-
1
-
-
85072771503
-
A Deep Learning-Based Approach for Banana Leaf Diseases Classification
-
BTW workshop Stuttgart
-
Amara, J., Bouaziz, B., Algergawy, A., A Deep Learning-Based Approach for Banana Leaf Diseases Classification. 2017, BTW workshop, Stuttgart, 79–88.
-
(2017)
, pp. 79-88
-
-
Amara, J.1
Bouaziz, B.2
Algergawy, A.3
-
2
-
-
85042254284
-
-
Comparative study of deep learning software frameworks. arXiv preprint.
-
Bahrampour, S., Ramakrishnan, N., Schott, L., Shah, M., 2015. Comparative study of deep learning software frameworks. arXiv preprint arXiv: 1511.06435.
-
(2015)
-
-
Bahrampour, S.1
Ramakrishnan, N.2
Schott, L.3
Shah, M.4
-
3
-
-
85042322660
-
-
Deep Fruit Detection in Orchards. arXiv preprint.
-
Bargoti, S., Underwood, J., 2016. Deep Fruit Detection in Orchards. arXiv preprint arXiv: 1610.03677.
-
(2016)
-
-
Bargoti, S.1
Underwood, J.2
-
4
-
-
0033781223
-
Remote sensing for irrigated agriculture: examples from research and possible applications
-
Bastiaanssen, W., Molden, D., Makin, I., Remote sensing for irrigated agriculture: examples from research and possible applications. Agric. Water Manag. 46:2 (2000), 137–155.
-
(2000)
Agric. Water Manag.
, vol.46
, Issue.2
, pp. 137-155
-
-
Bastiaanssen, W.1
Molden, D.2
Makin, I.3
-
5
-
-
85042267923
-
-
An Analysis of Deep Neural Network Models for Practical Applications. arXiv preprint.
-
Canziani, A., Paszke, A., Culurciello, E., 2016. An Analysis of Deep Neural Network Models for Practical Applications. arXiv preprint arXiv: 1605.07678.
-
(2016)
-
-
Canziani, A.1
Paszke, A.2
Culurciello, E.3
-
6
-
-
85028676918
-
Counting apples and oranges with deep learning: a data-driven approach
-
Chen, S.W., Shivakumar, S.S., Dcunha, S., Das, J., Okon, E., Qu, C., Kumar, V., Counting apples and oranges with deep learning: a data-driven approach. IEEE Rob. Autom. Lett. 2:2 (2017), 781–788.
-
(2017)
IEEE Rob. Autom. Lett.
, vol.2
, Issue.2
, pp. 781-788
-
-
Chen, S.W.1
Shivakumar, S.S.2
Dcunha, S.3
Das, J.4
Okon, E.5
Qu, C.6
Kumar, V.7
-
7
-
-
84905925092
-
Deep learning-based classification of hyperspectral data
-
Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y., Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7:6 (2014), 2094–2107.
-
(2014)
IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
8
-
-
84995549583
-
DeepAnomaly: combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field
-
Christiansen, P., Nielsen, L.N., Steen, K.A., Jørgensen, R.N., Karstoft, H., DeepAnomaly: combining background subtraction and deep learning for detecting obstacles and anomalies in an agricultural field. Sensors, 16(11), 2016, 1904.
-
(2016)
Sensors
, vol.16
, Issue.11
, pp. 1904
-
-
Christiansen, P.1
Nielsen, L.N.2
Steen, K.A.3
Jørgensen, R.N.4
Karstoft, H.5
-
9
-
-
80051893359
-
Neural predictive control of broiler chicken growth
-
Demmers, T.G., Cao, Y., Gauss, S., Lowe, J.C., Parsons, D.J., Wathes, C.M., Neural predictive control of broiler chicken growth. IFAC Proc. Vol. 43:6 (2010), 311–316.
-
(2010)
IFAC Proc. Vol.
, vol.43
, Issue.6
, pp. 311-316
-
-
Demmers, T.G.1
Cao, Y.2
Gauss, S.3
Lowe, J.C.4
Parsons, D.J.5
Wathes, C.M.6
-
10
-
-
84878312467
-
-
Simultaneous monitoring and control of pig growth and ammonia emissions. IX International Livestock Environment Symposium (ILES IX). American Society of Agricultural and Biological Engineers, Valencia, Spain.
