메뉴 건너뛰기




Volumn 9, Issue 7, 2017, Pages

An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery

Author keywords

Feature sharing; Geospatial object detection; High spatial resolution (HSR) remote sensing imagery; Integration; Pre training mechanism

Indexed keywords

COMPLEX NETWORKS; COMPUTATIONAL EFFICIENCY; CONVOLUTION; EFFICIENCY; FEATURE EXTRACTION; IMAGE RESOLUTION; INTEGRATION; NEURAL NETWORKS; OBJECT RECOGNITION; REMOTE SENSING;

EID: 85022334366     PISSN: None     EISSN: 20724292     Source Type: Journal    
DOI: 10.3390/rs9070666     Document Type: Article
Times cited : (174)

References (48)
  • 1
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2-16
    • (2010) ISPRS J. Photogramm. Remote Sens , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 2
    • 84890209110 scopus 로고    scopus 로고
    • Geographic object-based image analysis-towards a new paradigm
    • Blaschke, T.; Hay, G.J.; Kelly, M. Geographic object-based image analysis-towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180-191
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.87 , pp. 180-191
    • Blaschke, T.1    Hay, G.J.2    Kelly, M.3
  • 3
    • 43949112280 scopus 로고    scopus 로고
    • An object-based change detection method accounting for temporal dependencies in time series with medium to coarse spatial resolution
    • Bontemps, S.; Bogaert, P.; Titeux, N.; Defourny, P. An object-based change detection method accounting for temporal dependencies in time series with medium to coarse spatial resolution. Remote Sens. Environ. 2008, 112, 3181-3191
    • (2008) Remote Sens. Environ , vol.112 , pp. 3181-3191
    • Bontemps, S.1    Bogaert, P.2    Titeux, N.3    Defourny, P.4
  • 4
    • 84864282883 scopus 로고    scopus 로고
    • Automatic detection and segmentation of orchards using very high resolution imagery
    • Aksoy, S.; Yalniz, I.Z.; Tasdemir, K. Automatic detection and segmentation of orchards using very high resolution imagery. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3117-3131
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , pp. 3117-3131
    • Aksoy, S.1    Yalniz, I.Z.2    Tasdemir, K.3
  • 5
    • 84976243077 scopus 로고    scopus 로고
    • Semantic Annotation of High-Resolution Satellite Images via Weakly Supervised Learning
    • Yao, X.; Han, J.; Cheng, G.; Qian, X.; Guo, L. Semantic Annotation of High-Resolution Satellite Images via Weakly Supervised Learning. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3660-3671
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 3660-3671
    • Yao, X.1    Han, J.2    Cheng, G.3    Qian, X.4    Guo, L.5
  • 6
    • 84908210270 scopus 로고    scopus 로고
    • Airplane detection based on rotation invariant and sparse coding in remote sensing images
    • Liu, L.; Shi, Z. Airplane detection based on rotation invariant and sparse coding in remote sensing images. Optik 2014, 125, 5327-5333
    • (2014) Optik , vol.125 , pp. 5327-5333
    • Liu, L.1    Shi, Z.2
  • 7
    • 84902085590 scopus 로고    scopus 로고
    • VHR object detection based on structural feature extraction and query expansion
    • Bai, X.; Zhang, H.; Zhou, J. VHR object detection based on structural feature extraction and query expansion. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6508-6520
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 6508-6520
    • Bai, X.1    Zhang, H.2    Zhou, J.3
  • 8
    • 84947128048 scopus 로고    scopus 로고
    • Rotation-invariant object detection in high resolution satellite imagery using super pixel-based deep Hough forests
    • Yu, Y.; Guan, H.; Ji, Z. Rotation-invariant object detection in high resolution satellite imagery using super pixel-based deep Hough forests. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2183-2187
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 2183-2187
    • Yu, Y.1    Guan, H.2    Ji, Z.3
  • 9
    • 84908669619 scopus 로고    scopus 로고
    • Weakly supervised learning for target detection in remote sensing images
    • Zhang, D.; Han, J.; Cheng, G.; Liu, Z.; Bu, S.; Guo, L. Weakly supervised learning for target detection in remote sensing images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 701-705
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 701-705
    • Zhang, D.1    Han, J.2    Cheng, G.3    Liu, Z.4    Bu, S.5    Guo, L.6
  • 10
    • 84907464023 scopus 로고    scopus 로고
    • A sparse representation-based binary hypothesis model for target detection in hyperspectral images
    • Zhang, Y.; Du, B.; Zhang, L. A sparse representation-based binary hypothesis model for target detection in hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1346-1354
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 1346-1354
    • Zhang, Y.1    Du, B.2    Zhang, L.3
  • 11
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • Computer Vision and Pattern Recognition, San Diego, CA, USA, 20-25 June
    • Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE International Conference, Computer Vision and Pattern Recognition, San Diego, CA, USA, 20-25 June 2005; pp. 886-893
    • (2005) Proceedings of the IEEE International Conference , pp. 886-893
    • Dalal, N.1    Triggs, B.2
  • 12
    • 84973571837 scopus 로고    scopus 로고
