-
1
-
-
4544311272
-
Precision Agriculture and Sustainability
-
[CrossRef]
-
Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. Agric. 2004, 5, 359–387. [CrossRef]
-
(2004)
Precis. Agric
, vol.5
, pp. 359-387
-
-
Bongiovanni, R.1
Lowenberg-Deboer, J.2
-
2
-
-
85036524454
-
What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?
-
[CrossRef]
-
Hunt, E.R.; Daughtry, C.S.T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [CrossRef]
-
(2018)
Int. J. Remote Sens
, vol.39
, pp. 5345-5376
-
-
Hunt, E.R.1
Daughtry, C.S.T.2
-
3
-
-
84887105216
-
Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
-
[CrossRef]
-
Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [CrossRef]
-
(2013)
Biosyst. Eng
, vol.114
, pp. 358-371
-
-
Mulla, D.J.1
-
4
-
-
84962670222
-
Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data
-
[CrossRef]
-
Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [CrossRef]
-
(2015)
Remote Sens
, vol.7
, pp. 16398-16421
-
-
Ali, I.1
Greifeneder, F.2
Stamenkovic, J.3
Neumann, M.4
Notarnicola, C.5
-
5
-
-
85015897968
-
An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data
-
[CrossRef]
-
Carrão, H.; Russo, S.; Sepulcre-Canto, G.; Barbosa, P. An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 74–84. [CrossRef]
-
(2016)
Int. J. Appl. Earth Obs. Geoinf
, vol.48
, pp. 74-84
-
-
Carrão, H.1
Russo, S.2
Sepulcre-Canto, G.3
Barbosa, P.4
-
6
-
-
84862220853
-
Integrated agricultural pest management through remote sensing and spatial analyses
-
Springer: Dordrecht, The Netherlands
-
Kelly, M.; Guo, Q. Integrated agricultural pest management through remote sensing and spatial analyses. In General Concepts in Integrated Pest and Disease; Springer: Dordrecht, The Netherlands, 2007.
-
(2007)
General Concepts in Integrated Pest and Disease
-
-
Kelly, M.1
Guo, Q.2
-
7
-
-
85028609314
-
Remote sensing and its application in agricultural pest management
-
[CrossRef]
-
Acharya, M.C.; Thapa, R.B. Remote sensing and its application in agricultural pest management. J. Agric. Environ. 2015, 16, 43–61. [CrossRef]
-
(2015)
J. Agric. Environ
, vol.16
, pp. 43-61
-
-
Acharya, M.C.1
Thapa, R.B.2
-
8
-
-
84885398102
-
Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images
-
[CrossRef] [PubMed]
-
Peña, J.M.; Torres-Sánchez, J.; de Castro, A.I.; Kelly, M.; López-Granados, F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE 2013, 8, e77151. [CrossRef] [PubMed]
-
(2013)
PLoS ONE
, vol.8
, pp. e77151
-
-
Peña, J.M.1
Torres-Sánchez, J.2
de Castro, A.I.3
Kelly, M.4
López-Granados, F.5
-
9
-
-
7744240785
-
A Review on Remote Sensing of Weeds in Agriculture
-
[CrossRef]
-
Thorp, K.R.; Tian, L.F. A Review on Remote Sensing of Weeds in Agriculture. Precis. Agric. 2004, 5, 477–508. [CrossRef]
-
(2004)
Precis. Agric
, vol.5
, pp. 477-508
-
-
Thorp, K.R.1
Tian, L.F.2
-
10
-
-
0013340647
-
PA—Precision Agriculture: Remote-Sensing and Mapping of Weeds in Crops
-
[CrossRef]
-
Lamb, D.W.; Brown, R.B. PA—Precision Agriculture: Remote-Sensing and Mapping of Weeds in Crops. J. Agric. Eng. Res. 2001, 78, 117–125. [CrossRef]
-
(2001)
J. Agric. Eng. Res
, vol.78
, pp. 117-125
-
-
Lamb, D.W.1
Brown, R.B.2
-
11
-
-
33750367927
-
Using remote sensing for identification of late-season grass weed patches in wheat
-
[CrossRef]
-
López-Granados, F.; Jurado-Expósito, M. Using remote sensing for identification of late-season grass weed patches in wheat. Weed Sci. 2006, 54, 346–353. [CrossRef]
-
(2006)
Weed Sci
, vol.54
, pp. 346-353
-
-
López-Granados, F.1
Jurado-Expósito, M.2
-
12
-
-
61349186319
-
Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle
-
[CrossRef]
-
Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [CrossRef]
-
(2009)
IEEE Trans. Geosci. Remote Sens
, vol.47
, pp. 722-738
-
-
Berni, J.A.J.1
Zarco-Tejada, P.J.2
Suarez, L.3
Fereres, E.4
-
13
-
-
84960289157
-
Analyzing fruit tree architecture: Implications for tree management and fruit production
-
Costes, E.; Lauri, P.E.; Regnard, J.L. Analyzing fruit tree architecture: Implications for tree management and fruit production. Hortic. Rev. 2006, 32, 1–61.
