메뉴 건너뛰기




Volumn 2, Issue 4, 2018, Pages 1-16

Identification of citrus trees from unmanned aerial vehicle imagery using convolutional neural networks

Author keywords

Citrus; CNN; Deep learning; Feature extraction; Precision agriculture; Superpixels; Tree identification; UAS

Indexed keywords


EID: 85060702279     PISSN: None     EISSN: 2504446X     Source Type: Journal    
DOI: 10.3390/drones2040039     Document Type: Article
Times cited : (183)

References (86)
  • 1
    • 4544311272 scopus 로고    scopus 로고
    • Precision Agriculture and Sustainability
    • [CrossRef]
    • Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. Agric. 2004, 5, 359–387. [CrossRef]
    • (2004) Precis. Agric , vol.5 , pp. 359-387
    • Bongiovanni, R.1    Lowenberg-Deboer, J.2
  • 2
    • 85036524454 scopus 로고    scopus 로고
    • What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture?
    • [CrossRef]
    • Hunt, E.R.; Daughtry, C.S.T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [CrossRef]
    • (2018) Int. J. Remote Sens , vol.39 , pp. 5345-5376
    • Hunt, E.R.1    Daughtry, C.S.T.2
  • 3
    • 84887105216 scopus 로고    scopus 로고
    • Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps
    • [CrossRef]
    • Mulla, D.J. Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosyst. Eng. 2013, 114, 358–371. [CrossRef]
    • (2013) Biosyst. Eng , vol.114 , pp. 358-371
    • Mulla, D.J.1
  • 4
    • 84962670222 scopus 로고    scopus 로고
    • Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data
    • [CrossRef]
    • Ali, I.; Greifeneder, F.; Stamenkovic, J.; Neumann, M.; Notarnicola, C. Review of Machine Learning Approaches for Biomass and Soil Moisture Retrievals from Remote Sensing Data. Remote Sens. 2015, 7, 16398–16421. [CrossRef]
    • (2015) Remote Sens , vol.7 , pp. 16398-16421
    • Ali, I.1    Greifeneder, F.2    Stamenkovic, J.3    Neumann, M.4    Notarnicola, C.5
  • 5
    • 85015897968 scopus 로고    scopus 로고
    • An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data
    • [CrossRef]
    • Carrão, H.; Russo, S.; Sepulcre-Canto, G.; Barbosa, P. An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. Int. J. Appl. Earth Obs. Geoinf. 2016, 48, 74–84. [CrossRef]
    • (2016) Int. J. Appl. Earth Obs. Geoinf , vol.48 , pp. 74-84
    • Carrão, H.1    Russo, S.2    Sepulcre-Canto, G.3    Barbosa, P.4
  • 6
    • 84862220853 scopus 로고    scopus 로고
    • Integrated agricultural pest management through remote sensing and spatial analyses
    • Springer: Dordrecht, The Netherlands
    • Kelly, M.; Guo, Q. Integrated agricultural pest management through remote sensing and spatial analyses. In General Concepts in Integrated Pest and Disease; Springer: Dordrecht, The Netherlands, 2007.
    • (2007) General Concepts in Integrated Pest and Disease
    • Kelly, M.1    Guo, Q.2
  • 7
    • 85028609314 scopus 로고    scopus 로고
    • Remote sensing and its application in agricultural pest management
    • [CrossRef]
    • Acharya, M.C.; Thapa, R.B. Remote sensing and its application in agricultural pest management. J. Agric. Environ. 2015, 16, 43–61. [CrossRef]
    • (2015) J. Agric. Environ , vol.16 , pp. 43-61
    • Acharya, M.C.1    Thapa, R.B.2
  • 8
    • 84885398102 scopus 로고    scopus 로고
    • Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images
    • [CrossRef] [PubMed]
    • Peña, J.M.; Torres-Sánchez, J.; de Castro, A.I.; Kelly, M.; López-Granados, F. Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE 2013, 8, e77151. [CrossRef] [PubMed]
    • (2013) PLoS ONE , vol.8 , pp. e77151
    • Peña, J.M.1    Torres-Sánchez, J.2    de Castro, A.I.3    Kelly, M.4    López-Granados, F.5
  • 9
    • 7744240785 scopus 로고    scopus 로고
    • A Review on Remote Sensing of Weeds in Agriculture
    • [CrossRef]
