메뉴 건너뛰기




Volumn 147, Issue , 2018, Pages 70-90

Deep learning in agriculture: A survey

Author keywords

Agriculture; Convolutional Neural Networks; Deep learning; Food systems; Recurrent Neural Networks; Smart farming; Survey

Indexed keywords

AGRICULTURE; DATA HANDLING; IMAGE PROCESSING; NEURAL NETWORKS; RECURRENT NEURAL NETWORKS; SURVEYING; SURVEYS;

EID: 85042262881     PISSN: 01681699     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compag.2018.02.016     Document Type: Review
Times cited : (2689)

References (72)
  • 1
    • 85072771503 scopus 로고    scopus 로고
    • A Deep Learning-Based Approach for Banana Leaf Diseases Classification
    • BTW workshop Stuttgart
    • Amara, J., Bouaziz, B., Algergawy, A., A Deep Learning-Based Approach for Banana Leaf Diseases Classification. 2017, BTW workshop, Stuttgart, 79–88.
    • (2017) , pp. 79-88
    • Amara, J.1    Bouaziz, B.2    Algergawy, A.3
  • 2
    • 85042254284 scopus 로고    scopus 로고
    • Comparative study of deep learning software frameworks. arXiv preprint.
    • Bahrampour, S., Ramakrishnan, N., Schott, L., Shah, M., 2015. Comparative study of deep learning software frameworks. arXiv preprint arXiv: 1511.06435.
    • (2015)
    • Bahrampour, S.1    Ramakrishnan, N.2    Schott, L.3    Shah, M.4
  • 3
    • 85042322660 scopus 로고    scopus 로고
    • Deep Fruit Detection in Orchards. arXiv preprint.
    • Bargoti, S., Underwood, J., 2016. Deep Fruit Detection in Orchards. arXiv preprint arXiv: 1610.03677.
    • (2016)
    • Bargoti, S.1    Underwood, J.2
  • 4
    • 0033781223 scopus 로고    scopus 로고
    • Remote sensing for irrigated agriculture: examples from research and possible applications
    • Bastiaanssen, W., Molden, D., Makin, I., Remote sensing for irrigated agriculture: examples from research and possible applications. Agric. Water Manag. 46:2 (2000), 137–155.
    • (2000) Agric. Water Manag. , vol.46 , Issue.2 , pp. 137-155
    • Bastiaanssen, W.1    Molden, D.2    Makin, I.3
  • 5
    • 85042267923 scopus 로고    scopus 로고
    • An Analysis of Deep Neural Network Models for Practical Applications. arXiv preprint.
    • Canziani, A., Paszke, A., Culurciello, E., 2016. An Analysis of Deep Neural Network Models for Practical Applications. arXiv preprint arXiv: 1605.07678.
    • (2016)
    • Canziani, A.1    Paszke, A.2    Culurciello, E.3
  • 8
    • 84995549583 scopus 로고    scopus 로고
    • DeepAnomaly: combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field
    • Christiansen, P., Nielsen, L.N., Steen, K.A., Jørgensen, R.N., Karstoft, H., DeepAnomaly: combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field. Sensors, 16(11), 2016, 1904.
    • (2016) Sensors , vol.16 , Issue.11 , pp. 1904
    • Christiansen, P.1    Nielsen, L.N.2    Steen, K.A.3    Jørgensen, R.N.4    Karstoft, H.5
  • 10
    • 84878312467 scopus 로고    scopus 로고
    • Simultaneous monitoring and control of pig growth and ammonia emissions. IX International Livestock Environment Symposium (ILES IX). American Society of Agricultural and Biological Engineers, Valencia, Spain.
    • Demmers, T.G., Cao, Y., Parsons, D.J., Gauss, S., Wathes, C.M., 2012. Simultaneous monitoring and control of pig growth and ammonia emissions. IX International Livestock Environment Symposium (ILES IX). American Society of Agricultural and Biological Engineers, Valencia, Spain.
    • (2012)
    • Demmers, T.G.1    Cao, Y.2    Parsons, D.J.3    Gauss, S.4    Wathes, C.M.5
  • 11
    • 72249100259 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA
    • Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. Imagenet: A large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA, pp. 248–255.
    • (2009) , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.J.4    Li, K.5    Fei-Fei, L.6
  • 12
    • 84903724014 scopus 로고    scopus 로고
    • Deep learning: methods and applications
    • Deng, L., Yu, D., Deep learning: methods and applications. Found. Trends Signal Process. 7:3–4 (2014), 197–387.