-
(2006)
Hortic. Rev
, vol.32
, pp. 1-61
-
-
Costes, E.1
Lauri, P.E.2
Regnard, J.L.3
-
14
-
-
84939172730
-
High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology
-
[CrossRef] [PubMed]
-
Torres-Sánchez, J.; López-Granados, F.; Serrano, N.; Arquero, O.; Peña, J.M. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology. PLoS ONE 2015, 10, e0130479. [CrossRef] [PubMed]
-
(2015)
PLoS ONE
, vol.10
, pp. e0130479
-
-
Torres-Sánchez, J.1
López-Granados, F.2
Serrano, N.3
Arquero, O.4
Peña, J.M.5
-
15
-
-
84890209110
-
Geographic Object-Based Image Analysis-Towards a new paradigm
-
[CrossRef] [PubMed]
-
Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis-Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [CrossRef] [PubMed]
-
(2014)
ISPRS J. Photogramm. Remote Sens
, vol.87
, pp. 180-191
-
-
Blaschke, T.1
Hay, G.J.2
Kelly, M.3
Lang, S.4
Hofmann, P.5
Addink, E.6
Queiroz Feitosa, R.7
van der Meer, F.8
van der Werff, H.9
van Coillie, F.10
-
16
-
-
84971474764
-
Comparison of Canopy Volume Measurements of Scattered Eucalypt Farm Trees Derived from High Spatial Resolution Imagery and LiDAR
-
[CrossRef]
-
Verma, N.K.; Lamb, D.W.; Reid, N.; Wilson, B. Comparison of Canopy Volume Measurements of Scattered Eucalypt Farm Trees Derived from High Spatial Resolution Imagery and LiDAR. Remote Sens. 2016, 8, 388. [CrossRef]
-
(2016)
Remote Sens
, vol.8
, pp. 388
-
-
Verma, N.K.1
Lamb, D.W.2
Reid, N.3
Wilson, B.4
-
17
-
-
84884689646
-
Delineating Individual Trees from Lidar Data: A Comparison of Vector-and Raster-based Segmentation Approaches
-
[CrossRef]
-
Jakubowski, M.K.; Li, W.; Guo, Q.; Kelly, M. Delineating Individual Trees from Lidar Data: A Comparison of Vector-and Raster-based Segmentation Approaches. Remote Sens. 2013, 5, 4163–4186. [CrossRef]
-
(2013)
Remote Sens
, vol.5
, pp. 4163-4186
-
-
Jakubowski, M.K.1
Li, W.2
Guo, Q.3
Kelly, M.4
-
18
-
-
80053105702
-
Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions
-
[CrossRef]
-
Larsen, M.; Eriksson, M.; Descombes, X.; Perrin, G.; Brandtberg, T.; Gougeon, F.A. Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions. Int. J. Remote Sens. 2011, 32, 5827–5852. [CrossRef]
-
(2011)
Int. J. Remote Sens
, vol.32
, pp. 5827-5852
-
-
Larsen, M.1
Eriksson, M.2
Descombes, X.3
Perrin, G.4
Brandtberg, T.5
Gougeon, F.A.6
-
19
-
-
28144446640
-
Comparison of three individual tree crown detection methods
-
[CrossRef]
-
Erikson, M.; Olofsson, K. Comparison of three individual tree crown detection methods. Mach. Vis. Appl. 2005, 16, 258–265. [CrossRef]
-
(2005)
Mach. Vis. Appl
, vol.16
, pp. 258-265
-
-
Erikson, M.1
Olofsson, K.2
-
20
-
-
80053129356
-
A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing
-
[CrossRef]
-
Ke, Y.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [CrossRef]
-
(2011)
Int. J. Remote Sens
, vol.32
, pp. 4725-4747
-
-
Ke, Y.1
Quackenbush, L.J.2
-
21
-
-
84946887326
-
Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories
-
[CrossRef]
-
Tao, S.; Wu, F.; Guo, Q.; Wang, Y.; Li, W.; Xue, B.; Hu, X.; Li, P.; Tian, D.; Li, C.; et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories. ISPRS J. Photogramm. Remote Sens. 2015, 110, 66–76. [CrossRef]
-
(2015)
ISPRS J. Photogramm. Remote Sens
, vol.110
, pp. 66-76
-
-
Tao, S.1
Wu, F.2
Guo, Q.3
Wang, Y.4
Li, W.5
Xue, B.6
Hu, X.7
Li, P.8
Tian, D.9
Li, C.10
-
22
-
-
33745615125
-
Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery
-
[CrossRef]
-
Yu, Q.; Gong, P.; Clinton, N.; Biging, G. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogram. Eng. Remote Sens. 2006, 72, 799–811. [CrossRef]
-
(2006)
