-
2
-
-
84897573740
-
A theory of learning from different domains
-
Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-man Vaughan. A theory of learning from different domains. Machine learning, 79(1):151–175, 2010a.
-
(2010)
Machine Learning
, vol.79
, Issue.1
, pp. 151-175
-
-
Ben-David, S.1
Blitzer, J.2
Crammer, K.3
Kulesza, A.4
Pereira, F.5
Wort-Man Vaughan, J.6
-
3
-
-
80053374829
-
Impossibility theorems for domain adaptation
-
Shai Ben-David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossibility theorems for domain adaptation. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 129–136, 2010b.
-
(2010)
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
, pp. 129-136
-
-
Ben-David, S.1
Lu, T.2
Luu, T.3
Pál, D.4
-
4
-
-
85020885914
-
-
arXiv preprint
-
Konstantinos Bousmalis, Nathan Silberman, David Dohan, Dumitru Erhan, and Dilip Krishnan. Unsupervised pixel-level domain adaptation with generative adversarial networks. arXiv preprint arXiv:1612.05424, 2016a.
-
(2016)
Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks
-
-
Bousmalis, K.1
Silberman, N.2
Dohan, D.3
Erhan, D.4
Krishnan, D.5
-
5
-
-
85018890883
-
Domain separation networks
-
Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan. Domain separation networks. In Advances in Neural Information Processing Systems, pp. 343–351, 2016b.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 343-351
-
-
Bousmalis, K.1
Trigeorgis, G.2
Silberman, N.3
Krishnan, D.4
Erhan, D.5
-
6
-
-
51949086172
-
Semi-supervised classification by low density separation
-
Olivier Chapelle and Alexander Zien. Semi-supervised classification by low density separation. In AISTATS, pp. 57–64, 2005.
-
(2005)
AISTATS
, pp. 57-64
-
-
Chapelle, O.1
Zien, A.2
-
7
-
-
85048483068
-
-
arXiv preprint
-
Zihang Dai, Zhilin Yang, Fan Yang, William W Cohen, and Ruslan Salakhutdinov. Good semi-supervised learning that requires a bad gan. arXiv preprint arXiv:1705.09783, 2017.
-
(2017)
Good Semi-Supervised Learning That Requires A Bad Gan
-
-
Dai, Z.1
Yang, Z.2
Yang, F.3
Cohen, W.W.4
Salakhutdinov, R.5
-
8
-
-
85052614570
-
-
arXiv preprint
-
William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M Dai, Shakir Mohamed, and Ian Goodfellow. Many paths to equilibrium: Gans do not need to decrease adivergence at every step. arXiv preprint arXiv:1710.08446, 2017.
-
(2017)
Many Paths to Equilibrium: Gans Do Not Need to Decrease Adivergence at Every Step
-
-
Fedus, W.1
Rosca, M.2
Lakshminarayanan, B.3
Dai, A.M.4
Mohamed, S.5
Goodfellow, I.6
-
11
-
-
84990068644
-
Deep reconstruction-classification networks for unsupervised domain adaptation
-
Springer
-
Muhammad Ghifary, W Bastiaan Kleijn, Mengjie Zhang, David Balduzzi, and Wen Li. Deep reconstruction-classification networks for unsupervised domain adaptation. In European Conference on Computer Vision, pp. 597–613. Springer, 2016.
-
(2016)
European Conference on Computer Vision
, pp. 597-613
-
-
Ghifary, M.1
Bastiaan Kleijn, W.2
Zhang, M.3
Balduzzi, D.4
Li, W.5
-
12
-
-
84937849144
-
Generative adversarial nets
-
Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing systems, pp. 2672–2680, 2014.
-
(2014)
Advances in Neural Information Processing Systems
, pp. 2672-2680
-
-
Goodfellow, I.1
Pouget-Abadie, J.2
Mirza, M.3
Xu, B.4
Warde-Farley, D.5
Ozair, S.6
Courville, A.7
Bengio, Y.8
-
14
-
-
84864031047
-
Correcting sample selection bias by unlabeled data
-
Jiayuan Huang, Arthur Gretton, Karsten M Borgwardt, Bernhard Schölkopf, and Alex J Smola. Correcting sample selection bias by unlabeled data. In Advances in neural information processing systems, pp. 601–608, 2007.
-
(2007)
Advances in Neural Information Processing Systems
, pp. 601-608
-
-
Huang, J.1
Gretton, A.2
Borgwardt, K.M.3
Schölkopf, B.4
Smola, A.J.5
-
16
-
-
84922375195
-
Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks
-
Dong-Hyun Lee. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on Challenges in Representation Learning, ICML, volume 3, pp. 2, 2013.