    • Thorp, K.R.; Tian, L.F. A Review on Remote Sensing of Weeds in Agriculture. Precis. Agric. 2004, 5, 477–508. [CrossRef]
    • (2004) Precis. Agric , vol.5 , pp. 477-508
    • Thorp, K.R.1    Tian, L.F.2
  • 10
    • 0013340647 scopus 로고    scopus 로고
    • PA—Precision Agriculture: Remote-Sensing and Mapping of Weeds in Crops
    • [CrossRef]
    • Lamb, D.W.; Brown, R.B. PA—Precision Agriculture: Remote-Sensing and Mapping of Weeds in Crops. J. Agric. Eng. Res. 2001, 78, 117–125. [CrossRef]
    • (2001) J. Agric. Eng. Res , vol.78 , pp. 117-125
    • Lamb, D.W.1    Brown, R.B.2
  • 11
    • 33750367927 scopus 로고    scopus 로고
    • Using remote sensing for identification of late-season grass weed patches in wheat
    • [CrossRef]
    • López-Granados, F.; Jurado-Expósito, M. Using remote sensing for identification of late-season grass weed patches in wheat. Weed Sci. 2006, 54, 346–353. [CrossRef]
    • (2006) Weed Sci , vol.54 , pp. 346-353
    • López-Granados, F.1    Jurado-Expósito, M.2
  • 12
    • 61349186319 scopus 로고    scopus 로고
    • Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle
    • [CrossRef]
    • Berni, J.A.J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [CrossRef]
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , pp. 722-738
    • Berni, J.A.J.1    Zarco-Tejada, P.J.2    Suarez, L.3    Fereres, E.4
  • 13
    • 84960289157 scopus 로고    scopus 로고
    • Analyzing fruit tree architecture: Implications for tree management and fruit production
    • Costes, E.; Lauri, P.E.; Regnard, J.L. Analyzing fruit tree architecture: Implications for tree management and fruit production. Hortic. Rev. 2006, 32, 1–61.
    • (2006) Hortic. Rev , vol.32 , pp. 1-61
    • Costes, E.1    Lauri, P.E.2    Regnard, J.L.3
  • 14
    • 84939172730 scopus 로고    scopus 로고
    • High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology
    • [CrossRef] [PubMed]
    • Torres-Sánchez, J.; López-Granados, F.; Serrano, N.; Arquero, O.; Peña, J.M. High-Throughput 3-D Monitoring of Agricultural-Tree Plantations with Unmanned Aerial Vehicle (UAV) Technology. PLoS ONE 2015, 10, e0130479. [CrossRef] [PubMed]
    • (2015) PLoS ONE , vol.10 , pp. e0130479
    • Torres-Sánchez, J.1    López-Granados, F.2    Serrano, N.3    Arquero, O.4    Peña, J.M.5
  • 16
    • 84971474764 scopus 로고    scopus 로고
    • Comparison of Canopy Volume Measurements of Scattered Eucalypt Farm Trees Derived from High Spatial Resolution Imagery and LiDAR
    • [CrossRef]
    • Verma, N.K.; Lamb, D.W.; Reid, N.; Wilson, B. Comparison of Canopy Volume Measurements of Scattered Eucalypt Farm Trees Derived from High Spatial Resolution Imagery and LiDAR. Remote Sens. 2016, 8, 388. [CrossRef]
    • (2016) Remote Sens , vol.8 , pp. 388
    • Verma, N.K.1    Lamb, D.W.2    Reid, N.3    Wilson, B.4
  • 17
    • 84884689646 scopus 로고    scopus 로고
    • Delineating Individual Trees from Lidar Data: A Comparison of Vector-and Raster-based Segmentation Approaches
    • [CrossRef]
    • Jakubowski, M.K.; Li, W.; Guo, Q.; Kelly, M. Delineating Individual Trees from Lidar Data: A Comparison of Vector-and Raster-based Segmentation Approaches. Remote Sens. 2013, 5, 4163–4186. [CrossRef]
    • (2013) Remote Sens , vol.5 , pp. 4163-4186
    • Jakubowski, M.K.1    Li, W.2    Guo, Q.3    Kelly, M.4
  • 18
    • 80053105702 scopus 로고    scopus 로고
    • Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions
    • [CrossRef]
    • Larsen, M.; Eriksson, M.; Descombes, X.; Perrin, G.; Brandtberg, T.; Gougeon, F.A. Comparison of six individual tree crown detection algorithms evaluated under varying forest conditions. Int. J. Remote Sens. 2011, 32, 5827–5852. [CrossRef]
    • (2011) Int. J. Remote Sens , vol.32 , pp. 5827-5852