Photogram. Eng. Remote Sens
, vol.72
, pp. 799-811
-
-
Yu, Q.1
Gong, P.2
Clinton, N.3
Biging, G.4
-
23
-
-
33846516990
-
An Object-Based Classification Approach in Mapping Tree Mortality Using High Spatial Resolution Imagery
-
[CrossRef]
-
Guo, Q.; Kelly, M.; Gong, P.; Liu, D. An Object-Based Classification Approach in Mapping Tree Mortality Using High Spatial Resolution Imagery. GISci. Remote Sens. 2007, 44, 24–47. [CrossRef]
-
(2007)
GISci. Remote Sens
, vol.44
, pp. 24-47
-
-
Guo, Q.1
Kelly, M.2
Gong, P.3
Liu, D.4
-
24
-
-
84872037107
-
A tree counting algorithm for precision agriculture tasks
-
[CrossRef]
-
Santoro, F.; Tarantino, E.; Figorito, B.; Gualano, S.; D’Onghia, A.M. A tree counting algorithm for precision agriculture tasks. Int. J. Digit. Earth 2013, 6, 94–102. [CrossRef]
-
(2013)
Int. J. Digit. Earth
, vol.6
, pp. 94-102
-
-
Santoro, F.1
Tarantino, E.2
Figorito, B.3
Gualano, S.4
D’Onghia, A.M.5
-
25
-
-
84941055322
-
Automatic detection and delineation of citrus trees from VHR satellite imagery
-
[CrossRef]
-
Ozdarici-Ok, A. Automatic detection and delineation of citrus trees from VHR satellite imagery. Int. J. Remote Sens. 2015, 36, 4275–4296. [CrossRef]
-
(2015)
Int. J. Remote Sens
, vol.36
, pp. 4275-4296
-
-
Ozdarici-Ok, A.1
-
26
-
-
85034569741
-
Tree crown detection and delineation in satellite images using probabilistic voting
-
[CrossRef]
-
Özcan, A.H.; Hisar, D.; Sayar, Y.; Ünsalan, C. Tree crown detection and delineation in satellite images using probabilistic voting. Remote Sens. Lett. 2017, 8, 761–770. [CrossRef]
-
(2017)
Remote Sens. Lett
, vol.8
, pp. 761-770
-
-
Özcan, A.H.1
Hisar, D.2
Sayar, Y.3
Ünsalan, C.4
-
27
-
-
84923530369
-
Oil Palm Tree Detection with High Resolution Multi-Spectral Satellite Imagery
-
[CrossRef]
-
Srestasathiern, P.; Rakwatin, P. Oil Palm Tree Detection with High Resolution Multi-Spectral Satellite Imagery. Remote Sens. 2014, 6, 9749–9774. [CrossRef]
-
(2014)
Remote Sens
, vol.6
, pp. 9749-9774
-
-
Srestasathiern, P.1
Rakwatin, P.2
-
28
-
-
79957497503
-
Semi-automatic detection and counting of oil palm trees from high spatial resolution airborne imagery
-
[CrossRef]
-
Shafri, H.Z.M.; Hamdan, N.; Saripan, M.I. Semi-automatic detection and counting of oil palm trees from high spatial resolution airborne imagery. Int. J. Remote Sens. 2011, 32, 2095–2115. [CrossRef]
-
(2011)
Int. J. Remote Sens
, vol.32
, pp. 2095-2115
-
-
Shafri, H.Z.M.1
Hamdan, N.2
Saripan, M.I.3
-
29
-
-
85014933070
-
Unmanned aerial systems for agriculture and natural resources
-
[CrossRef]
-
Hogan, S.D.; Kelly, M.; Stark, B.; Chen, Y. Unmanned aerial systems for agriculture and natural resources. Calif. Agric. 2017, 71, 5–14. [CrossRef]
-
(2017)
Calif. Agric
, vol.71
, pp. 5-14
-
-
Hogan, S.D.1
Kelly, M.2
Stark, B.3
Chen, Y.4
-
30
-
-
84874595926
-
Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management
-
[CrossRef] [PubMed]
-
Torres-Sánchez, J.; López-Granados, F.; De Castro, A.I.; Peña-Barragán, J.M. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management. PLoS ONE 2013, 8, e58210. [CrossRef] [PubMed]
-
(2013)
PLoS ONE
, vol.8
, pp. e58210
-
-
Torres-Sánchez, J.1
López-Granados, F.2
De Castro, A.I.3
Peña-Barragán, J.M.4
-
31
-
-
85027923694
-
Efficient Framework for Palm Tree Detection in UAV Images
-
[CrossRef]
-
Malek, S.; Bazi, Y.; Alajlan, N.; AlHichri, H.; Melgani, F. Efficient Framework for Palm Tree Detection in UAV Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4692–4703. [CrossRef]
-
(2014)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens
, vol.7
, pp. 4692-4703
-
-
Malek, S.1
Bazi, Y.2