    • (2014) Found. Trends Signal Process. , vol.7 , Issue.3-4 , pp. 197-387
    • Deng, L.1    Yu, D.2
  • 13
    • 85042306024 scopus 로고    scopus 로고
    • Deep learning based root-soil segmentation from X-ray tomography. bioRxiv, 071662.
    • Douarre, C., Schielein, R., Frindel, C., Gerth, S., Rousseau, D., 2016. Deep learning based root-soil segmentation from X-ray tomography. bioRxiv, 071662.
    • (2016)
    • Douarre, C.1    Schielein, R.2    Frindel, C.3    Gerth, S.4    Rousseau, D.5
  • 14
    • 85042280311 scopus 로고    scopus 로고
    • RoboWeedSupport – Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network. 11th European Conference on Precision Agriculture (ECPA). Edinburgh, Scotland.
    • Dyrmann, M., Jørgensen, R.N., Midtiby, H.S., 2017. RoboWeedSupport – Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network. 11th European Conference on Precision Agriculture (ECPA). Edinburgh, Scotland.
    • (2017)
    • Dyrmann, M.1    Jørgensen, R.N.2    Midtiby, H.S.3
  • 15
    • 84989955034 scopus 로고    scopus 로고
    • Plant species classification using deep convolutional neural network
    • Dyrmann, M., Karstoft, H., Midtiby, H.S., Plant species classification using deep convolutional neural network. Biosyst. Eng. 151 (2016), 72–80.
    • (2016) Biosyst. Eng. , vol.151 , pp. 72-80
    • Dyrmann, M.1    Karstoft, H.2    Midtiby, H.S.3
  • 16
    • 85042286429 scopus 로고    scopus 로고
    • Jørgensen, R.N. Pixel-wise classification of weeds and crops in images by using a fully convolutional neural network. International Conference on Agricultural Engineering. Aarhus, Denmark.
    • Dyrmann, M., Mortensen, A.K., Midtiby, H.S., Jørgensen, R.N., 2016. Pixel-wise classification of weeds and crops in images by using a fully convolutional neural network. International Conference on Agricultural Engineering. Aarhus, Denmark.
    • (2016)
    • Dyrmann, M.1    Mortensen, A.K.2    Midtiby, H.S.3
  • 17
    • 72149110238 scopus 로고    scopus 로고
    • How to Feed the World in 2050
    • Food and Agriculture Organization of the United Nations Rome
    • FAO, How to Feed the World in 2050. 2009, Food and Agriculture Organization of the United Nations, Rome.
    • (2009)
    • FAO1
  • 18
    • 76749142575 scopus 로고    scopus 로고
    • Precision agriculture and food security
    • Gebbers, R., Adamchuk, V.I., Precision agriculture and food security. Science 327:5967 (2010), 828–831.
    • (2010) Science , vol.327 , Issue.5967 , pp. 828-831
    • Gebbers, R.1    Adamchuk, V.I.2
  • 19
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: Continual prediction with LSTM
    • Gers, F.A., Schmidhuber, J., Cummins, F., Learning to forget: Continual prediction with LSTM. Neural Comput. 12:10 (2000), 2451–2471.
    • (2000) Neural Comput. , vol.12 , Issue.10 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 20
    • 84978038820 scopus 로고    scopus 로고
    • Deep learning for plant identification using vein morphological patterns
    • Grinblat, G.L., Uzal, L.C., Larese, M.G., Granitto, P.M., Deep learning for plant identification using vein morphological patterns. Comput. Electron. Agric. 127 (2016), 418–424.
    • (2016) Comput. Electron. Agric. , vol.127 , pp. 418-424
    • Grinblat, G.L.1    Uzal, L.C.2    Larese, M.G.3    Granitto, P.M.4
  • 22
    • 85042283467 scopus 로고    scopus 로고
    • Land Cover Classification via Multi-temporal Spatial Data by Recurrent Neural Networks. arXiv preprint.
    • Ienco, D., Gaetano, R., Dupaquier, C., Maurel, P., 2017. Land Cover Classification via Multi-temporal Spatial Data by Recurrent Neural Networks. arXiv preprint arXiv: 1704.04055.