    • Larsen, M.1    Eriksson, M.2    Descombes, X.3    Perrin, G.4    Brandtberg, T.5    Gougeon, F.A.6
  • 19
    • 28144446640 scopus 로고    scopus 로고
    • Comparison of three individual tree crown detection methods
    • [CrossRef]
    • Erikson, M.; Olofsson, K. Comparison of three individual tree crown detection methods. Mach. Vis. Appl. 2005, 16, 258–265. [CrossRef]
    • (2005) Mach. Vis. Appl , vol.16 , pp. 258-265
    • Erikson, M.1    Olofsson, K.2
  • 20
    • 80053129356 scopus 로고    scopus 로고
    • A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing
    • [CrossRef]
    • Ke, Y.; Quackenbush, L.J. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int. J. Remote Sens. 2011, 32, 4725–4747. [CrossRef]
    • (2011) Int. J. Remote Sens , vol.32 , pp. 4725-4747
    • Ke, Y.1    Quackenbush, L.J.2
  • 21
    • 84946887326 scopus 로고    scopus 로고
    • Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories
    • [CrossRef]
    • Tao, S.; Wu, F.; Guo, Q.; Wang, Y.; Li, W.; Xue, B.; Hu, X.; Li, P.; Tian, D.; Li, C.; et al. Segmenting tree crowns from terrestrial and mobile LiDAR data by exploring ecological theories. ISPRS J. Photogramm. Remote Sens. 2015, 110, 66–76. [CrossRef]
    • (2015) ISPRS J. Photogramm. Remote Sens , vol.110 , pp. 66-76
    • Tao, S.1    Wu, F.2    Guo, Q.3    Wang, Y.4    Li, W.5    Xue, B.6    Hu, X.7    Li, P.8    Tian, D.9    Li, C.10
  • 22
    • 33745615125 scopus 로고    scopus 로고
    • Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery
    • [CrossRef]
    • Yu, Q.; Gong, P.; Clinton, N.; Biging, G. Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogram. Eng. Remote Sens. 2006, 72, 799–811. [CrossRef]
    • (2006) Photogram. Eng. Remote Sens , vol.72 , pp. 799-811
    • Yu, Q.1    Gong, P.2    Clinton, N.3    Biging, G.4
  • 23
    • 33846516990 scopus 로고    scopus 로고
    • An Object-Based Classification Approach in Mapping Tree Mortality Using High Spatial Resolution Imagery
    • [CrossRef]
    • Guo, Q.; Kelly, M.; Gong, P.; Liu, D. An Object-Based Classification Approach in Mapping Tree Mortality Using High Spatial Resolution Imagery. GISci. Remote Sens. 2007, 44, 24–47. [CrossRef]
    • (2007) GISci. Remote Sens , vol.44 , pp. 24-47
    • Guo, Q.1    Kelly, M.2    Gong, P.3    Liu, D.4
  • 25
    • 84941055322 scopus 로고    scopus 로고
    • Automatic detection and delineation of citrus trees from VHR satellite imagery
    • [CrossRef]
    • Ozdarici-Ok, A. Automatic detection and delineation of citrus trees from VHR satellite imagery. Int. J. Remote Sens. 2015, 36, 4275–4296. [CrossRef]
    • (2015) Int. J. Remote Sens , vol.36 , pp. 4275-4296
    • Ozdarici-Ok, A.1
  • 26
    • 85034569741 scopus 로고    scopus 로고
    • Tree crown detection and delineation in satellite images using probabilistic voting
    • [CrossRef]
    • Özcan, A.H.; Hisar, D.; Sayar, Y.; Ünsalan, C. Tree crown detection and delineation in satellite images using probabilistic voting. Remote Sens. Lett. 2017, 8, 761–770. [CrossRef]
    • (2017) Remote Sens. Lett , vol.8 , pp. 761-770
    • Özcan, A.H.1    Hisar, D.2    Sayar, Y.3    Ünsalan, C.4
  • 27
    • 84923530369 scopus 로고    scopus 로고
    • Oil Palm Tree Detection with High Resolution Multi-Spectral Satellite Imagery
    • [CrossRef]
    • Srestasathiern, P.; Rakwatin, P. Oil Palm Tree Detection with High Resolution Multi-Spectral Satellite Imagery. Remote Sens. 2014, 6, 9749–9774. [CrossRef]
    • (2014) Remote Sens , vol.6 , pp. 9749-9774
    • Srestasathiern, P.1    Rakwatin, P.2
  • 28
    • 79957497503 scopus 로고    scopus 로고
    • Semi-automatic detection and counting of oil palm trees from high spatial resolution airborne imagery
    • [CrossRef]