Alajlan, N.3
AlHichri, H.4
Melgani, F.5
-
32
-
-
85034732155
-
Papaya Tree Detection with UAV Images Using a GPU-Accelerated Scale-Space Filtering Method
-
[CrossRef]
-
Jiang, H.; Chen, S.; Li, D.; Wang, C.; Yang, J. Papaya Tree Detection with UAV Images Using a GPU-Accelerated Scale-Space Filtering Method. Remote Sens. 2017, 9, 721. [CrossRef]
-
(2017)
Remote Sens
, vol.9
, pp. 721
-
-
Jiang, H.1
Chen, S.2
Li, D.3
Wang, C.4
Yang, J.5
-
33
-
-
85041554673
-
Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems
-
[CrossRef]
-
Surový, P.; Almeida Ribeiro, N.; Panagiotidis, D. Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems. Int. J. Remote Sens. 2018, 39, 4786–4800. [CrossRef]
-
(2018)
Int. J. Remote Sens
, vol.39
, pp. 4786-4800
-
-
Surový, P.1
Almeida Ribeiro, N.2
Panagiotidis, D.3
-
34
-
-
85042531840
-
Efficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas
-
[CrossRef]
-
Goldbergs, G.; Maier, S.W.; Levick, S.R.; Edwards, A. Efficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas. Remote Sens. 2018, 10, 161. [CrossRef]
-
(2018)
Remote Sens
, vol.10
, pp. 161
-
-
Goldbergs, G.1
Maier, S.W.2
Levick, S.R.3
Edwards, A.4
-
35
-
-
84937829673
-
High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials
-
[CrossRef]
-
Díaz-Varela, R.A.; de la Rosa, R.; León, L.; Zarco-Tejada, P.J. High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials. Remote Sens. 2015, 7, 4213–4232. [CrossRef]
-
(2015)
Remote Sens
, vol.7
, pp. 4213-4232
-
-
Díaz-Varela, R.A.1
de la Rosa, R.2
León, L.3
Zarco-Tejada, P.J.4
-
36
-
-
84928668178
-
Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution
-
[CrossRef] [PubMed]
-
Peña, J.M.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.I.; López-Granados, F. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors 2015, 15, 5609–5626. [CrossRef] [PubMed]
-
(2015)
Sensors
, vol.15
, pp. 5609-5626
-
-
Peña, J.M.1
Torres-Sánchez, J.2
Serrano-Pérez, A.3
de Castro, A.I.4
López-Granados, F.5
-
37
-
-
85017192157
-
Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data
-
[CrossRef]
-
Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [CrossRef]
-
(2017)
IEEE Geosci. Remote Sens. Lett
, vol.14
, pp. 778-782
-
-
Kussul, N.1
Lavreniuk, M.2
Skakun, S.3
Shelestov, A.4
-
38
-
-
85040978796
-
Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system
-
[CrossRef]
-
Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GISci. Remote Sens. 2018, 55, 243–264. [CrossRef]
-
(2018)
GISci. Remote Sens
, vol.55
, pp. 243-264
-
-
Liu, T.1
Abd-Elrahman, A.2
Morton, J.3
Wilhelm, V.L.4
-
39
-
-
0022858861
-
Applications of artificial intelligence techniques to remote sensing
-
[CrossRef]
-
Estes, J.E.; Sailer, C.; Tinney, L.R. Applications of artificial intelligence techniques to remote sensing. Prof. Geogr. 1986, 38, 133–141. [CrossRef]
-
(1986)
Prof. Geogr
, vol.38
, pp. 133-141
-
-
Estes, J.E.1
Sailer, C.2
Tinney, L.R.3
-
40
-
-
0028977765
-
Optical remote sensing of vegetation: Modeling, caveats, and algorithms
-
[CrossRef]
-
Myneni, R.B.; Maggion, S.; Iaquinta, J.; Privette, J.L.; Gobron, N.; Pinty, B.; Kimes, D.S.; Verstraete, M.M.; Williams, D.L. Optical remote sensing of vegetation: Modeling, caveats, and algorithms. Remote Sens. Environ. 1995, 51, 169–188. [CrossRef]
-
(1995)
Remote Sens. Environ
, vol.51
, pp. 169-188
-
-
Myneni, R.B.1
Maggion, S.2
Iaquinta, J.3
Privette, J.L.4
Gobron, N.5
Pinty, B.6
Kimes, D.S.7
Verstraete, M.M.8
Williams, D.L.9
-
41
-
-
85032865390
-
Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community
-
[CrossRef]
-
Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. JARS 2017, 11, 042609. [CrossRef]