-
Demmers, T.G., Cao, Y., Parsons, D.J., Gauss, S., Wathes, C.M., 2012. Simultaneous monitoring and control of pig growth and ammonia emissions. IX International Livestock Environment Symposium (ILES IX). American Society of Agricultural and Biological Engineers, Valencia, Spain.
-
(2012)
-
-
Demmers, T.G.1
Cao, Y.2
Parsons, D.J.3
Gauss, S.4
Wathes, C.M.5
-
11
-
-
72249100259
-
-
Imagenet: A large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA
-
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. Imagenet: A large-scale hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Miami, FL, USA, pp. 248–255.
-
(2009)
, pp. 248-255
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
12
-
-
84903724014
-
Deep learning: methods and applications
-
Deng, L., Yu, D., Deep learning: methods and applications. Found. Trends Signal Process. 7:3–4 (2014), 197–387.
-
(2014)
Found. Trends Signal Process.
, vol.7
, Issue.3-4
, pp. 197-387
-
-
Deng, L.1
Yu, D.2
-
13
-
-
85042306024
-
-
Deep learning based root-soil segmentation from X-ray tomography. bioRxiv, 071662.
-
Douarre, C., Schielein, R., Frindel, C., Gerth, S., Rousseau, D., 2016. Deep learning based root-soil segmentation from X-ray tomography. bioRxiv, 071662.
-
(2016)
-
-
Douarre, C.1
Schielein, R.2
Frindel, C.3
Gerth, S.4
Rousseau, D.5
-
14
-
-
85042280311
-
-
RoboWeedSupport – Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network. 11th European Conference on Precision Agriculture (ECPA). Edinburgh, Scotland.
-
Dyrmann, M., Jørgensen, R.N., Midtiby, H.S., 2017. RoboWeedSupport – Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network. 11th European Conference on Precision Agriculture (ECPA). Edinburgh, Scotland.
-
(2017)
-
-
Dyrmann, M.1
Jørgensen, R.N.2
Midtiby, H.S.3
-
15
-
-
84989955034
-
Plant species classification using deep convolutional neural network
-
Dyrmann, M., Karstoft, H., Midtiby, H.S., Plant species classification using deep convolutional neural network. Biosyst. Eng. 151 (2016), 72–80.
-
(2016)
Biosyst. Eng.
, vol.151
, pp. 72-80
-
-
Dyrmann, M.1
Karstoft, H.2
Midtiby, H.S.3
-
16
-
-
85042286429
-
-
Jørgensen, R.N. Pixel-wise classification of weeds and crops in images by using a fully convolutional neural network. International Conference on Agricultural Engineering. Aarhus, Denmark.
-
Dyrmann, M., Mortensen, A.K., Midtiby, H.S., Jørgensen, R.N., 2016. Pixel-wise classification of weeds and crops in images by using a fully convolutional neural network. International Conference on Agricultural Engineering. Aarhus, Denmark.
-
(2016)
-
-
Dyrmann, M.1
Mortensen, A.K.2
Midtiby, H.S.3
-
17
-
-
72149110238
-
How to Feed the World in 2050
-
Food and Agriculture Organization of the United Nations Rome
-
FAO, How to Feed the World in 2050. 2009, Food and Agriculture Organization of the United Nations, Rome.
-
(2009)
-
-
FAO1
-
18
-
-
76749142575
-
Precision agriculture and food security
-
Gebbers, R., Adamchuk, V.I., Precision agriculture and food security. Science 327:5967 (2010), 828–831.
-
(2010)
Science
, vol.327
, Issue.5967
, pp. 828-831
-
-
Gebbers, R.1
Adamchuk, V.I.2
-
19
-
-
0034293152
-
Learning to forget: Continual prediction with LSTM
-
Gers, F.A., Schmidhuber, J., Cummins, F., Learning to forget: Continual prediction with LSTM. Neural Comput. 12:10 (2000), 2451–2471.
-
(2000)
Neural Comput.