-
(2013)
Workshop on Challenges in Representation Learning, ICML
, vol.3
, pp. 2
-
-
Lee, D.-H.1
-
17
-
-
84969549144
-
Learning transferable features with deep adaptation networks
-
Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with deep adaptation networks. In International Conference on Machine Learning, pp. 97–105, 2015.
-
(2015)
International Conference on Machine Learning
, pp. 97-105
-
-
Long, M.1
Cao, Y.2
Wang, J.3
Jordan, M.4
-
19
-
-
84969988426
-
Optimizing neural networks with kronecker-factored approximate curvature
-
James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approximate curvature. In International Conference on Machine Learning, pp. 2408–2417, 2015.
-
(2015)
International Conference on Machine Learning
, pp. 2408-2417
-
-
Martens, J.1
Grosse, R.2
-
20
-
-
85049078406
-
Virtual adversarial training for semi-supervised text classification
-
Takeru Miyato, Andrew M Dai, and Ian Goodfellow. Virtual adversarial training for semi-supervised text classification. stat, 1050:25, 2016.
-
(2016)
Stat
, vol.1050
, pp. 25
-
-
Miyato, T.1
Dai, A.M.2
Goodfellow, I.3
-
24
-
-
84973287072
-
-
arXiv preprint
-
Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew Rabinovich. Training deep neural networks on noisy labels with bootstrapping. arXiv preprint arXiv:1412.6596, 2014.
-
(2014)
Training Deep Neural Networks on Noisy Labels with Bootstrapping
-
-
Reed, S.1
Lee, H.2
Anguelov, D.3
Szegedy, C.4
Erhan, D.5
Rabinovich, A.6
-
26
-
-
85041194636
-
-
arXiv preprint
-
John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.
-
(2017)
Proximal Policy Optimization Algorithms
-
-
Schulman, J.1
Wolski, F.2
Dhariwal, P.3
Radford, A.4
Klimov, O.5
-
27
-
-
85019197138
-
Learning transferrable representations for unsupervised domain adaptation
-
Ozan Sener, Hyun Oh Song, Ashutosh Saxena, and Silvio Savarese. Learning transferrable representations for unsupervised domain adaptation. In Advances in Neural Information Processing Systems, pp. 2110–2118, 2016.
-
(2016)
Advances in Neural Information Processing Systems
, pp. 2110-2118
-
-
Sener, O.1
Song, H.O.2
Saxena, A.3
Savarese, S.4
-
28
-
-
0037527188
-
Improving predictive inference under covariate shift by weighting the log-likelihood function
-
Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood function. Journal of statistical planning and inference, 90(2):227–244, 2000.
-
(2000)
Journal of Statistical Planning and Inference
, vol.90
, Issue.2
, pp. 227-244
-
-
Shimodaira, H.1
-
29
-
-
85031103438
-
From virtual to reality: Fast adaptation of virtual object detectors to real domains
-
Baochen Sun and Kate Saenko. From virtual to reality: Fast adaptation of virtual object detectors to real domains. In BMVC, volume 1, pp. 3, 2014.
-
(2014)
BMVC
, vol.1
, pp. 3
-
-
Sun, B.1
Saenko, K.2
-
32
-
-
84897488615
-
Virtual and real world adaptation for pedestrian detection
-
David Vazquez, Antonio M Lopez, Javier Marin, Daniel Ponsa, and David Geronimo. Virtual and real world adaptation for pedestrian detection. IEEE transactions on pattern analysis and machine intelligence, 36(4):797–809, 2014.
-
(2014)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.36
, Issue.4
, pp. 797-809
-
-
Vazquez, D.1
Lopez, A.M.2
Marin, J.3
Ponsa, D.4
Geronimo, D.5
-
33
-
-
85036454840
-
A survey on behavior recognition using wifi channel state information
-
Siamak Yousefi, Hirokazu Narui, Sankalp Dayal, Stefano Ermon, and Shahrokh Valaee. A survey on behavior recognition using wifi channel state information. IEEE Communications Magazine, 55(10):98–104, 2017.
-
(2017)
IEEE Communications Magazine
, vol.55
, Issue.10
, pp. 98-104
-
-
Yousefi, S.1
Narui, H.2
Dayal, S.3
Ermon, S.4
Valaee, S.5
-
34
-
-
28244448186
-
Tri-training: Exploiting unlabeled data using three classifiers
-
Zhi-Hua Zhou and Ming Li. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Transactions on knowledge and Data Engineering, 17(11):1529–1541, 2005.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.11
, pp. 1529-1541
-
-
Zhou, Z.-H.1
Li, M.2
|