-
(2017)
JARS
, vol.11
, pp. 042609
-
-
Ball, J.E.1
Anderson, D.T.2
Chan, C.S.3
-
42
-
-
84976384382
-
Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art
-
[CrossRef]
-
Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [CrossRef]
-
(2016)
IEEE Geosci. Remote Sens. Mag
, vol.4
, pp. 22-40
-
-
Zhang, L.1
Zhang, L.2
Du, B.3
-
44
-
-
85022334366
-
An Efficient and Robust Integrated Geospatial Object Detection Framework for High Spatial Resolution Remote Sensing Imagery
-
[CrossRef]
-
Han, X.; Zhong, Y.; Zhang, L. An Efficient and Robust Integrated Geospatial Object Detection Framework for High Spatial Resolution Remote Sensing Imagery. Remote Sens. 2017, 9, 666. [CrossRef]
-
(2017)
Remote Sens
, vol.9
, pp. 666
-
-
Han, X.1
Zhong, Y.2
Zhang, L.3
-
45
-
-
85010660533
-
Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images
-
[CrossRef]
-
Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images. Remote Sens. 2016, 9, 22. [CrossRef]
-
(2016)
Remote Sens
, vol.9
, pp. 22
-
-
Li, W.1
Fu, H.2
Yu, L.3
Cracknell, A.4
-
46
-
-
84950141946
-
Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
-
[CrossRef]
-
Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680–14707. [CrossRef]
-
(2015)
Remote Sens
, vol.7
, pp. 14680-14707
-
-
Hu, F.1
Xia, G.-S.2
Hu, J.3
Zhang, L.4
-
47
-
-
85060719060
-
-
arXiv
-
Guirado, E.; Tabik, S.; Alcaraz-Segura, D.; Cabello, J.; Herrera, F. Deep-Learning Convolutional Neural Networks for scattered shrub detection with Google Earth Imagery. arXiv 2017.
-
(2017)
Deep-Learning Convolutional Neural Networks for scattered shrub detection with Google Earth Imagery
-
-
Guirado, E.1
Tabik, S.2
Alcaraz-Segura, D.3
Cabello, J.4
Herrera, F.5
-
48
-
-
85028676918
-
Counting Apples and Oranges With Deep Learning: A Data-Driven Approach
-
[CrossRef]
-
Chen, S.W.; Shivakumar, S.S.; Dcunha, S.; Das, J.; Okon, E.; Qu, C.; Taylor, C.J.; Kumar, V. Counting Apples and Oranges With Deep Learning: A Data-Driven Approach. IEEE Robot. Autom. Lett. 2017, 2, 781–788. [CrossRef]
-
(2017)
IEEE Robot. Autom. Lett
, vol.2
, pp. 781-788
-
-
Chen, S.W.1
Shivakumar, S.S.2
Dcunha, S.3
Das, J.4
Okon, E.5
Qu, C.6
Taylor, C.J.7
Kumar, V.8
-
49
-
-
85048892851
-
Machine vision assessment of mango orchard flowering
-
[CrossRef]
-
Wang, Z.; Underwood, J.; Walsh, K.B. Machine vision assessment of mango orchard flowering. Comput. Electron. Agric. 2018, 151, 501–511. [CrossRef]
-
(2018)
Comput. Electron. Agric
, vol.151
, pp. 501-511
-
-
Wang, Z.1
Underwood, J.2
Walsh, K.B.3
-
50
-
-
84982682350
-
DeepFruits: A Fruit Detection System Using Deep Neural Networks
-
[CrossRef] [PubMed]
-
Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors 2016, 16, 1222. [CrossRef] [PubMed]
-
(2016)
Sensors
, vol.16
, pp. 1222
-
-
Sa, I.1
Ge, Z.2
Dayoub, F.3
Upcroft, B.4
Perez, T.5
McCool, C.6
-
51
-
-
85087974723
-
-
Citrus Fruits Summary; USDA, National Agricultural Statistics Service: Washington, DC, USA, 2018
-
Citrus Fruits 2018 Summary; USDA, National Agricultural Statistics Service: Washington, DC, USA, 2018.
-
(2018)
-
-
-
52
-
-
85014902646
-
Developing citrus varieties resistant to huanglongbing disease
-
[CrossRef]
-
White, H. Lindcove REC: Developing citrus varieties resistant to huanglongbing disease. Calif. Agric. 2017, 71, 18–20. [CrossRef]
-
(2017)
Calif. Agric
, vol.71
, pp. 18-20
-
-
White, H.1
Lindcove, REC2
-
53
-
-
85087966039
-
-
senseFly—eMotion Ag. (accessed on 17 October 2018)
-
senseFly—eMotion Ag. Available online: https://www.sensefly.com/software/emotion-ag/(accessed on 17 October 2018).