    • Shafri, H.Z.M.; Hamdan, N.; Saripan, M.I. Semi-automatic detection and counting of oil palm trees from high spatial resolution airborne imagery. Int. J. Remote Sens. 2011, 32, 2095–2115. [CrossRef]
    • (2011) Int. J. Remote Sens , vol.32 , pp. 2095-2115
    • Shafri, H.Z.M.1    Hamdan, N.2    Saripan, M.I.3
  • 29
    • 85014933070 scopus 로고    scopus 로고
    • Unmanned aerial systems for agriculture and natural resources
    • [CrossRef]
    • Hogan, S.D.; Kelly, M.; Stark, B.; Chen, Y. Unmanned aerial systems for agriculture and natural resources. Calif. Agric. 2017, 71, 5–14. [CrossRef]
    • (2017) Calif. Agric , vol.71 , pp. 5-14
    • Hogan, S.D.1    Kelly, M.2    Stark, B.3    Chen, Y.4
  • 30
    • 84874595926 scopus 로고    scopus 로고
    • Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management
    • [CrossRef] [PubMed]
    • Torres-Sánchez, J.; López-Granados, F.; De Castro, A.I.; Peña-Barragán, J.M. Configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management. PLoS ONE 2013, 8, e58210. [CrossRef] [PubMed]
    • (2013) PLoS ONE , vol.8 , pp. e58210
    • Torres-Sánchez, J.1    López-Granados, F.2    De Castro, A.I.3    Peña-Barragán, J.M.4
  • 32
    • 85034732155 scopus 로고    scopus 로고
    • Papaya Tree Detection with UAV Images Using a GPU-Accelerated Scale-Space Filtering Method
    • [CrossRef]
    • Jiang, H.; Chen, S.; Li, D.; Wang, C.; Yang, J. Papaya Tree Detection with UAV Images Using a GPU-Accelerated Scale-Space Filtering Method. Remote Sens. 2017, 9, 721. [CrossRef]
    • (2017) Remote Sens , vol.9 , pp. 721
    • Jiang, H.1    Chen, S.2    Li, D.3    Wang, C.4    Yang, J.5
  • 33
    • 85041554673 scopus 로고    scopus 로고
    • Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems
    • [CrossRef]
    • Surový, P.; Almeida Ribeiro, N.; Panagiotidis, D. Estimation of positions and heights from UAV-sensed imagery in tree plantations in agrosilvopastoral systems. Int. J. Remote Sens. 2018, 39, 4786–4800. [CrossRef]
    • (2018) Int. J. Remote Sens , vol.39 , pp. 4786-4800
    • Surový, P.1    Almeida Ribeiro, N.2    Panagiotidis, D.3
  • 34
    • 85042531840 scopus 로고    scopus 로고
    • Efficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas
    • [CrossRef]
    • Goldbergs, G.; Maier, S.W.; Levick, S.R.; Edwards, A. Efficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas. Remote Sens. 2018, 10, 161. [CrossRef]
    • (2018) Remote Sens , vol.10 , pp. 161
    • Goldbergs, G.1    Maier, S.W.2    Levick, S.R.3    Edwards, A.4
  • 35
    • 84937829673 scopus 로고    scopus 로고
    • High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials
    • [CrossRef]
    • Díaz-Varela, R.A.; de la Rosa, R.; León, L.; Zarco-Tejada, P.J. High-Resolution Airborne UAV Imagery to Assess Olive Tree Crown Parameters Using 3D Photo Reconstruction: Application in Breeding Trials. Remote Sens. 2015, 7, 4213–4232. [CrossRef]
    • (2015) Remote Sens , vol.7 , pp. 4213-4232
    • Díaz-Varela, R.A.1    de la Rosa, R.2    León, L.3    Zarco-Tejada, P.J.4
  • 36
    • 84928668178 scopus 로고    scopus 로고
    • Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution
    • [CrossRef] [PubMed]
    • Peña, J.M.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.I.; López-Granados, F. Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors 2015, 15, 5609–5626. [CrossRef] [PubMed]
    • (2015) Sensors , vol.15 , pp. 5609-5626
    • Peña, J.M.1    Torres-Sánchez, J.2    Serrano-Pérez, A.3    de Castro, A.I.4    López-Granados, F.5
  • 37
    • 85017192157 scopus 로고    scopus 로고
    • Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data
    • [CrossRef]
    • Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [CrossRef]
    • (2017) IEEE Geosci. Remote Sens. Lett , vol.14 , pp. 778-782
    • Kussul, N.1    Lavreniuk, M.2    Skakun, S.3    Shelestov, A.4
  • 38