    • (2017)
    • Ienco, D.1    Gaetano, R.2    Dupaquier, C.3    Maurel, P.4
  • 23
    • 84979522574 scopus 로고    scopus 로고
    • Applications of thermal imaging in agriculture—A review
    • Ishimwe, R., Abutaleb, K., Ahmed, F., Applications of thermal imaging in agriculture—A review. Adv. Remote Sens., 3(3), 2014, 128.
    • (2014) Adv. Remote Sens. , vol.3 , Issue.3 , pp. 128
    • Ishimwe, R.1    Abutaleb, K.2    Ahmed, F.3
  • 30
    • 85017192157 scopus 로고    scopus 로고
    • Deep learning classification of land cover and crop types using remote sensing data
    • Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A., Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 14:5 (2017), 778–782.
    • (2017) IEEE Geosci. Remote Sens. Lett. , vol.14 , Issue.5 , pp. 778-782
    • Kussul, N.1    Lavreniuk, M.2    Skakun, S.3    Shelestov, A.4
  • 31
    • 84962520548 scopus 로고    scopus 로고
    • Estimating crop yields with deep learning and remotely sensed data. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy
    • Kuwata, K., Shibasaki, R., 2015. Estimating crop yields with deep learning and remotely sensed data. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy, pp. 858–861.
    • (2015) , pp. 858-861
    • Kuwata, K.1    Shibasaki, R.2
  • 32
    • 0002263996 scopus 로고
    • Convolutional networks for images, speech, and time series
    • LeCun, Y., Bengio, Y., Convolutional networks for images, speech, and time series. Handbook Brain Theory Neural Networks, 3361(10), 1995.
    • (1995) Handbook Brain Theory Neural Networks , vol.3361 , Issue.10
    • LeCun, Y.1    Bengio, Y.2
  • 33
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521:7553 (2015), 436–444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 34
    • 84956626642 scopus 로고    scopus 로고
    • Deep-plant: Plant identification with convolutional neural networks. IEEE International Conference on Image Processing (ICIP). Quebec city, Canada
    • Lee, S.H., Chan, C.S., Wilkin, P., Remagnino, P., 2015. Deep-plant: Plant identification with convolutional neural networks. IEEE International Conference on Image Processing (ICIP). Quebec city, Canada, pp. 452–456.
    • (2015) , pp. 452-456
    • Lee, S.H.1    Chan, C.S.2    Wilkin, P.3    Remagnino, P.4
  • 35
    • 75249096363 scopus 로고    scopus 로고
    • A review: The role of remote sensing in precision agriculture
    • Liaghat, S., Balasundram, S.K., A review: The role of remote sensing in precision agriculture. Am. J. Agric. Biol. Sci. 5:1 (2010), 50–55.
    • (2010) Am. J. Agric. Biol. Sci. , vol.5 , Issue.1 , pp. 50-55
    • Liaghat, S.1    Balasundram, S.K.2
  • 36
    • 85016642831 scopus 로고    scopus 로고
    • Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning
    • Lu, H., Fu, X., Liu, C., Li, L.G., He, Y.X., Li, N.W., Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning. J. Mountain Sci. 14:4 (2017), 731–741.
    • (2017) J. Mountain Sci. , vol.14 , Issue.4 , pp. 731-741
    • Lu, H.1    Fu, X.2    Liu, C.3    Li, L.G.4    He, Y.X.5    Li, N.W.6
  • 38
    • 0003619045 scopus 로고    scopus 로고
    • Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability
    • John Wiley New York
    • Mandic, D.P., Chambers, J.A., Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. 2001, John Wiley, New York.
    • (2001)
    • Mandic, D.P.1    Chambers, J.A.2
  • 39
    • 85063152717 scopus 로고    scopus 로고
    • Mixtures of lightweight deep convolutional neural networks: applied to agricultural robotics
    • McCool, C., Perez, T., Upcroft, B., Mixtures of lightweight deep convolutional neural networks: applied to agricultural robotics. IEEE Rob. Autom. Lett. 2:3 (2017), 1344–1351.
    • (2017) IEEE Rob. Autom. Lett. , vol.2 , Issue.3 , pp. 1344-1351
    • McCool, C.1    Perez, T.2    Upcroft, B.3
  • 40
    • 85042312686 scopus 로고    scopus 로고
    • Real-time blob-wise sugar beets vs weeds classification for monitoring fields using convolutional neural networks. Proceedings of the International Conference on Unmanned Aerial Vehicles in Geomatics. Bonn, Germany.