-
-
-
-
54
-
-
85087989751
-
-
Pix4D. (accessed on 7 August 2018)
-
Pix4D. Available online: https://pix4d.com/(accessed on 7 August 2018).
-
-
-
-
55
-
-
85087992868
-
-
(accessed on 17 October 2018)
-
eCognition eCognition | Trimble. Available online: http://www.ecognition.com/(accessed on 17 October 2018).
-
eCognition eCognition | Trimble
-
-
-
56
-
-
85056406945
-
-
(accessed on 17 October 2018)
-
API Documentation | TensorFlow. Available online: https://www.tensorflow.org/api_docs/(accessed on 17 October 2018).
-
API Documentation | TensorFlow
-
-
-
57
-
-
85087965766
-
-
Trimble. Trimble Inc: Munich, Germany
-
Trimble. eCognition 9.3 Reference Book; Trimble Inc: Munich, Germany, 2018.
-
(2018)
eCognition 9.3 Reference Book
-
-
-
58
-
-
85017657736
-
Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels
-
[CrossRef]
-
Csillik, O. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels. Remote Sens. 2017, 9, 243. [CrossRef]
-
(2017)
Remote Sens
, vol.9
, pp. 243
-
-
Csillik, O.1
-
59
-
-
84866657764
-
SLIC superpixels compared to state-of-the-art superpixel methods
-
[CrossRef] [PubMed]
-
Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; Süsstrunk, S. SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 2274–2282. [CrossRef] [PubMed]
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.34
, pp. 2274-2282
-
-
Achanta, R.1
Shaji, A.2
Smith, K.3
Lucchi, A.4
Fua, P.5
Süsstrunk, S.6
-
60
-
-
84928911070
-
The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
-
[CrossRef] [PubMed]
-
Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 2015, 10, e0118432. [CrossRef] [PubMed]
-
(2015)
PLoS ONE
, vol.10
, pp. e0118432
-
-
Saito, T.1
Rehmsmeier, M.2
-
61
-
-
84863115277
-
A new method for segmenting individual trees from the lidar point cloud
-
[CrossRef]
-
Li, W.; Guo, Q.; Jakubowski, M.K. A new method for segmenting individual trees from the lidar point cloud. Photogram. Eng. Remote Sens. 2012, 78, 75–84. [CrossRef]
-
(2012)
Photogram. Eng. Remote Sens
, vol.78
, pp. 75-84
-
-
Li, W.1
Guo, Q.2
Jakubowski, M.K.3
-
62
-
-
24644443221
-
A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation
-
Springer: Berlin/Heidelberg, Germany
-
Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Advances in Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359.
-
(2005)
Advances in Information Retrieval
, pp. 345-359
-
-
Goutte, C.1
Gaussier, E.2
-
63
-
-
84875989699
-
Gaston Lightweight unmanned aerial vehicles will revolutionize spatial ecology
-
[CrossRef]
-
Anderson, K. Gaston Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [CrossRef]
-
(2013)
Front. Ecol. Environ
, vol.11
, pp. 138-146
-
-
Anderson, K.1
-
64
-
-
85064179498
-
UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities
-
[CrossRef]
-
Kislik, C.; Dronova, I.; Kelly, M. UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities. Drones 2018, 2, 35. [CrossRef]
-
(2018)
Drones
, vol.2
, pp. 35
-
-
Kislik, C.1
Dronova, I.2
Kelly, M.3
-
65
-
-
84868629775
-
The application of small unmanned aerial systems for precision agriculture: A review
-
[CrossRef]
-
Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [CrossRef]
-
(2012)
Precis. Agric
, vol.13
, pp. 693-712
-
-
Zhang, C.1
Kovacs, J.M.2
-
66
-
-
84887537551
-
Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture
-
[CrossRef]
-
Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [CrossRef]
-
(2013)
Remote Sens
, vol.5
, pp. 5006-5039
-
-
Honkavaara, E.1
Saari, H.2
Kaivosoja, J.3
Pölönen, I.4
Hakala, T.5
Litkey, P.6
Mäkynen, J.7
Pesonen, L.8
-
67
-
-
84886723223
-
Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard
-
[CrossRef]
-
Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolás, E.; Nortes, P.A.; Alarcón, J.J.; Intrigliolo, D.S.; Fereres, E. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis. Agric. 2013, 14, 660–678. [CrossRef]
-
(2013)
Precis. Agric
, vol.14
, pp. 660-678
-
-
Gonzalez-Dugo, V.1
Zarco-Tejada, P.2
Nicolás, E.3
Nortes, P.A.4
Alarcón, J.J.5
Intrigliolo, D.S.6
Fereres, E.7
-
68
-
-
84939543001
-
Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review
-
[CrossRef]
-