, vol.12
, Issue.10
, pp. 2451-2471
-
-
Gers, F.A.1
Schmidhuber, J.2
Cummins, F.3
-
20
-
-
84978038820
-
Deep learning for plant identification using vein morphological patterns
-
Grinblat, G.L., Uzal, L.C., Larese, M.G., Granitto, P.M., Deep learning for plant identification using vein morphological patterns. Comput. Electron. Agric. 127 (2016), 418–424.
-
(2016)
Comput. Electron. Agric.
, vol.127
, pp. 418-424
-
-
Grinblat, G.L.1
Uzal, L.C.2
Larese, M.G.3
Granitto, P.M.4
-
21
-
-
84925424642
-
Evaluation of features for leaf classification in challenging conditions
-
IEEE Waikoloa Beach, Hawaii
-
Hall, D., McCool, C., Dayoub, F., Sunderhauf, N., Upcroft, B., Evaluation of features for leaf classification in challenging conditions. Winter Conference on Applications of Computer Vision (WACV), 2015, IEEE, Waikoloa Beach, Hawaii, 797–804.
-
(2015)
Winter Conference on Applications of Computer Vision (WACV)
, pp. 797-804
-
-
Hall, D.1
McCool, C.2
Dayoub, F.3
Sunderhauf, N.4
Upcroft, B.5
-
22
-
-
85042283467
-
-
Land Cover Classification via Multi-temporal Spatial Data by Recurrent Neural Networks. arXiv preprint.
-
Ienco, D., Gaetano, R., Dupaquier, C., Maurel, P., 2017. Land Cover Classification via Multi-temporal Spatial Data by Recurrent Neural Networks. arXiv preprint arXiv: 1704.04055.
-
(2017)
-
-
Ienco, D.1
Gaetano, R.2
Dupaquier, C.3
Maurel, P.4
-
23
-
-
84979522574
-
Applications of thermal imaging in agriculture—A review
-
Ishimwe, R., Abutaleb, K., Ahmed, F., Applications of thermal imaging in agriculture—A review. Adv. Remote Sens., 3(3), 2014, 128.
-
(2014)
Adv. Remote Sens.
, vol.3
, Issue.3
, pp. 128
-
-
Ishimwe, R.1
Abutaleb, K.2
Ahmed, F.3
-
24
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
ACM Orlando, FL, USA
-
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Darrell, T., Caffe: Convolutional architecture for fast feature embedding. Proceedings of the 22nd International Conference on Multimedia, 2014, ACM, Orlando, FL, USA, 675–678.
-
(2014)
Proceedings of the 22nd International Conference on Multimedia
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Darrell, T.7
-
25
-
-
85054010827
-
-
Springer Luxembourg
-
Kamilaris, A., Assumpcio, A., Blasi, A.B., Torrellas, M., Prenafeta-Boldú, F.X., Estimating the environmental impact of agriculture by means of geospatial and big data analysis: the case of Catalonia From Science to Society, 2017, Springer, Luxembourg, 39–48.
-
(2017)
Estimating the environmental impact of agriculture by means of geospatial and big data analysis: the case of Catalonia, From Science to Society
, pp. 39-48
-
-
Kamilaris, A.1
Assumpcio, A.2
Blasi, A.B.3
Torrellas, M.4
Prenafeta-Boldú, F.X.5
-
26
-
-
85015255850
-
-
IEEE Reston, VA, USA
-
Kamilaris, A., Gao, F., Prenafeta-Boldú, F.X., Ali, M.I., Agri-IoT: A Semantic Framework for Internet of Things-Enabled Smart Farming Applications 3rd World Forum on Internet of Things (WF-IoT), 2016, IEEE, Reston, VA, USA, 442–447.
-
(2016)
Agri-IoT: A Semantic Framework for Internet of Things-Enabled Smart Farming Applications, 3rd World Forum on Internet of Things (WF-IoT)
, pp. 442-447
-
-
Kamilaris, A.1
Gao, F.2
Prenafeta-Boldú, F.X.3
Ali, M.I.4
-
27
-
-
85030748787
-
A review on the practice of big data analysis in agriculture
-
Kamilaris, A., Kartakoullis, A., Prenafeta-Boldú, F.X., A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 143:1 (2017), 23–37.
