stability of yeast disomes derived from triploid meiosis
-
Campbell D, Doctor JS, Feuersanger JH, Doolittle MM. Differential mitotic stability of yeast disomes derived from triploid meiosis. Genetics. 1981; 98: 239–255. PMID: 7035289.
-
(1981)
Genetics
, vol.98
, pp. 239-255
-
-
Campbell, D.1
Doctor, J.S.2
Feuersanger, J.H.3
Doolittle, M.M.4
-
39
-
-
58849139595
-
Genetic interactions between transcription factors cause natural variation in yeast
-
Gerke J, Lorenz K, Cohen B. Genetic interactions between transcription factors cause natural variation in yeast. Science. 2009; 323: 498–501. https://doi.org/10.1126/science.1166426 PMID: 19164747.
-
(2009)
Science
, vol.323
, pp. 498-501
-
-
Gerke, J.1
Lorenz, K.2
Cohen, B.3
-
40
-
-
0026514321
-
Partial restoration of sporulation defect in sake yeasts, kyokai no. 7 and no. 9, by increased dosage of the IME1 gene
-
Nakazawa N, Ashikari T, Goto N, Amachi T, Nakajima R, Harashima S, et al. Partial restoration of sporulation defect in sake yeasts, kyokai no. 7 and no. 9, by increased dosage of the IME1 gene. Journal of Fermentation and Bioengineering. 1992; 73: 265–270. https://doi.org/10.1016/0922-338X(92)90180-3.
-
(1992)
Journal of Fermentation and Bioengineering
, vol.73
, pp. 265-270
-
-
Nakazawa, N.1
Ashikari, T.2
Goto, N.3
Amachi, T.4
Nakajima, R.5
Harashima, S.6
-
41
-
-
79952753900
-
Genetic structure and domestication history of the grape
-
Myles S, Boyko AR, Owens CL, Brown PJ, Grassi F, Aradhya MK, et al. Genetic structure and domestication history of the grape. PNAS. 2011; 108: 3530–3535. https://doi.org/10.1073/pnas.1009363108 PMID: 21245334.
-
(2011)
PNAS
, vol.108
, pp. 3530-3535
-
-
Myles, S.1
Boyko, A.R.2
Owens, C.L.3
Brown, P.J.4
Grassi, F.5
Aradhya, M.K.6
-
42
-
-
63449126356
-
A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae
-
Lee PS, Greenwell PW, Dominska M, Gawel M, Hamilton M, Petes TD. A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae. PLoS Genet. 2009; 5: e1000410. https://doi.org/10.1371/journal.pgen.1000410 PMID: 19282969.
-
(2009)
Plos Genet
, vol.5
-
-
Lee, P.S.1
Greenwell, P.W.2
Dominska, M.3
Gawel, M.4
Hamilton, M.5
Petes, T.D.6
-
43
-
-
84964314244
-
High-resolution mapping of two types of spontaneous mitotic gene conversion events in Saccharomyces cerevisiae
-
Yim E, O’Connell KE, St Charles J, Petes TD. High-resolution mapping of two types of spontaneous mitotic gene conversion events in Saccharomyces cerevisiae. Genetics. 2014; 198: 181–192. https://doi.org/10.1534/genetics.114.167395 PMID: 24990991.
-
(2014)
Genetics
, vol.198
, pp. 181-192
-
-
Yim, E.1
O’Connell, K.E.2
St Charles, J.3
Petes, T.D.4
-
44
-
-
40849138236
-
Estimating the Per-Base-Pair Mutation Rate in the Yeast Saccharomyces cerevisiae
-
Lang GI, Murray AW. Estimating the Per-Base-Pair Mutation Rate in the Yeast Saccharomyces cerevisiae. Genetics. 2008; 178: 67–82. https://doi.org/10.1534/genetics.107.071506 PMID: 18202359.
-
(2008)
Genetics
, vol.178
, pp. 67-82
-
-
Lang, G.I.1
Murray, A.W.2
-
45
-
-
84939479724
-
Barley landraces are characterized by geographically heterogeneous genomic origins
-
Poets AM, Fang Z, Clegg MT, Morrell PL. Barley landraces are characterized by geographically heterogeneous genomic origins. Genome Biology. 2015; 16: 173. https://doi.org/10.1186/s13059-015-0712-3 PMID: 26293830.