Sankaran, S.; Khot, L.R.; Espinoza, C.Z.; Jarolmasjed, S.; Sathuvalli, V.R.; Vandemark, G.J.; Miklas, P.N.; Carter, A.H.; Pumphrey, M.O.; Knowles, N.R.; et al. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. Eur. J. Agron. 2015, 70, 112–123. [CrossRef]
-
(2015)
Eur. J. Agron
, vol.70
, pp. 112-123
-
-
Sankaran, S.1
Khot, L.R.2
Espinoza, C.Z.3
Jarolmasjed, S.4
Sathuvalli, V.R.5
Vandemark, G.J.6
Miklas, P.N.7
Carter, A.H.8
Pumphrey, M.O.9
Knowles, N.R.10
-
69
-
-
85061568241
-
Classification of Maize in Complex Smallholder Farming Systems Using UAV Imagery
-
[CrossRef]
-
Hall, O.; Dahlin, S.; Marstorp, H.; Archila Bustos, M.; Öborn, I.; Jirström, M. Classification of Maize in Complex Smallholder Farming Systems Using UAV Imagery. Drones 2018, 2, 22. [CrossRef]
-
(2018)
Drones
, vol.2
, pp. 22
-
-
Hall, O.1
Dahlin, S.2
Marstorp, H.3
Archila Bustos, M.4
Öborn, I.5
Jirström, M.6
-
70
-
-
85057123396
-
Remote Sensing of Yields: Application of UAV Imagery-Derived NDVI for Estimating Maize Vigor and Yields in Complex Farming Systems in Sub-Saharan Africa
-
[CrossRef]
-
Wahab, I.; Hall, O.; Jirström, M. Remote Sensing of Yields: Application of UAV Imagery-Derived NDVI for Estimating Maize Vigor and Yields in Complex Farming Systems in Sub-Saharan Africa. Drones 2018, 2, 28. [CrossRef]
-
(2018)
Drones
, vol.2
, pp. 28
-
-
Wahab, I.1
Hall, O.2
Jirström, M.3
-
71
-
-
85002557571
-
Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service
-
[CrossRef]
-
Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sens. 2016, 8, 973. [CrossRef]
-
(2016)
Remote Sens
, vol.8
, pp. 973
-
-
Maresma, Á.1
Ariza, M.2
Martínez, E.3
Lloveras, J.4
Martínez-Casasnovas, J.5
-
72
-
-
85075733478
-
Evaluation of Altitude Sensors for a Crop Spraying Drone
-
[CrossRef]
-
Hentschke, M.; Pignaton de Freitas, E.; Hennig, C.; Girardi da Veiga, I. Evaluation of Altitude Sensors for a Crop Spraying Drone. Drones 2018, 2, 25. [CrossRef]
-
(2018)
Drones
, vol.2
, pp. 25
-
-
Hentschke, M.1
Pignaton de Freitas, E.2
Hennig, C.3
Girardi da Veiga, I.4
-
73
-
-
85019363955
-
Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging
-
[CrossRef]
-
Nevalainen, O.; Honkavaara, E.; Tuominen, S.; Viljanen, N.; Hakala, T.; Yu, X.; Hyyppä, J.; Saari, H.; Pölönen, I.; Imai, N.N.; et al. Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging. Remote Sens. 2017, 9, 185. [CrossRef]
-
(2017)
Remote Sens
, vol.9
, pp. 185
-
-
Nevalainen, O.1
Honkavaara, E.2
Tuominen, S.3
Viljanen, N.4
Hakala, T.5
Yu, X.6
Hyyppä, J.7
Saari, H.8
Pölönen, I.9
Imai, N.N.10
-
74
-
-
85029757506
-
Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest
-
[CrossRef]
-
Mohan, M.; Silva, C.; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.; Dia, M. Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. For. Trees Livelihoods 2017, 8, 340. [CrossRef]
-
(2017)
For. Trees Livelihoods
, vol.8
, pp. 340
-
-
Mohan, M.1
Silva, C.2
Klauberg, C.3
Jat, P.4
Catts, G.5
Cardil, A.6
Hudak, A.7
Dia, M.8
-
75
-
-
84903313488
-
Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data
-
[CrossRef]
-
Wallace, L.; Lucieer, A.; Watson, C.S. Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7619–7628. [CrossRef]
-
(2014)
IEEE Trans. Geosci. Remote Sens
, vol.52
, pp. 7619-7628
-
-
Wallace, L.1
Lucieer, A.2
Watson, C.S.3
-
76
-
-
84971669590
-
Trends in Automatic Individual Tree Crown Detection and Delineation—Evolution of LiDAR Data
-
[CrossRef]
-
Zhen, Z.; Quackenbush, L.; Zhang, L. Trends in Automatic Individual Tree Crown Detection and Delineation—Evolution of LiDAR Data. Remote Sens. 2016, 8, 333. [CrossRef]
-
(2016)
Remote Sens
, vol.8
, pp. 333
-
-
Zhen, Z.1
Quackenbush, L.2
Zhang, L.3
-
77
-
-
85051123154
-
Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review
-
[CrossRef]
-
Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [CrossRef]
-
(2018)
Comput. Electron. Agric
, vol.153
, pp. 69-81
-
-
Patrício, D.I.1
Rieder, R.2
-
78
-
-
84960980241
-
Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
-
Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA
-
Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Advances in Neural Information Processing Systems 28; Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015; pp. 91–99.