-
(2017)
Comput. Electron. Agric.
, vol.143
, Issue.1
, pp. 23-37
-
-
Kamilaris, A.1
Kartakoullis, A.2
Prenafeta-Boldú, F.X.3
-
28
-
-
40949087118
-
Shrink and share: humanity's present and future Ecological Footprint
-
Kitzes, J., Wackernagel, M., Loh, J., Peller, A., Goldfinger, S., Cheng, D., Tea, K., Shrink and share: humanity's present and future Ecological Footprint. Philos. Trans. the Roy. Soc. London B: Biol. Sci. 363:1491 (2008), 467–475.
-
(2008)
Philos. Trans. the Roy. Soc. London B: Biol. Sci.
, vol.363
, Issue.1491
, pp. 467-475
-
-
Kitzes, J.1
Wackernagel, M.2
Loh, J.3
Peller, A.4
Goldfinger, S.5
Cheng, D.6
Tea, K.7
-
29
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Adv. Neural Inform. Process. Syst., 2012, 1097–1105.
-
(2012)
Adv. Neural Inform. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
30
-
-
85017192157
-
Deep learning classification of land cover and crop types using remote sensing data
-
Kussul, N., Lavreniuk, M., Skakun, S., Shelestov, A., Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 14:5 (2017), 778–782.
-
(2017)
IEEE Geosci. Remote Sens. Lett.
, vol.14
, Issue.5
, pp. 778-782
-
-
Kussul, N.1
Lavreniuk, M.2
Skakun, S.3
Shelestov, A.4
-
31
-
-
84962520548
-
-
Estimating crop yields with deep learning and remotely sensed data. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy
-
Kuwata, K., Shibasaki, R., 2015. Estimating crop yields with deep learning and remotely sensed data. IEEE International Geoscience and Remote Sensing Symposium (IGARSS). Milan, Italy, pp. 858–861.
-
(2015)
, pp. 858-861
-
-
Kuwata, K.1
Shibasaki, R.2
-
32
-
-
0002263996
-
Convolutional networks for images, speech, and time series
-
LeCun, Y., Bengio, Y., Convolutional networks for images, speech, and time series. Handbook Brain Theory Neural Networks, 3361(10), 1995.
-
(1995)
Handbook Brain Theory Neural Networks
, vol.3361
, Issue.10
-
-
LeCun, Y.1
Bengio, Y.2
-
33
-
-
84930630277
-
Deep learning
-
LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521:7553 (2015), 436–444.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
34
-
-
84956626642
-
-
Deep-plant: Plant identification with convolutional neural networks. IEEE International Conference on Image Processing (ICIP). Quebec city, Canada
-
Lee, S.H., Chan, C.S., Wilkin, P., Remagnino, P., 2015. Deep-plant: Plant identification with convolutional neural networks. IEEE International Conference on Image Processing (ICIP). Quebec city, Canada, pp. 452–456.
-
(2015)
, pp. 452-456
-
-
Lee, S.H.1
Chan, C.S.2
Wilkin, P.3
Remagnino, P.4
-
35
-
-
75249096363
-
A review: The role of remote sensing in precision agriculture
-
Liaghat, S., Balasundram, S.K., A review: The role of remote sensing in precision agriculture. Am. J. Agric. Biol. Sci. 5:1 (2010), 50–55.
-
(2010)
Am. J. Agric. Biol. Sci.
, vol.5
, Issue.1
, pp. 50-55
-
-
Liaghat, S.1
Balasundram, S.K.2
-
36
-
-
85016642831
-
Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning
-
Lu, H., Fu, X., Liu, C., Li, L.G., He, Y.X., Li, N.W., Cultivated land information extraction in UAV imagery based on deep convolutional neural network and transfer learning. J. Mountain Sci. 14:4 (2017), 731–741.