    • Weakly Supervised Learning Based on Coupled Convolutional Neural Networks for Aircraft Detection
    • Zhang, F.; Du, B.; Zhang, L.; Xu, M. Weakly Supervised Learning Based on Coupled Convolutional Neural Networks for Aircraft Detection. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5553-5563
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 5553-5563
    • Zhang, F.1    Du, B.2    Zhang, L.3    Xu, M.4
  • 13
    • 36348971282 scopus 로고    scopus 로고
    • A multiple conditional random field's ensemble framework for urban area detection in remote sensing optical images
    • Zhong, P.; Wang, R. A multiple conditional random field's ensemble framework for urban area detection in remote sensing optical images. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3978-3988
    • (2007) IEEE Trans. Geosci. Remote Sens , vol.45 , pp. 3978-3988
    • Zhong, P.1    Wang, R.2
  • 14
    • 77951204518 scopus 로고    scopus 로고
    • Object classification of aerial images with bag-of-visual words
    • Xu, S.; Fang, T.; Li, D.; Wang, S. Object classification of aerial images with bag-of-visual words. IEEE Geosci. Remote Sens. Lett. 2010, 7, 366-370
    • (2010) IEEE Geosci. Remote Sens. Lett , vol.7 , pp. 366-370
    • Xu, S.1    Fang, T.2    Li, D.3    Wang, S.4
  • 15
    • 84961970561 scopus 로고    scopus 로고
    • A survey on object detection in optical remote sensing images
    • Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11-28
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.117 , pp. 11-28
    • Cheng, G.1    Han, J.2
  • 16
    • 84883640158 scopus 로고    scopus 로고
    • Object detection in remote sensing imagery using a discriminatively trained mixture model
    • Cheng, G.; Han, J.; Guo, L. Object detection in remote sensing imagery using a discriminatively trained mixture model. ISPRS J. Photogramm. Remote Sens. 2013, 85, 32-43
    • (2013) ISPRS J. Photogramm. Remote Sens , vol.85 , pp. 32-43
    • Cheng, G.1    Han, J.2    Guo, L.3
  • 17
    • 84859770321 scopus 로고    scopus 로고
    • Rotation-invariant object detection of remotely sensed images based on Texton forest and Hough voting
    • Lei, Z.; Fang, T.; Huo, H.; Li, D. Rotation-invariant object detection of remotely sensed images based on Texton forest and Hough voting. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1206-1217
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , pp. 1206-1217
    • Lei, Z.1    Fang, T.2    Huo, H.3    Li, D.4
  • 18
    • 0000494467 scopus 로고
    • Handwritten digit recognition with a back-propagation network
    • Morgan Kaufmann: San Francisco, CA, USA
    • LeCun, Y. Handwritten digit recognition with a back-propagation network. In Advances in Neural Information; Morgan Kaufmann: San Francisco, CA, USA, 1990
    • (1990) In Advances in Neural Information
    • LeCun, Y.1
  • 21
    • 58149199733 scopus 로고    scopus 로고
    • Classification-based vehicle detection in high-resolution satellite images
    • Eikvil, L.; Aurdal, L.; Koren, H. Classification-based vehicle detection in high-resolution satellite images. ISPRS J. Photogramm. Remote Sens. 2009, 64, 65-72
    • (2009) ISPRS J. Photogramm. Remote Sens , vol.64 , pp. 65-72
    • Eikvil, L.1    Aurdal, L.2    Koren, H.3
  • 22
    • 33845572523 scopus 로고    scopus 로고
    • Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories
    • Computer Vision and Patter Recognition, New York, NY, USA, 17-22 June
    • Lazebnik, S.; Schmid, C.; Ponce, J. Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories. In Proceedings of the IEEE Computer Society Conference, Computer Vision and Patter Recognition, New York, NY, USA, 17-22 June 2006; pp. 2169-2178
    • (2006) Proceedings of the IEEE Computer Society Conference , pp. 2169-2178
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 23
    • 84890425279 scopus 로고    scopus 로고
    • Unsupervised Feature Learning for Aerial Scene Classification
    • Cheriyadat, A. Unsupervised Feature Learning for Aerial Scene Classification. IEEE Trans. Geosci. Remote Sens. 2014, 52, 439-451
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 439-451
    • Cheriyadat, A.1
  • 24
    • 84947933375 scopus 로고    scopus 로고
    • Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery
    • Zhao, B.; Zhong, Y.; Xia, G.S.; Zhang, L. Dirichlet-derived multiple topic scene classification model for high spatial resolution remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2108-2123
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 2108-2123
    • Zhao, B.1    Zhong, Y.2    Xia, G.S.3    Zhang, L.4
  • 25
    • 85007022366 scopus 로고    scopus 로고
    • Scene classification based on a hierarchical convolutional sparse auto-encoder for high spatial resolution imagery
    • Han, X.; Zhong, Y.; Zhang, L. Scene classification based on a hierarchical convolutional sparse auto-encoder for high spatial resolution imagery. Int. J. Remote Sens. 2017, 38, 514-536
    • (2017) Int. J. Remote Sens , vol.38 , pp. 514-536
    • Han, X.1    Zhong, Y.2    Zhang, L.3
  • 26
    • 84939247735 scopus 로고    scopus 로고
    • Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition
    • He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Learn. 2015, 37, 1904-1916