    • Milioto, A., Lottes, P., Stachniss, C., 2017. Real-time blob-wise sugar beets vs weeds classification for monitoring fields using convolutional neural networks. Proceedings of the International Conference on Unmanned Aerial Vehicles in Geomatics. Bonn, Germany.
    • (2017)
    • Milioto, A.1    Lottes, P.2    Stachniss, C.3
  • 41
    • 85042268193 scopus 로고    scopus 로고
    • Deep Recurrent Neural Networks for mapping winter vegetation quality coverage via multi-temporal SAR Sentinel-1. arXiv preprint.
    • Minh, D.H., Ienco, D., Gaetano, R., Lalande, N., Ndikumana, E., Osman, F., Maurel, P., 2017. Deep Recurrent Neural Networks for mapping winter vegetation quality coverage via multi-temporal SAR Sentinel-1. arXiv preprint arXiv: 1708.03694.
    • (2017)
    • Minh, D.H.1    Ienco, D.2    Gaetano, R.3    Lalande, N.4    Ndikumana, E.5    Osman, F.6    Maurel, P.7
  • 42
  • 43
    • 85042299757 scopus 로고    scopus 로고
    • Semantic segmentation of mixed crops using deep convolutional neural network. International Conference on Agricultural Engineering. Aarhus, Denmark.
    • Mortensen, A.K., Dyrmann, M., Karstoft, H., Jørgensen, R.N., Gislum, R., 2016. Semantic segmentation of mixed crops using deep convolutional neural network. International Conference on Agricultural Engineering. Aarhus, Denmark.
    • (2016)
    • Mortensen, A.K.1    Dyrmann, M.2    Karstoft, H.3    Jørgensen, R.N.4    Gislum, R.5
  • 45
    • 85042331624 scopus 로고    scopus 로고
    • Deep Phenotyping: Deep Learning For Temporal Phenotype/Genotype Classification. bioRxiv, 134205.
    • Namin, S.T., Esmaeilzadeh, M., Najafi, M., Brown, T.B., Borevitz, J.O., 2017. Deep Phenotyping: Deep Learning For Temporal Phenotype/Genotype Classification. bioRxiv, 134205.
    • (2017)
    • Namin, S.T.1    Esmaeilzadeh, M.2    Najafi, M.3    Brown, T.B.4    Borevitz, J.O.5
  • 46
    • 80051891221 scopus 로고    scopus 로고
    • Remote sensing of irrigated agriculture: Opportunities and challenges
    • Ozdogan, M., Yang, Y., Allez, G., Cervantes, C., Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sensing 2:9 (2010), 2274–2304.
    • (2010) Remote Sensing , vol.2 , Issue.9 , pp. 2274-2304
    • Ozdogan, M.1    Yang, Y.2    Allez, G.3    Cervantes, C.4
  • 47
    • 77956031473 scopus 로고    scopus 로고
    • A survey on transfer learning
    • Pan, S.J., Yang, Q., A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22:10 (2010), 1345–1359.
    • (2010) IEEE Trans. Knowl. Data Eng. , vol.22 , Issue.10 , pp. 1345-1359
    • Pan, S.J.1    Yang, Q.2
  • 48
    • 85042275912 scopus 로고    scopus 로고
    • C Project. 2012. The PASCAL Visual Object Classes. Obtenido de
    • PASCAL VOC Project. 2012. The PASCAL Visual Object Classes. Obtenido de http://host.robots.ox.ac.uk/pascal/VOC/.
    • PASCAL, V.O.1
  • 49
    • 85013127753 scopus 로고    scopus 로고
    • Fast and accurate crop and weed identification with summarized train sets for precision agriculture
    • Springer, Cham Shanghai, China
    • Potena, C., Nardi, D., Pretto, A., Fast and accurate crop and weed identification with summarized train sets for precision agriculture. International Conference on Intelligent Autonomous Systems, 2016, Springer, Cham, Shanghai, China, 105–121.
    • (2016) International Conference on Intelligent Autonomous Systems , pp. 105-121
    • Potena, C.1    Nardi, D.2    Pretto, A.3
  • 50
    • 85042292408 scopus 로고    scopus 로고
    • Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping. bioRxiv, 053033.
    • Pound, M.P. et al., 2016. Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping. bioRxiv, 053033.
    • (2016)
    • Pound, M.P.1
  • 51
    • 85018513324 scopus 로고    scopus 로고
    • Deep count: fruit counting based on deep simulated learning
    • Rahnemoonfar, M., Sheppard, C., Deep count: fruit counting based on deep simulated learning. Sensors, 17(4), 2017, 905.