-
(2015)
Genome Biology
, vol.16
, pp. 173
-
-
Poets, A.M.1
Fang, Z.2
Clegg, M.T.3
Morrell, P.L.4
-
46
-
-
85018527934
-
The Rice Paradox: Multiple Origins but Single Domestication in Asian Rice
-
Choi JY, Platts AE, Fuller DQ, Hsing Y-I, Wing RA, Purugganan MD. The Rice Paradox: Multiple Origins but Single Domestication in Asian Rice. Mol Biol Evol. 2017; 34: 969–979. https://doi.org/10.1093/molbev/msx049 PMID: 28087768.
-
(2017)
Mol Biol Evol
, vol.34
, pp. 969-979
-
-
Choi, J.Y.1
Platts, A.E.2
Fuller, D.Q.3
Hsing, Y.-I.4
Wing, R.A.5
Purugganan, M.D.6
-
47
-
-
84946220596
-
Three geographically separate domestications of Asian rice
-
Civa´ ň P, Craig H, Cox CJ, Brown TA. Three geographically separate domestications of Asian rice. Nat Plants. 2015; 1: 15164. https://doi.org/10.1038/nplants.2015.164 PMID: 27251535.
-
(2015)
Nat Plants
, vol.1
, pp. 15164
-
-
Civa´, Ň.P.1
Craig, H.2
Cox, C.J.3
Brown, T.A.4
-
48
-
-
84883006832
-
The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus
-
Scannell DR, Zill OA, Rokas A, Payen C, Dunham MJ, Eisen MB, et al. The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the Saccharomyces sensu stricto Genus. G3 (Bethesda). 2011; 1: 11–25. https://doi.org/10.1534/g3.111.000273 PMID: 22384314.
-
(2011)
G3 (Bethesda)
, vol.1
, pp. 11-25
-
-
Scannell, D.R.1
Zill, O.A.2
Rokas, A.3
Payen, C.4
Dunham, M.J.5
Eisen, M.B.6
-
49
-
-
84946036222
-
The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts
-
Baker E, Wang B, Bellora N, Peris D, Hulfachor AB, Koshalek JA, et al. The Genome Sequence of Saccharomyces eubayanus and the Domestication of Lager-Brewing Yeasts. Mol Biol Evol. 2015; 32: 2818–2831. https://doi.org/10.1093/molbev/msv168 PMID: 26269586.
-
(2015)
Mol Biol Evol
, vol.32
, pp. 2818-2831
-
-
Baker, E.1
Wang, B.2
Bellora, N.3
Peris, D.4
Hulfachor, A.B.5
Koshalek, J.A.6
-
51
-
-
84896009017
-
From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline
-
11.10.1–33
-
Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-Moonshine A, et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics. 2013; 43: 11.10.1–33. https://doi.org/10.1002/0471250953.bi1110s43 PMID: 25431634.
-
(2013)
Curr Protoc Bioinformatics
, vol.43
-
-
Van Der Auwera, G.A.1
Carneiro, M.O.2
Hartl, C.3
Poplin, R.4
Del Angel, G.5
Levy-Moonshine, A.6
-
52
-
-
50849102293
-
A catalog of neutral and deleterious polymorphism in yeast
-
Doniger SW, Kim HS, Swain D, Corcuera D, Williams M, Yang S-P, et al. A catalog of neutral and deleterious polymorphism in yeast. PLoS Genet. 2008; 4: e1000183. https://doi.org/10.1371/journal.pgen.1000183 PMID: 18769710.
-
Plos Genet
, vol.4
-
-
Doniger, S.W.1
Kim, H.S.2
Swain, D.3
Corcuera, D.4
Williams, M.5
Yang, S.-P.6
-
53
-
-
33750431363
-
Natural isolates of Saccharomyces cerevisiae display complex genetic variation in sporulation efficiency
-
Gerke JP, Chen CTL, Cohen BA. Natural isolates of Saccharomyces cerevisiae display complex genetic variation in sporulation efficiency. Genetics. 2006; 174: 985–997. https://doi.org/10.1534/genetics.106.058453 PMID: 16951083.