-
(2015)
Advances in Neural Information Processing Systems 28
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
79
-
-
85012254070
-
Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining
-
[CrossRef] [PubMed]
-
Tang, T.; Zhou, S.; Deng, Z.; Zou, H.; Lei, L. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining. Sensors 2017, 17, 336. [CrossRef] [PubMed]
-
(2017)
Sensors
, vol.17
, pp. 336
-
-
Tang, T.1
Zhou, S.2
Deng, Z.3
Zou, H.4
Lei, L.5
-
80
-
-
84975230708
-
International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning
-
[CrossRef]
-
Wang, Y.; Hyyppä, J.; Liang, X.; Kaartinen, H.; Yu, X.; Lindberg, E.; Holmgren, J.; Qin, Y.; Mallet, C.; Ferraz, A.; et al. International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5011–5027. [CrossRef]
-
(2016)
IEEE Trans. Geosci. Remote Sens
, vol.54
, pp. 5011-5027
-
-
Wang, Y.1
Hyyppä, J.2
Liang, X.3
Kaartinen, H.4
Yu, X.5
Lindberg, E.6
Holmgren, J.7
Qin, Y.8
Mallet, C.9
Ferraz, A.10
-
81
-
-
84926331997
-
Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture
-
[CrossRef]
-
Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture. Remote Sens. 2015, 7, 2971–2990. [CrossRef]
-
(2015)
Remote Sens
, vol.7
, pp. 2971-2990
-
-
Matese, A.1
Toscano, P.2
Di Gennaro, S.F.3
Genesio, L.4
Vaccari, F.P.5
Primicerio, J.6
Belli, C.7
Zaldei, A.8
Bianconi, R.9
Gioli, B.10
-
82
-
-
84996590419
-
High-resolution NDVI from Planet’s constellation of earth observing nano-satellites: A new data source for precision agriculture
-
[CrossRef]
-
Houborg, R.; McCabe, M.F. High-resolution NDVI from Planet’s constellation of earth observing nano-satellites: A new data source for precision agriculture. Remote Sens. 2016, 8, 768. [CrossRef]
-
(2016)
Remote Sens
, vol.8
, pp. 768
-
-
Houborg, R.1
McCabe, M.F.2
-
83
-
-
85048979612
-
Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data
-
[CrossRef]
-
Houborg, R.; McCabe, M.F. Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data. Remote Sens. 2018, 10, 890. [CrossRef]
-
(2018)
Remote Sens
, vol.10
, pp. 890
-
-
Houborg, R.1
McCabe, M.F.2
-
84
-
-
85033436404
-
Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis
-
[CrossRef]
-
Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [CrossRef]
-
(2018)
Remote Sens. Environ
, vol.204
, pp. 509-523
-
-
Belgiu, M.1
Csillik, O.2
-
85
-
-
85029373510
-
A Small UAV Based Multi-Temporal Image Registration for Dynamic Agricultural Terrace Monitoring
-
[CrossRef]
-
Wei, Z.; Han, Y.; Li, M.; Yang, K.; Yang, Y.; Luo, Y.; Ong, S.-H. A Small UAV Based Multi-Temporal Image Registration for Dynamic Agricultural Terrace Monitoring. Remote Sens. 2017, 9, 904. [CrossRef]
-
(2017)
Remote Sens
, vol.9
, pp. 904
-
-
Wei, Z.1
Han, Y.2
Li, M.3
Yang, K.4
Yang, Y.5
Luo, Y.6
Ong, S.-H.7
-
86
-
-
85048990116
-
Issues in Unmanned Aerial Systems (UAS) Data Collection of Complex Forest Environments
-
[CrossRef]
-
Fraser, B.T.; Congalton, R.G. Issues in Unmanned Aerial Systems (UAS) Data Collection of Complex Forest Environments. Remote Sens. 2018, 10, 908. [CrossRef]
-
(2018)
Remote Sens
, vol.10
, pp. 908
-
-
Fraser, B.T.1
Congalton, R.G.2
|