    • 85040978796 scopus 로고    scopus 로고
    • Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system
    • [CrossRef]
    • Liu, T.; Abd-Elrahman, A.; Morton, J.; Wilhelm, V.L. Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system. GISci. Remote Sens. 2018, 55, 243–264. [CrossRef]
    • (2018) GISci. Remote Sens , vol.55 , pp. 243-264
    • Liu, T.1    Abd-Elrahman, A.2    Morton, J.3    Wilhelm, V.L.4
  • 39
    • 0022858861 scopus 로고
    • Applications of artificial intelligence techniques to remote sensing
    • [CrossRef]
    • Estes, J.E.; Sailer, C.; Tinney, L.R. Applications of artificial intelligence techniques to remote sensing. Prof. Geogr. 1986, 38, 133–141. [CrossRef]
    • (1986) Prof. Geogr , vol.38 , pp. 133-141
    • Estes, J.E.1    Sailer, C.2    Tinney, L.R.3
  • 41
    • 85032865390 scopus 로고    scopus 로고
    • Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community
    • [CrossRef]
    • Ball, J.E.; Anderson, D.T.; Chan, C.S. Comprehensive survey of deep learning in remote sensing: Theories, tools, and challenges for the community. JARS 2017, 11, 042609. [CrossRef]
    • (2017) JARS , vol.11 , pp. 042609
    • Ball, J.E.1    Anderson, D.T.2    Chan, C.S.3
  • 42
    • 84976384382 scopus 로고    scopus 로고
    • Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art
    • [CrossRef]
    • Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [CrossRef]
    • (2016) IEEE Geosci. Remote Sens. Mag , vol.4 , pp. 22-40
    • Zhang, L.1    Zhang, L.2    Du, B.3
  • 44
    • 85022334366 scopus 로고    scopus 로고
    • An Efficient and Robust Integrated Geospatial Object Detection Framework for High Spatial Resolution Remote Sensing Imagery
    • [CrossRef]
    • Han, X.; Zhong, Y.; Zhang, L. An Efficient and Robust Integrated Geospatial Object Detection Framework for High Spatial Resolution Remote Sensing Imagery. Remote Sens. 2017, 9, 666. [CrossRef]
    • (2017) Remote Sens , vol.9 , pp. 666
    • Han, X.1    Zhong, Y.2    Zhang, L.3
  • 45
    • 85010660533 scopus 로고    scopus 로고
    • Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images
    • [CrossRef]
    • Li, W.; Fu, H.; Yu, L.; Cracknell, A. Deep Learning Based Oil Palm Tree Detection and Counting for High-Resolution Remote Sensing Images. Remote Sens. 2016, 9, 22. [CrossRef]
    • (2016) Remote Sens , vol.9 , pp. 22
    • Li, W.1    Fu, H.2    Yu, L.3    Cracknell, A.4
  • 46
    • 84950141946 scopus 로고    scopus 로고
    • Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
    • [CrossRef]
    • Hu, F.; Xia, G.-S.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680–14707. [CrossRef]
    • (2015) Remote Sens , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 49
    • 85048892851 scopus 로고    scopus 로고
    • Machine vision assessment of mango orchard flowering
    • [CrossRef]
    • Wang, Z.; Underwood, J.; Walsh, K.B. Machine vision assessment of mango orchard flowering. Comput. Electron. Agric. 2018, 151, 501–511. [CrossRef]
    • (2018) Comput. Electron. Agric , vol.151 , pp. 501-511
    • Wang, Z.1    Underwood, J.2    Walsh, K.B.3
  • 50
    • 84982682350 scopus 로고    scopus 로고
    • DeepFruits: A Fruit Detection System Using Deep Neural Networks
    • [CrossRef] [PubMed]
    • Sa, I.; Ge, Z.; Dayoub, F.; Upcroft, B.; Perez, T.; McCool, C. DeepFruits: A Fruit Detection System Using Deep Neural Networks. Sensors 2016, 16, 1222. [CrossRef] [PubMed]
    • (2016) Sensors , vol.16 , pp. 1222
    • Sa, I.1    Ge, Z.2    Dayoub, F.3    Upcroft, B.4    Perez, T.5    McCool, C.6
  • 51
    • 85087974723 scopus 로고    scopus 로고
    • Citrus Fruits Summary; USDA, National Agricultural Statistics Service: Washington, DC, USA, 2018
    • Citrus Fruits 2018 Summary; USDA, National Agricultural Statistics Service: Washington, DC, USA, 2018.
