메뉴 건너뛰기




Volumn 9908 LNCS, Issue , 2016, Pages 776-791

Attribute2Image: Conditional image generation from visual attributes

Author keywords

[No Author keywords available]

Indexed keywords

INFERENCE ENGINES;

EID: 84990026425     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46493-0_47     Document Type: Conference Paper
Times cited : (564)

References (30)
  • 3
    • 84965143571 scopus 로고    scopus 로고
    • Deep generative image models using a Laplacian pyramid of adversarial networks
    • Denton, E., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: NIPS (2015)
    • (2015) NIPS
    • Denton, E.1    Chintala, S.2    Szlam, A.3    Fergus, R.4
  • 4
    • 84959184995 scopus 로고    scopus 로고
    • Learning to generate chairs with convolutional neural networks
    • Dosovitskiy, A., Springenberg, J.T., Brox, T.: Learning to generate chairs with convolutional neural networks. In: CVPR (2015)
    • (2015) CVPR
    • Dosovitskiy, A.1    Springenberg, J.T.2    Brox, T.3
  • 5
    • 84937943470 scopus 로고    scopus 로고
    • Depth map prediction from a single image using a multi-scale deep network
    • Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NIPS (2014)
    • (2014) NIPS
    • Eigen, D.1    Puhrsch, C.2    Fergus, R.3
  • 6
    • 84965135705 scopus 로고    scopus 로고
    • Texture synthesis using convolutional neural networks
    • Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: NIPS (2015)
    • (2015) NIPS
    • Gatys, L.A.1    Ecker, A.S.2    Bethge, M.3
  • 9
    • 84983208884 scopus 로고    scopus 로고
    • DRAW: A recurrent neural network for image generation
    • Gregor, K., Danihelka, I., Graves, A., Wierstra, D.: DRAW: a recurrent neural network for image generation. In: ICML (2015)
    • (2015) ICML
    • Gregor, K.1    Danihelka, I.2    Graves, A.3    Wierstra, D.4
  • 11
    • 84898828634 scopus 로고    scopus 로고
    • Scene collaging: Analysis and synthesis of natural images with semantic layers
    • Isola, P., Liu, C.: Scene collaging: analysis and synthesis of natural images with semantic layers. In: ICCV (2013)
    • (2013) ICCV
    • Isola, P.1    Liu, C.2
  • 13
    • 85083951076 scopus 로고    scopus 로고
    • ADAM: A method for stochastic optimization
    • Kingma, D., Ba, J.: ADAM: a method for stochastic optimization. In: ICLR (2015)
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 15
    • 85083952489 scopus 로고    scopus 로고
    • Auto-encoding variational Bayes
    • Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: ICLR (2014)
    • (2014) ICLR
    • Kingma, D.P.1    Welling, M.2
  • 16
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS (2012)
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 18
    • 77953185711 scopus 로고    scopus 로고
    • Attribute and simile classifiers for face verification
    • Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: ICCV (2009)
    • (2009) ICCV
    • Kumar, N.1    Berg, A.C.2    Belhumeur, P.N.3    Nayar, S.K.4
  • 20
    • 79951571992 scopus 로고    scopus 로고
    • Learning a generative model of images by factoring appearance and shape
    • Le Roux, N., Heess, N., Shotton, J., Winn, J.: Learning a generative model of images by factoring appearance and shape. Neural Comput. 23(3), 593–650 (2011)
    • (2011) Neural Comput , vol.23 , Issue.3 , pp. 593-650
    • Le Roux, N.1    Heess, N.2    Shotton, J.3    Winn, J.4
  • 21
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Lee, H., Grosse, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML (2009)
    • (2009) ICML
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 24
  • 26
    • 85162052854 scopus 로고    scopus 로고
    • Generating more realistic images using gated MRFS
    • Ranzato, M., Mnih, V., Hinton, G.E.: Generating more realistic images using gated MRFS. In: NIPS (2010)
    • (2010) NIPS
    • Ranzato, M.1    Mnih, V.2    Hinton, G.E.3
  • 27
    • 84919832734 scopus 로고    scopus 로고
    • Learning to disentangle factors of variation with manifold interaction
    • Reed, S., Sohn, K., Zhang, Y., Lee, H.: Learning to disentangle factors of variation with manifold interaction. In: ICML (2014)
    • (2014) ICML
    • Reed, S.1    Sohn, K.2    Zhang, Y.3    Lee, H.4
  • 28
    • 84919796093 scopus 로고    scopus 로고
    • Stochastic backpropagation and approximate inference in deep generative models
    • Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. In: ICML (2014)
    • (2014) ICML
    • Rezende, D.J.1    Mohamed, S.2    Wierstra, D.3
  • 30
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • Rumelhart, D.E., McClelland, J.L. (eds.)
    • Smolensky, P.: Information processing in dynamical systems: foundations of harmony theory. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing, vol. 1 (1986)
    • (1986) Parallel Distributed Processing , vol.1
    • Smolensky, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.