    • (2015) IEEE Trans. Pattern Anal. Mach. Learn , vol.37 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 28
    • 84909977972 scopus 로고    scopus 로고
    • Multi-class geospatial object detection and geographic image classification based on collection of part detectors
    • Cheng, G.; Han, J.; Zhou, P. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119-132
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.98 , pp. 119-132
    • Cheng, G.1    Han, J.2    Zhou, P.3
  • 29
    • 84902085590 scopus 로고    scopus 로고
    • VHR object detection based on structural feature extraction and query expansion
    • Bai, X.; Zhang, H.; Zhou, J. VHR object detection based on structural feature extraction and query expansion. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1-13
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 1-13
    • Bai, X.1    Zhang, H.2    Zhou, J.3
  • 31
    • 33745155436 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for learning natural scene categories
    • Computer Vision and Pattern Recognition, Washington, DC, USA, 20-26 June
    • Li, F.F.; Perona, P. A Bayesian hierarchical model for learning natural scene categories. In Proceedings of the IEEE International Conference, Computer Vision and Pattern Recognition, Washington, DC, USA, 20-26 June 2005; pp. 524-531
    • (2005) Proceedings of the IEEE International Conference , pp. 524-531
    • Li, F.F.1    Perona, P.2
  • 32
    • 85027929099 scopus 로고    scopus 로고
    • Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification
    • Hu, F.; Xia, G.X. Unsupervised feature learning via spectral clustering of multidimensional patches for remotely sensed scene classification. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2015, 8, 2015-2030
    • (2015) IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens , vol.8 , pp. 2015-2030
    • Hu, F.1    Xia, G.X.2
  • 35
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278-2324
    • (1998) Proc. IEEE , vol.86 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 40
    • 85019258369 scopus 로고    scopus 로고
    • Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
    • Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137-1149
    • (2017) IEEE Trans. Pattern Anal. Mach. Intell , vol.39 , pp. 1137-1149
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 41
    • 84950141946 scopus 로고    scopus 로고
    • Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
    • Hu, F.; Xia, G.; Hu, J.; Zhang, L. Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery. Remote Sens. 2015, 7, 14680-14707
    • (2015) Remote Sens , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.2    Hu, J.3    Zhang, L.4
  • 42
    • 85028166694 scopus 로고    scopus 로고
    • Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning
    • Han, J.; Zhang, D.; Cheng, G. Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3325-3337
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.53 , pp. 3325-3337
    • Han, J.1    Zhang, D.2    Cheng, G.3
  • 43
    • 84884268846 scopus 로고    scopus 로고
    • A new method on inshore ship detection in high-resolution satellite images using shape and context information
    • Liu, G. A new method on inshore ship detection in high-resolution satellite images using shape and context information. IEEE Geosci. Remote Sens. Lett. 2014, 11, 617-621
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , pp. 617-621
    • Liu, G.1
  • 44
    • 79953092400 scopus 로고    scopus 로고
    • Automated vehicle extraction and speed determination from QuickBird satellite images
    • Liu, W.; Yamazaki, F.; Vu, T.T. Automated vehicle extraction and speed determination from QuickBird satellite images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 75-82
    • (2011) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens , vol.4 , pp. 75-82
    • Liu, W.1    Yamazaki, F.2    Vu, T.T.3
  • 45
    • 84893418304 scopus 로고    scopus 로고
    • Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding
    • Han, J.; Zhou, P.; Zhang, D. Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding. ISPRS J. Photogramm. Remote Sens. 2014, 89, 37-48
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.89 , pp. 37-48
    • Han, J.1    Zhou, P.2    Zhang, D.3
  • 46
    • 85027047340 scopus 로고    scopus 로고
    • Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images
    • Cheng, G.; Zhou, P.; Han, J. Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405-7415
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 47
    • 85022344932 scopus 로고    scopus 로고
    • (accessed on 26 June 2017)
    • NWPU VHR-10 Dataset. Available online: http://www.escience.cn/people/gongcheng/NWPU-VHR-10. html (accessed on 26 June 2017)
  • 48
    • 84655169282 scopus 로고    scopus 로고
    • Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model
    • Sun, H.; Sun, X.; Wang, H.; Li, Y.; Li, X. Automatic target detection in high-resolution remote sensing images using spatial sparse coding bag-of-words model. IEEE Geosci. Remote Sens. Lett. 2012, 9, 109-113
    • (2012) IEEE Geosci. Remote Sens. Lett , vol.9 , pp. 109-113
    • Sun, H.1    Sun, X.2    Wang, H.3    Li, Y.4    Li, X.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.