    • (2018)
  • 52
    • 85014902646 scopus 로고    scopus 로고
    • Developing citrus varieties resistant to huanglongbing disease
    • [CrossRef]
    • White, H. Lindcove REC: Developing citrus varieties resistant to huanglongbing disease. Calif. Agric. 2017, 71, 18–20. [CrossRef]
    • (2017) Calif. Agric , vol.71 , pp. 18-20
    • White, H.1    Lindcove, REC2
  • 53
    • 85087966039 scopus 로고    scopus 로고
    • senseFly—eMotion Ag. (accessed on 17 October 2018)
    • senseFly—eMotion Ag. Available online: https://www.sensefly.com/software/emotion-ag/(accessed on 17 October 2018).
  • 54
    • 85087989751 scopus 로고    scopus 로고
    • Pix4D. (accessed on 7 August 2018)
    • Pix4D. Available online: https://pix4d.com/(accessed on 7 August 2018).
  • 55
    • 85087992868 scopus 로고    scopus 로고
    • (accessed on 17 October 2018)
    • eCognition eCognition | Trimble. Available online: http://www.ecognition.com/(accessed on 17 October 2018).
    • eCognition eCognition | Trimble
  • 56
    • 85056406945 scopus 로고    scopus 로고
    • (accessed on 17 October 2018)
    • API Documentation | TensorFlow. Available online: https://www.tensorflow.org/api_docs/(accessed on 17 October 2018).
    • API Documentation | TensorFlow
  • 57
    • 85087965766 scopus 로고    scopus 로고
    • Trimble. Trimble Inc: Munich, Germany
    • Trimble. eCognition 9.3 Reference Book; Trimble Inc: Munich, Germany, 2018.
    • (2018) eCognition 9.3 Reference Book
  • 58
    • 85017657736 scopus 로고    scopus 로고
    • Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels
    • [CrossRef]
    • Csillik, O. Fast Segmentation and Classification of Very High Resolution Remote Sensing Data Using SLIC Superpixels. Remote Sens. 2017, 9, 243. [CrossRef]
    • (2017) Remote Sens , vol.9 , pp. 243
    • Csillik, O.1
  • 60
    • 84928911070 scopus 로고    scopus 로고
    • The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
    • [CrossRef] [PubMed]
    • Saito, T.; Rehmsmeier, M. The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS ONE 2015, 10, e0118432. [CrossRef] [PubMed]
    • (2015) PLoS ONE , vol.10 , pp. e0118432
    • Saito, T.1    Rehmsmeier, M.2
  • 61
    • 84863115277 scopus 로고    scopus 로고
    • A new method for segmenting individual trees from the lidar point cloud
    • [CrossRef]
    • Li, W.; Guo, Q.; Jakubowski, M.K. A new method for segmenting individual trees from the lidar point cloud. Photogram. Eng. Remote Sens. 2012, 78, 75–84. [CrossRef]
    • (2012) Photogram. Eng. Remote Sens , vol.78 , pp. 75-84
    • Li, W.1    Guo, Q.2    Jakubowski, M.K.3
  • 62
    • 24644443221 scopus 로고    scopus 로고
    • A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation
    • Springer: Berlin/Heidelberg, Germany
    • Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Advances in Information Retrieval; Springer: Berlin/Heidelberg, Germany, 2005; pp. 345–359.