-
(2017)
J. Mountain Sci.
, vol.14
, Issue.4
, pp. 731-741
-
-
Lu, H.1
Fu, X.2
Liu, C.3
Li, L.G.4
He, Y.X.5
Li, N.W.6
-
37
-
-
84947868906
-
Multiview deep learning for land-use classification
-
Luus, F.P., Salmon, B.P., van den Bergh, F., Maharaj, B.T., Multiview deep learning for land-use classification. IEEE Geosci. Remote Sens. Lett. 12:12 (2015), 2448–2452.
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, Issue.12
, pp. 2448-2452
-
-
Luus, F.P.1
Salmon, B.P.2
van den Bergh, F.3
Maharaj, B.T.4
-
38
-
-
0003619045
-
Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability
-
John Wiley New York
-
Mandic, D.P., Chambers, J.A., Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. 2001, John Wiley, New York.
-
(2001)
-
-
Mandic, D.P.1
Chambers, J.A.2
-
39
-
-
85063152717
-
Mixtures of lightweight deep convolutional neural networks: applied to agricultural robotics
-
McCool, C., Perez, T., Upcroft, B., Mixtures of lightweight deep convolutional neural networks: applied to agricultural robotics. IEEE Rob. Autom. Lett. 2:3 (2017), 1344–1351.
-
(2017)
IEEE Rob. Autom. Lett.
, vol.2
, Issue.3
, pp. 1344-1351
-
-
McCool, C.1
Perez, T.2
Upcroft, B.3
-
40
-
-
85042312686
-
-
Real-time blob-wise sugar beets vs weeds classification for monitoring fields using convolutional neural networks. Proceedings of the International Conference on Unmanned Aerial Vehicles in Geomatics. Bonn, Germany.
-
Milioto, A., Lottes, P., Stachniss, C., 2017. Real-time blob-wise sugar beets vs weeds classification for monitoring fields using convolutional neural networks. Proceedings of the International Conference on Unmanned Aerial Vehicles in Geomatics. Bonn, Germany.
-
(2017)
-
-
Milioto, A.1
Lottes, P.2
Stachniss, C.3
-
41
-
-
85042268193
-
-
Deep Recurrent Neural Networks for mapping winter vegetation quality coverage via multi-temporal SAR Sentinel-1. arXiv preprint.
-
Minh, D.H., Ienco, D., Gaetano, R., Lalande, N., Ndikumana, E., Osman, F., Maurel, P., 2017. Deep Recurrent Neural Networks for mapping winter vegetation quality coverage via multi-temporal SAR Sentinel-1. arXiv preprint arXiv: 1708.03694.
-
(2017)
-
-
Minh, D.H.1
Ienco, D.2
Gaetano, R.3
Lalande, N.4
Ndikumana, E.5
Osman, F.6
Maurel, P.7
-
42
-
-
84988564472
-
Using deep learning for image-based plant disease detection
-
Mohanty, S.P., Hughes, D.P., Salathé, M., Using deep learning for image-based plant disease detection. Front. Plant. Sci., 7, 2016.
-
(2016)
Front. Plant. Sci.
, vol.7
-
-
Mohanty, S.P.1
Hughes, D.P.2
Salathé, M.3
-
43
-
-
85042299757
-
-
Semantic segmentation of mixed crops using deep convolutional neural network. International Conference on Agricultural Engineering. Aarhus, Denmark.
-
Mortensen, A.K., Dyrmann, M., Karstoft, H., Jørgensen, R.N., Gislum, R., 2016. Semantic segmentation of mixed crops using deep convolutional neural network. International Conference on Agricultural Engineering. Aarhus, Denmark.
-
(2016)
-
-
Mortensen, A.K.1
Dyrmann, M.2
Karstoft, H.3
Jørgensen, R.N.4
Gislum, R.5
-
44
-
-
85013977220
-
Deep learning applications and challenges in big data analytics
-
Najafabadi, M.M., Villanustre, F., Khoshgoftaar, T.M., Seliya, N., Wald, R., Muharemagic, E., Deep learning applications and challenges in big data analytics. J. Big Data, 2(1), 2015, 1.