-
(2006)
Genetics
, vol.174
, pp. 985-997
-
-
Gerke, J.P.1
Chen, C.2
Cohen, B.A.3
-
54
-
-
85049679960
-
Rapid Phenotypic and Genotypic Diversification After Exposure to the Oral Host Niche in Candida albicans
-
Forche A, Cromie G, Gerstein AC, Solis NV, Pisithkul T, Srifa W, et al. Rapid Phenotypic and Genotypic Diversification After Exposure to the Oral Host Niche in Candida albicans. Genetics. 2018; 209: 725–741. https://doi.org/10.1534/genetics.118.301019 PMID: 29724862.
-
(2018)
Genetics
, vol.209
, pp. 725-741
-
-
Forche, A.1
Cromie, G.2
Gerstein, A.C.3
Solis, N.V.4
Pisithkul, T.5
Srifa, W.6
-
55
-
-
84983681720
-
Whole Genome Analysis of 132 Clinical Saccharomyces cerevisiae Strains Reveals Extensive Ploidy Variation
-
Zhu YO, Sherlock G, Petrov DA. Whole Genome Analysis of 132 Clinical Saccharomyces cerevisiae Strains Reveals Extensive Ploidy Variation. G3 (Bethesda). 2016; 6: 2421–2434. https://doi.org/10.1534/g3.116.029397 PMID: 27317778.
-
(2016)
G3 (Bethesda)
, vol.6
, pp. 2421-2434
-
-
Zhu, Y.O.1
Sherlock, G.2
Petrov, D.A.3
-
56
-
-
69749099417
-
Fast model-based estimation of ancestry in unrelated individuals
-
Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009; 19: 1655–1664. https://doi.org/10.1101/gr.094052.109 PMID: 19648217.
-
(2009)
Genome Res
, vol.19
, pp. 1655-1664
-
-
Alexander, D.H.1
Novembre, J.2
Lange, K.3
-
57
-
-
84866266717
-
Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): Application and theory
-
Chaisson MJ, Tesler G. Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory. BMC Bioinformatics. 2012; 13: 238. https://doi.org/10.1186/1471-2105-13-238 PMID: 22988817.
-
(2012)
, vol.13
, pp. 238
-
-
Chaisson, M.J.1
Tesler, G.2
-
58
-
-
85019106080
-
HapCUT2: Robust and accurate haplotype assembly for diverse sequencing technologies
-
Edge P, Bafna V, Bansal V. HapCUT2: robust and accurate haplotype assembly for diverse sequencing technologies. Genome Res. 2017; 27: 801–812. https://doi.org/10.1101/gr.213462.116 PMID: 27940952.
-
(2017)
Genome Res
, vol.27
, pp. 801-812
-
-
Edge, P.1
Bafna, V.2
Bansal, V.3
-
59
-
-
47949108144
-
High-resolution mapping of meiotic crossovers and non-crossovers in yeast
-
Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature. 2008; 454: 479–485. https://doi.org/10.1038/nature07135 PMID: 18615017.
-
(2008)
Nature
, vol.454
, pp. 479-485
-
-
Mancera, E.1
Bourgon, R.2
Brozzi, A.3
Huber, W.4
Steinmetz, L.M.5
-
60
-
-
84928781427
-
SDhaP: Haplotype assembly for diploids and polyploids via semi-definite programming
-
Das S, Vikalo H. SDhaP: haplotype assembly for diploids and polyploids via semi-definite programming. BMC Genomics. 2015; 16: 260. https://doi.org/10.1186/s12864-015-1408-5 PMID: 25885901.
-
(2015)
BMC Genomics
, vol.16
, pp. 260
-
-
Das, S.1
Vikalo, H.2
-
61
-
-
8444220043
-
Functionally significant SNP MMP8 promoter haplotypes and preterm premature rupture of membranes (PPROM)
-
Wang H, Parry S, Macones G, Sammel M, Ferrand P, Kuivaniemi H, et al. Functionally significant SNP MMP8 promoter haplotypes and preterm premature rupture of membranes (PPROM). Hum Mol Genet. 2004; 13(21): 2659–2669. https://doi.org/10.1093/hmg/ddh287 PMID: 15367487
-
(2004)
Hum Mol Genet
, vol.13
, Issue.21
, pp. 2659-2669
-
-
Wang, H.1
Parry, S.2
Macones, G.3
Sammel, M.4
Ferrand, P.5
Kuivaniemi, H.6
|