    • (2005) Advances in Information Retrieval , pp. 345-359
    • Goutte, C.1    Gaussier, E.2
  • 63
    • 84875989699 scopus 로고    scopus 로고
    • Gaston Lightweight unmanned aerial vehicles will revolutionize spatial ecology
    • [CrossRef]
    • Anderson, K. Gaston Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Front. Ecol. Environ. 2013, 11, 138–146. [CrossRef]
    • (2013) Front. Ecol. Environ , vol.11 , pp. 138-146
    • Anderson, K.1
  • 64
    • 85064179498 scopus 로고    scopus 로고
    • UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities
    • [CrossRef]
    • Kislik, C.; Dronova, I.; Kelly, M. UAVs in Support of Algal Bloom Research: A Review of Current Applications and Future Opportunities. Drones 2018, 2, 35. [CrossRef]
    • (2018) Drones , vol.2 , pp. 35
    • Kislik, C.1    Dronova, I.2    Kelly, M.3
  • 65
    • 84868629775 scopus 로고    scopus 로고
    • The application of small unmanned aerial systems for precision agriculture: A review
    • [CrossRef]
    • Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [CrossRef]
    • (2012) Precis. Agric , vol.13 , pp. 693-712
    • Zhang, C.1    Kovacs, J.M.2
  • 66
    • 84887537551 scopus 로고    scopus 로고
    • Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture
    • [CrossRef]
    • Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [CrossRef]
    • (2013) Remote Sens , vol.5 , pp. 5006-5039
    • Honkavaara, E.1    Saari, H.2    Kaivosoja, J.3    Pölönen, I.4    Hakala, T.5    Litkey, P.6    Mäkynen, J.7    Pesonen, L.8
  • 67
    • 84886723223 scopus 로고    scopus 로고
    • Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard
    • [CrossRef]
    • Gonzalez-Dugo, V.; Zarco-Tejada, P.; Nicolás, E.; Nortes, P.A.; Alarcón, J.J.; Intrigliolo, D.S.; Fereres, E. Using high resolution UAV thermal imagery to assess the variability in the water status of five fruit tree species within a commercial orchard. Precis. Agric. 2013, 14, 660–678. [CrossRef]
    • (2013) Precis. Agric , vol.14 , pp. 660-678
    • Gonzalez-Dugo, V.1    Zarco-Tejada, P.2    Nicolás, E.3    Nortes, P.A.4    Alarcón, J.J.5    Intrigliolo, D.S.6    Fereres, E.7
  • 69
    • 85061568241 scopus 로고    scopus 로고
    • Classification of Maize in Complex Smallholder Farming Systems Using UAV Imagery
    • [CrossRef]
    • Hall, O.; Dahlin, S.; Marstorp, H.; Archila Bustos, M.; Öborn, I.; Jirström, M. Classification of Maize in Complex Smallholder Farming Systems Using UAV Imagery. Drones 2018, 2, 22. [CrossRef]
    • (2018) Drones , vol.2 , pp. 22
    • Hall, O.1    Dahlin, S.2    Marstorp, H.3    Archila Bustos, M.4    Öborn, I.5    Jirström, M.6
  • 70
    • 85057123396 scopus 로고    scopus 로고
    • Remote Sensing of Yields: Application of UAV Imagery-Derived NDVI for Estimating Maize Vigor and Yields in Complex Farming Systems in Sub-Saharan Africa
    • [CrossRef]
    • Wahab, I.; Hall, O.; Jirström, M. Remote Sensing of Yields: Application of UAV Imagery-Derived NDVI for Estimating Maize Vigor and Yields in Complex Farming Systems in Sub-Saharan Africa. Drones 2018, 2, 28. [CrossRef]
    • (2018) Drones , vol.2 , pp. 28
    • Wahab, I.1    Hall, O.2    Jirström, M.3
  • 71
    • 85002557571 scopus 로고    scopus 로고
    • Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service
    • [CrossRef]
    • Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J. Analysis of Vegetation Indices to Determine Nitrogen Application and Yield Prediction in Maize (Zea mays L.) from a Standard UAV Service. Remote Sens. 2016, 8, 973. [CrossRef]
    • (2016) Remote Sens , vol.8 , pp. 973
    • Maresma, Á.1    Ariza, M.2    Martínez, E.3    Lloveras, J.4    Martínez-Casasnovas, J.5
  • 74
    • 85029757506 scopus 로고    scopus 로고
    • Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest
    • [CrossRef]
    • Mohan, M.; Silva, C.; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.; Dia, M. Individual Tree Detection from Unmanned Aerial Vehicle (UAV) Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest. For. Trees Livelihoods 2017, 8, 340. [CrossRef]
    • (2017) For. Trees Livelihoods , vol.8 , pp. 340
    • Mohan, M.1    Silva, C.2    Klauberg, C.3    Jat, P.4    Catts, G.5    Cardil, A.6    Hudak, A.7    Dia, M.8
  • 75
    • 84903313488 scopus 로고    scopus 로고
    • Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data
    • [CrossRef]
    • Wallace, L.; Lucieer, A.; Watson, C.S. Evaluating Tree Detection and Segmentation Routines on Very High Resolution UAV LiDAR Data. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7619–7628. [CrossRef]
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 7619-7628
    • Wallace, L.1    Lucieer, A.2    Watson, C.S.3
  • 76
    • 84971669590 scopus 로고    scopus 로고
    • Trends in Automatic Individual Tree Crown Detection and Delineation—Evolution of LiDAR Data
    • [CrossRef]
    • Zhen, Z.; Quackenbush, L.; Zhang, L. Trends in Automatic Individual Tree Crown Detection and Delineation—Evolution of LiDAR Data. Remote Sens. 2016, 8, 333. [CrossRef]
    • (2016) Remote Sens , vol.8 , pp. 333
    • Zhen, Z.1    Quackenbush, L.2    Zhang, L.3
  • 77
    • 85051123154 scopus 로고    scopus 로고
    • Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review
    • [CrossRef]
    • Patrício, D.I.; Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 2018, 153, 69–81. [CrossRef]
    • (2018) Comput. Electron. Agric , vol.153 , pp. 69-81
    • Patrício, D.I.1    Rieder, R.2
  • 78
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    • Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA
    • Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. In Advances in Neural Information Processing Systems 28; Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2015; pp. 91–99.