-
(2015)
J. Big Data
, vol.2
, Issue.1
, pp. 1
-
-
Najafabadi, M.M.1
Villanustre, F.2
Khoshgoftaar, T.M.3
Seliya, N.4
Wald, R.5
Muharemagic, E.6
-
45
-
-
85042331624
-
-
Deep Phenotyping: Deep Learning For Temporal Phenotype/Genotype Classification. bioRxiv, 134205.
-
Namin, S.T., Esmaeilzadeh, M., Najafi, M., Brown, T.B., Borevitz, J.O., 2017. Deep Phenotyping: Deep Learning For Temporal Phenotype/Genotype Classification. bioRxiv, 134205.
-
(2017)
-
-
Namin, S.T.1
Esmaeilzadeh, M.2
Najafi, M.3
Brown, T.B.4
Borevitz, J.O.5
-
46
-
-
80051891221
-
Remote sensing of irrigated agriculture: Opportunities and challenges
-
Ozdogan, M., Yang, Y., Allez, G., Cervantes, C., Remote sensing of irrigated agriculture: Opportunities and challenges. Remote Sensing 2:9 (2010), 2274–2304.
-
(2010)
Remote Sensing
, vol.2
, Issue.9
, pp. 2274-2304
-
-
Ozdogan, M.1
Yang, Y.2
Allez, G.3
Cervantes, C.4
-
47
-
-
77956031473
-
A survey on transfer learning
-
Pan, S.J., Yang, Q., A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22:10 (2010), 1345–1359.
-
(2010)
IEEE Trans. Knowl. Data Eng.
, vol.22
, Issue.10
, pp. 1345-1359
-
-
Pan, S.J.1
Yang, Q.2
-
48
-
-
85042275912
-
-
C Project. 2012. The PASCAL Visual Object Classes. Obtenido de
-
PASCAL VOC Project. 2012. The PASCAL Visual Object Classes. Obtenido de http://host.robots.ox.ac.uk/pascal/VOC/.
-
-
-
PASCAL, V.O.1
-
49
-
-
85013127753
-
Fast and accurate crop and weed identification with summarized train sets for precision agriculture
-
Springer, Cham Shanghai, China
-
Potena, C., Nardi, D., Pretto, A., Fast and accurate crop and weed identification with summarized train sets for precision agriculture. International Conference on Intelligent Autonomous Systems, 2016, Springer, Cham, Shanghai, China, 105–121.
-
(2016)
International Conference on Intelligent Autonomous Systems
, pp. 105-121
-
-
Potena, C.1
Nardi, D.2
Pretto, A.3
-
50
-
-
85042292408
-
-
Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping. bioRxiv, 053033.
-
Pound, M.P. et al., 2016. Deep Machine Learning provides state-of-the-art performance in image-based plant phenotyping. bioRxiv, 053033.
-
(2016)
-
-
Pound, M.P.1
-
51
-
-
85018513324
-
Deep count: fruit counting based on deep simulated learning
-
Rahnemoonfar, M., Sheppard, C., Deep count: fruit counting based on deep simulated learning. Sensors, 17(4), 2017, 905.
-
(2017)
Sensors
, vol.17
, Issue.4
, pp. 905
-
-
Rahnemoonfar, M.1
Sheppard, C.2
-
52
-
-
84994176955
-
-
Augmenting a convolutional neural network with local histograms—a case study in crop classification from high-resolution UAV imagery. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium.
-
Rebetez, J. et al., 2016. Augmenting a convolutional neural network with local histograms—a case study in crop classification from high-resolution UAV imagery. European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning. Bruges, Belgium.
-
(2016)
-
-
Rebetez, J.1
-
53
-
-
85013083122
-
Fine-Tuning Deep Convolutional Networks for Plant Recognition
-
CLEF (Working Notes) Toulouse
-
Reyes, A.K., Caicedo, J.C., Camargo, J.E., Fine-Tuning Deep Convolutional Networks for Plant Recognition. 2015, CLEF (Working Notes), Toulouse.
-
(2015)
-
-
Reyes, A.K.1
Caicedo, J.C.2
Camargo, J.E.3
-
54
-
-
85021131739
-
Multi-temporal land cover classification with long short-term memory neural networks
-
Rußwurm, M., Körner, M., Multi-temporal land cover classification with long short-term memory neural networks. Int. Arch. Photogramm., Remote Sens. Spatial Inform. Sci., 42, 2017.