    • (2017) Sensors , vol.17 , Issue.4 , pp. 905
    • Rahnemoonfar, M.1    Sheppard, C.2
  • 52
    • 84994176955 scopus 로고    scopus 로고
    • Augmenting a convolutional neural network with local histograms—a case study in crop classification from high-resolution UAV imagery. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium.
    • Rebetez, J. et al., 2016. Augmenting a convolutional neural network with local histograms—a case study in crop classification from high-resolution UAV imagery. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium.
    • (2016)
    • Rebetez, J.1
  • 53
    • 85013083122 scopus 로고    scopus 로고
    • Fine-Tuning Deep Convolutional Networks for Plant Recognition
    • CLEF (Working Notes) Toulouse
    • Reyes, A.K., Caicedo, J.C., Camargo, J.E., Fine-Tuning Deep Convolutional Networks for Plant Recognition. 2015, CLEF (Working Notes), Toulouse.
    • (2015)
    • Reyes, A.K.1    Caicedo, J.C.2    Camargo, J.E.3
  • 55
    • 84982682350 scopus 로고    scopus 로고
    • Deepfruits: A fruit detection system using deep neural networks
    • Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., McCool, C., Deepfruits: A fruit detection system using deep neural networks. Sensors, 16(8), 2016, 1222.
    • (2016) Sensors , vol.16 , Issue.8 , pp. 1222
    • Sa, I.1    Ge, Z.2    Dayoub, F.3    Upcroft, B.4    Perez, T.5    McCool, C.6
  • 56
    • 84948409676 scopus 로고    scopus 로고
    • Cattle race classification using gray level co-occurrence matrix convolutional neural networks
    • Santoni, M.M., Sensuse, D.I., Arymurthy, A.M., Fanany, M.I., Cattle race classification using gray level co-occurrence matrix convolutional neural networks. Procedia Comput. Sci. 59 (2015), 493–502.
    • (2015) Procedia Comput. Sci. , vol.59 , pp. 493-502
    • Santoni, M.M.1    Sensuse, D.I.2    Arymurthy, A.M.3    Fanany, M.I.4
  • 57
    • 85042309042 scopus 로고    scopus 로고
    • A survey of image processing techniques for agriculture. Australian Society of Information and Communication Technologies in Agriculture. Perth, Australia.
    • Saxena, L., Armstrong, L., 2014. A survey of image processing techniques for agriculture. Proceedings of Asian Federation for Information Technology in Agriculture, Australian Society of Information and Communication Technologies in Agriculture. Perth, Australia.
    • (2014) Proceedings of Asian Federation for Information Technology in Agriculture
    • Saxena, L.1    Armstrong, L.2
  • 58
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • Schmidhuber, J., Deep learning in neural networks: An overview. Neural Networks 61 (2015), 85–117.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 59
    • 85042335149 scopus 로고    scopus 로고
    • Crop Planning using Stochastic Visual Optimization. arXiv preprint.
    • Sehgal, G., Gupta, B., Paneri, K., Singh, K., Sharma, G., Shroff, G., 2017. Crop Planning using Stochastic Visual Optimization. arXiv preprint arXiv: 1710.09077.
    • (2017)
    • Sehgal, G.1    Gupta, B.2    Paneri, K.3    Singh, K.4    Sharma, G.5    Shroff, G.6
  • 60
    • 85042292235 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition. arXiv preprint.
    • Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409.1556.
    • (2014)
    • Simonyan, K.1    Zisserman, A.2
  • 61
    • 84958049448 scopus 로고    scopus 로고
    • Machine learning for high-throughput stress phenotyping in plants
    • Singh, A., Ganapathysubramanian, B., Singh, A.K., Sarkar, S., Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21:2 (2016), 110–124.
    • (2016) Trends Plant Sci. , vol.21 , Issue.2 , pp. 110-124
    • Singh, A.1    Ganapathysubramanian, B.2    Singh, A.K.3    Sarkar, S.4
  • 63
    • 84977156284 scopus 로고    scopus 로고
    • Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model
    • Song, X., Zhang, G., Liu, F., Li, D., Zhao, Y., Yang, J., Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. J. Arid Land 8:5 (2016), 734–748.