    • (2015) Advances in Neural Information Processing Systems 28 , pp. 91-99
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 79
    • 85012254070 scopus 로고    scopus 로고
    • Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining
    • [CrossRef] [PubMed]
    • Tang, T.; Zhou, S.; Deng, Z.; Zou, H.; Lei, L. Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining. Sensors 2017, 17, 336. [CrossRef] [PubMed]
    • (2017) Sensors , vol.17 , pp. 336
    • Tang, T.1    Zhou, S.2    Deng, Z.3    Zou, H.4    Lei, L.5
  • 80
    • 84975230708 scopus 로고    scopus 로고
    • International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning
    • [CrossRef]
    • Wang, Y.; Hyyppä, J.; Liang, X.; Kaartinen, H.; Yu, X.; Lindberg, E.; Holmgren, J.; Qin, Y.; Mallet, C.; Ferraz, A.; et al. International Benchmarking of the Individual Tree Detection Methods for Modeling 3-D Canopy Structure for Silviculture and Forest Ecology Using Airborne Laser Scanning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5011–5027. [CrossRef]
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 5011-5027
    • Wang, Y.1    Hyyppä, J.2    Liang, X.3    Kaartinen, H.4    Yu, X.5    Lindberg, E.6    Holmgren, J.7    Qin, Y.8    Mallet, C.9    Ferraz, A.10
  • 82
    • 84996590419 scopus 로고    scopus 로고
    • High-resolution NDVI from Planet’s constellation of earth observing nano-satellites: A new data source for precision agriculture
    • [CrossRef]
    • Houborg, R.; McCabe, M.F. High-resolution NDVI from Planet’s constellation of earth observing nano-satellites: A new data source for precision agriculture. Remote Sens. 2016, 8, 768. [CrossRef]
    • (2016) Remote Sens , vol.8 , pp. 768
    • Houborg, R.1    McCabe, M.F.2
  • 83
    • 85048979612 scopus 로고    scopus 로고
    • Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data
    • [CrossRef]
    • Houborg, R.; McCabe, M.F. Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data. Remote Sens. 2018, 10, 890. [CrossRef]
    • (2018) Remote Sens , vol.10 , pp. 890
    • Houborg, R.1    McCabe, M.F.2
  • 84
    • 85033436404 scopus 로고    scopus 로고
    • Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis
    • [CrossRef]
    • Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [CrossRef]
    • (2018) Remote Sens. Environ , vol.204 , pp. 509-523
    • Belgiu, M.1    Csillik, O.2
  • 85
    • 85029373510 scopus 로고    scopus 로고
    • A Small UAV Based Multi-Temporal Image Registration for Dynamic Agricultural Terrace Monitoring
    • [CrossRef]
    • Wei, Z.; Han, Y.; Li, M.; Yang, K.; Yang, Y.; Luo, Y.; Ong, S.-H. A Small UAV Based Multi-Temporal Image Registration for Dynamic Agricultural Terrace Monitoring. Remote Sens. 2017, 9, 904. [CrossRef]
    • (2017) Remote Sens , vol.9 , pp. 904
    • Wei, Z.1    Han, Y.2    Li, M.3    Yang, K.4    Yang, Y.5    Luo, Y.6    Ong, S.-H.7
  • 86
    • 85048990116 scopus 로고    scopus 로고
    • Issues in Unmanned Aerial Systems (UAS) Data Collection of Complex Forest Environments
    • [CrossRef]
    • Fraser, B.T.; Congalton, R.G. Issues in Unmanned Aerial Systems (UAS) Data Collection of Complex Forest Environments. Remote Sens. 2018, 10, 908. [CrossRef]
    • (2018) Remote Sens , vol.10 , pp. 908
    • Fraser, B.T.1    Congalton, R.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.