-
(2017)
Int. Arch. Photogramm., Remote Sens. Spatial Inform. Sci.
, vol.42
-
-
Rußwurm, M.1
Körner, M.2
-
55
-
-
84982682350
-
Deepfruits: A fruit detection system using deep neural networks
-
Sa, I., Ge, Z., Dayoub, F., Upcroft, B., Perez, T., McCool, C., Deepfruits: A fruit detection system using deep neural networks. Sensors, 16(8), 2016, 1222.
-
(2016)
Sensors
, vol.16
, Issue.8
, pp. 1222
-
-
Sa, I.1
Ge, Z.2
Dayoub, F.3
Upcroft, B.4
Perez, T.5
McCool, C.6
-
56
-
-
84948409676
-
Cattle race classification using gray level co-occurrence matrix convolutional neural networks
-
Santoni, M.M., Sensuse, D.I., Arymurthy, A.M., Fanany, M.I., Cattle race classification using gray level co-occurrence matrix convolutional neural networks. Procedia Comput. Sci. 59 (2015), 493–502.
-
(2015)
Procedia Comput. Sci.
, vol.59
, pp. 493-502
-
-
Santoni, M.M.1
Sensuse, D.I.2
Arymurthy, A.M.3
Fanany, M.I.4
-
57
-
-
85042309042
-
-
A survey of image processing techniques for agriculture. Australian Society of Information and Communication Technologies in Agriculture. Perth, Australia.
-
Saxena, L., Armstrong, L., 2014. A survey of image processing techniques for agriculture. Proceedings of Asian Federation for Information Technology in Agriculture, Australian Society of Information and Communication Technologies in Agriculture. Perth, Australia.
-
(2014)
Proceedings of Asian Federation for Information Technology in Agriculture
-
-
Saxena, L.1
Armstrong, L.2
-
58
-
-
84910651844
-
Deep learning in neural networks: An overview
-
Schmidhuber, J., Deep learning in neural networks: An overview. Neural Networks 61 (2015), 85–117.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
59
-
-
85042335149
-
-
Crop Planning using Stochastic Visual Optimization. arXiv preprint.
-
Sehgal, G., Gupta, B., Paneri, K., Singh, K., Sharma, G., Shroff, G., 2017. Crop Planning using Stochastic Visual Optimization. arXiv preprint arXiv: 1710.09077.
-
(2017)
-
-
Sehgal, G.1
Gupta, B.2
Paneri, K.3
Singh, K.4
Sharma, G.5
Shroff, G.6
-
60
-
-
85042292235
-
-
Very deep convolutional networks for large-scale image recognition. arXiv preprint.
-
Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv: 1409.1556.
-
(2014)
-
-
Simonyan, K.1
Zisserman, A.2
-
61
-
-
84958049448
-
Machine learning for high-throughput stress phenotyping in plants
-
Singh, A., Ganapathysubramanian, B., Singh, A.K., Sarkar, S., Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 21:2 (2016), 110–124.
-
(2016)
Trends Plant Sci.
, vol.21
, Issue.2
, pp. 110-124
-
-
Singh, A.1
Ganapathysubramanian, B.2
Singh, A.K.3
Sarkar, S.4
-
62
-
-
84978378744
-
Deep neural networks based recognition of plant diseases by leaf image classification
-
Sladojevic, S., Arsenovic, M., Anderla, A., Culibrk, D., Stefanovic, D., Deep neural networks based recognition of plant diseases by leaf image classification. Comput. Intell. Neurosci., 2016, 2016.
-
(2016)
Comput. Intell. Neurosci.
, vol.2016
-
-
Sladojevic, S.1
Arsenovic, M.2
Anderla, A.3
Culibrk, D.4
Stefanovic, D.5
-
63
-
-
84977156284
-
Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model
-
Song, X., Zhang, G., Liu, F., Li, D., Zhao, Y., Yang, J., Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. J. Arid Land 8:5 (2016), 734–748.