    • (2016) J. Arid Land , vol.8 , Issue.5 , pp. 734-748
    • Song, X.1    Zhang, G.2    Liu, F.3    Li, D.4    Zhao, Y.5    Yang, J.6
  • 64
    • 85048038010 scopus 로고    scopus 로고
    • Thistle Detection Using Convolutional Neural Networks
    • EFITA Congress Montpellier, France
    • Sørensen, R.A., Rasmussen, J., Nielsen, J., Jørgensen, R., Thistle Detection Using Convolutional Neural Networks. 2017, EFITA Congress, Montpellier, France.
    • (2017)
    • Sørensen, R.A.1    Rasmussen, J.2    Nielsen, J.3    Jørgensen, R.4
  • 65
    • 84968768999 scopus 로고    scopus 로고
    • Using deep learning to challenge safety standard for highly autonomous machines in agriculture
    • Steen, K.A., Christiansen, P., Karstoft, H., Jørgensen, R.N., Using deep learning to challenge safety standard for highly autonomous machines in agriculture. J. Imag., 2(1), 2016, 6.
    • (2016) J. Imag. , vol.2 , Issue.1 , pp. 6
    • Steen, K.A.1    Christiansen, P.2    Karstoft, H.3    Jørgensen, R.N.4
  • 66
    • 85028013193 scopus 로고    scopus 로고
    • Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
    • AAAI
    • Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A., Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. 2017, AAAI, 4278–4284.
    • (2017) , pp. 4278-4284
    • Szegedy, C.1    Ioffe, S.2    Vanhoucke, V.3    Alemi, A.A.4
  • 67
    • 84937522268 scopus 로고    scopus 로고
    • Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA
    • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A., 2015. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA, pp. 1–9.
    • (2015) , pp. 1-9
    • Szegedy, C.1    Liu, W.2    Jia, Y.3    Sermanet, P.4    Reed, S.5    Anguelov, D.6    Rabinovich, A.7
  • 68
    • 84883858085 scopus 로고    scopus 로고
    • A short survey of hyperspectral remote sensing applications in agriculture. 6th International Conference on Recent Advances in Space Technologies (RAST). IEEE, Istanbul, Turkey.
    • Teke, M., Deveci, H.S., Haliloğlu, O., Gürbüz, S.Z., Sakarya, U., 2013. A short survey of hyperspectral remote sensing applications in agriculture. 6th International Conference on Recent Advances in Space Technologies (RAST). IEEE, Istanbul, Turkey.
    • (2013)
    • Teke, M.1    Deveci, H.S.2    Haliloğlu, O.3    Gürbüz, S.Z.4    Sakarya, U.5
  • 69
    • 84991463631 scopus 로고    scopus 로고
    • Towards a second green revolution
    • Tyagi, A.C., Towards a second green revolution. Irrig. Drain. 65:4 (2016), 388–389.
    • (2016) Irrig. Drain. , vol.65 , Issue.4 , pp. 388-389
    • Tyagi, A.C.1
  • 70
    • 84913590208 scopus 로고    scopus 로고
    • Deep learning for content-based image retrieval: A comprehensive study. Proceedings of the 22nd ACM International Conference on Multimedia. ACM, Orlando, FL
    • Wan, J., Wang, D., Hoi, S.C., Wu, P., Zhu, J., Zhang, Y., Li, J., 2014. Deep learning for content-based image retrieval: A comprehensive study. Proceedings of the 22nd ACM International Conference on Multimedia. ACM, Orlando, FL, pp. 157–166.
    • (2014) , pp. 157-166
    • Wan, J.1    Wang, D.2    Hoi, S.C.3    Wu, P.4    Zhu, J.5    Zhang, Y.6    Li, J.7
  • 71
    • 84986211929 scopus 로고    scopus 로고
    • Weed seeds classification based on PCANet deep learning baseline. IEEE Signal and Information Processing Association Annual Summit and Conference (APSIPA)
    • Xinshao, W., Cheng, C., 2015. Weed seeds classification based on PCANet deep learning baseline. IEEE Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 408–415.
    • (2015) , pp. 408-415
    • Xinshao, W.1    Cheng, C.2
  • 72
    • 85032839225 scopus 로고    scopus 로고
    • Plant phenology recognition using deep learning: Deep-Pheno. 6th International Conference on Agro-Geoinformatics. Fairfax VA, USA.
    • Yalcin, H., 2017. Plant phenology recognition using deep learning: Deep-Pheno. 6th International Conference on Agro-Geoinformatics. Fairfax VA, USA.
    • (2017)
    • Yalcin, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.