-
(2016)
J. Arid Land
, vol.8
, Issue.5
, pp. 734-748
-
-
Song, X.1
Zhang, G.2
Liu, F.3
Li, D.4
Zhao, Y.5
Yang, J.6
-
64
-
-
85048038010
-
Thistle Detection Using Convolutional Neural Networks
-
EFITA Congress Montpellier, France
-
Sørensen, R.A., Rasmussen, J., Nielsen, J., Jørgensen, R., Thistle Detection Using Convolutional Neural Networks. 2017, EFITA Congress, Montpellier, France.
-
(2017)
-
-
Sørensen, R.A.1
Rasmussen, J.2
Nielsen, J.3
Jørgensen, R.4
-
65
-
-
84968768999
-
Using deep learning to challenge safety standard for highly autonomous machines in agriculture
-
Steen, K.A., Christiansen, P., Karstoft, H., Jørgensen, R.N., Using deep learning to challenge safety standard for highly autonomous machines in agriculture. J. Imag., 2(1), 2016, 6.
-
(2016)
J. Imag.
, vol.2
, Issue.1
, pp. 6
-
-
Steen, K.A.1
Christiansen, P.2
Karstoft, H.3
Jørgensen, R.N.4
-
66
-
-
85028013193
-
Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning
-
AAAI
-
Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A., Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning. 2017, AAAI, 4278–4284.
-
(2017)
, pp. 4278-4284
-
-
Szegedy, C.1
Ioffe, S.2
Vanhoucke, V.3
Alemi, A.A.4
-
67
-
-
84937522268
-
-
Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Rabinovich, A., 2015. Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA, pp. 1–9.
-
(2015)
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Rabinovich, A.7
-
68
-
-
84883858085
-
-
A short survey of hyperspectral remote sensing applications in agriculture. 6th International Conference on Recent Advances in Space Technologies (RAST). IEEE, Istanbul, Turkey.
-
Teke, M., Deveci, H.S., Haliloğlu, O., Gürbüz, S.Z., Sakarya, U., 2013. A short survey of hyperspectral remote sensing applications in agriculture. 6th International Conference on Recent Advances in Space Technologies (RAST). IEEE, Istanbul, Turkey.
-
(2013)
-
-
Teke, M.1
Deveci, H.S.2
Haliloğlu, O.3
Gürbüz, S.Z.4
Sakarya, U.5
-
69
-
-
84991463631
-
Towards a second green revolution
-
Tyagi, A.C., Towards a second green revolution. Irrig. Drain. 65:4 (2016), 388–389.
-
(2016)
Irrig. Drain.
, vol.65
, Issue.4
, pp. 388-389
-
-
Tyagi, A.C.1
-
70
-
-
84913590208
-
-
Deep learning for content-based image retrieval: A comprehensive study. Proceedings of the 22nd ACM International Conference on Multimedia. ACM, Orlando, FL
-
Wan, J., Wang, D., Hoi, S.C., Wu, P., Zhu, J., Zhang, Y., Li, J., 2014. Deep learning for content-based image retrieval: A comprehensive study. Proceedings of the 22nd ACM International Conference on Multimedia. ACM, Orlando, FL, pp. 157–166.
-
(2014)
, pp. 157-166
-
-
Wan, J.1
Wang, D.2
Hoi, S.C.3
Wu, P.4
Zhu, J.5
Zhang, Y.6
Li, J.7
-
71
-
-
84986211929
-
-
Weed seeds classification based on PCANet deep learning baseline. IEEE Signal and Information Processing Association Annual Summit and Conference (APSIPA)
-
Xinshao, W., Cheng, C., 2015. Weed seeds classification based on PCANet deep learning baseline. IEEE Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 408–415.
-
(2015)
, pp. 408-415
-
-
Xinshao, W.1
Cheng, C.2
-
72
-
-
85032839225
-
-
Plant phenology recognition using deep learning: Deep-Pheno. 6th International Conference on Agro-Geoinformatics. Fairfax VA, USA.
-
Yalcin, H., 2017. Plant phenology recognition using deep learning: Deep-Pheno. 6th International Conference on Agro-Geoinformatics. Fairfax VA, USA.
-
(2017)
-
-
Yalcin, H.1
|