메뉴 건너뛰기




Volumn 204, Issue , 2018, Pages 509-523

Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis

Author keywords

Agriculture; Image segmentation; Land use land cover mapping; OBIA; Random Forest; Remote sensing; Satellite image time series

Indexed keywords

CROPS; DECISION TREES; IMAGE ANALYSIS; IMAGE SEGMENTATION; LAND USE; REMOTE SENSING; SAMPLING; TIME SERIES; TIME SERIES ANALYSIS; VEGETATION MAPPING;

EID: 85033436404     PISSN: 00344257     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rse.2017.10.005     Document Type: Article
Times cited : (689)

References (75)
  • 1
    • 82055186457 scopus 로고    scopus 로고
    • Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil
    • Arvor, D., Jonathan, M., Meirelles, M.S.P., Dubreuil, V., Durieux, L., Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil. Int. J. Remote Sens. 32 (2011), 7847–7871.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 7847-7871
    • Arvor, D.1    Jonathan, M.2    Meirelles, M.S.P.3    Dubreuil, V.4    Durieux, L.5
  • 2
    • 84986904940 scopus 로고    scopus 로고
    • Assessing in-season crop classification performance using satellite data: a test case in Northern Italy
    • Azar, R., Villa, P., Stroppiana, D., Crema, A., Boschetti, M., Brivio, P.A., Assessing in-season crop classification performance using satellite data: a test case in Northern Italy. Eur. J. Remote. Sens. 49 (2016), 361–380.
    • (2016) Eur. J. Remote. Sens. , vol.49 , pp. 361-380
    • Azar, R.1    Villa, P.2    Stroppiana, D.3    Crema, A.4    Boschetti, M.5    Brivio, P.A.6
  • 3
    • 0001812168 scopus 로고    scopus 로고
    • Multiresolution Segmentation-an optimization approach for high quality multi-scale image segmentation
    • J. Strobl T. Blaschke G. Griesebner Wichmann-Verlag Heidelberg
    • Baatz, M., Schäpe, A., Multiresolution Segmentation-an optimization approach for high quality multi-scale image segmentation. Strobl, J., Blaschke, T., Griesebner, G., (eds.) Angewandte Geographische Informationsverarbeitung, 2000, Wichmann-Verlag, Heidelberg, 12–23.
    • (2000) Angewandte Geographische Informationsverarbeitung , pp. 12-23
    • Baatz, M.1    Schäpe, A.2
  • 4
    • 0026305589 scopus 로고
    • Potentials and limits of vegetation indices for LAI and APAR assessment
    • Baret, F., Guyot, G., Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 35 (1991), 161–173.
    • (1991) Remote Sens. Environ. , vol.35 , pp. 161-173
    • Baret, F.1    Guyot, G.2
  • 5
    • 85018195485 scopus 로고    scopus 로고
    • Phenology from Landsat when data is scarce: using MODIS and dynamic time-warping to combine multi-year Landsat imagery to derive annual phenology curves
    • Baumann, M., Ozdogan, M., Richardson, A.D., Radeloff, V.C., Phenology from Landsat when data is scarce: using MODIS and dynamic time-warping to combine multi-year Landsat imagery to derive annual phenology curves. Int. J. Appl. Earth Obs. Geoinf. 54 (2017), 72–83.
    • (2017) Int. J. Appl. Earth Obs. Geoinf. , vol.54 , pp. 72-83
    • Baumann, M.1    Ozdogan, M.2    Richardson, A.D.3    Radeloff, V.C.4
  • 6
    • 84904909081 scopus 로고    scopus 로고
    • Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery
    • Belgiu, M., Drǎguţ, L., Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery. ISPRS J. Photogramm. Remote Sens. 96 (2014), 67–75.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.96 , pp. 67-75
    • Belgiu, M.1    Drǎguţ, L.2
  • 7
    • 84961834117 scopus 로고    scopus 로고
    • Random forest in remote sensing: a review of applications and future directions
    • Belgiu, M., Drăguţ, L., Random forest in remote sensing: a review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114 (2016), 24–31.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.114 , pp. 24-31
    • Belgiu, M.1    Drăguţ, L.2
  • 8
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Blaschke, T., Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65 (2010), 2–16.
    • (2010) ISPRS J. Photogramm. Remote Sens. , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 9
    • 79960831514 scopus 로고    scopus 로고
    • Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program
    • Boryan, C., Yang, Z., Mueller, R., Craig, M., Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program. Geocarto Int. 26 (2011), 341–358.
    • (2011) Geocarto Int. , vol.26 , pp. 341-358
    • Boryan, C.1    Yang, Z.2    Mueller, R.3    Craig, M.4
  • 10
    • 0003419795 scopus 로고
    • Distribution-free Statistical Tests
    • Prentice-Hall New Jersey
    • Bradley, J.V., Distribution-free Statistical Tests. 1968, Prentice-Hall, New Jersey.
    • (1968)
    • Bradley, J.V.1
  • 13
    • 85167034799 scopus 로고    scopus 로고
    • California Agriculture Statistics Review 2015–2016
    • California Department of Food and Agricultural
    • CDFA, California Agriculture Statistics Review 2015–2016. 2016, California Department of Food and Agricultural.
    • (2016)
    • CDFA1
  • 14
    • 84973587732 scopus 로고
    • A coefficient of agreement for nominal scales
    • Cohen, J., A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20 (1960), 37–46.
    • (1960) Educ. Psychol. Meas. , vol.20 , pp. 37-46
    • Cohen, J.1
  • 15
    • 0026278621 scopus 로고
    • A review of assessing the accuracy of classifications of remotely sensed data
    • Congalton, R.G., A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 37 (1991), 35–46.
    • (1991) Remote Sens. Environ. , vol.37 , pp. 35-46
    • Congalton, R.G.1
  • 16
    • 84856724773 scopus 로고    scopus 로고
    • Air temperature trend and the impact on winter wheat phenology in Romania
    • Croitoru, A.-E., Holobaca, I.-H., Lazar, C., Moldovan, F., Imbroane, A., Air temperature trend and the impact on winter wheat phenology in Romania. Clim. Chang. 111 (2012), 393–410.
    • (2012) Clim. Chang. , vol.111 , pp. 393-410
    • Croitoru, A.-E.1    Holobaca, I.-H.2    Lazar, C.3    Moldovan, F.4    Imbroane, A.5
  • 17
    • 84962692147 scopus 로고    scopus 로고
    • A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes
    • Debats, S.R., Luo, D., Estes, L.D., Fuchs, T.J., Caylor, K.K., A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes. Remote Sens. Environ. 179 (2016), 210–221.
    • (2016) Remote Sens. Environ. , vol.179 , pp. 210-221
    • Debats, S.R.1    Luo, D.2    Estes, L.D.3    Fuchs, T.J.4    Caylor, K.K.5
  • 18
    • 33646129679 scopus 로고    scopus 로고
    • Forest change detection by statistical object-based method
    • Desclée, B., Bogaert, P., Defourny, P., Forest change detection by statistical object-based method. Remote Sens. Environ. 102 (2006), 1–11.
    • (2006) Remote Sens. Environ. , vol.102 , pp. 1-11
    • Desclée, B.1    Bogaert, P.2    Defourny, P.3
  • 19
    • 77951189897 scopus 로고    scopus 로고
    • ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data
    • Drǎguţ, L., Tiede, D., Levick, S.R., ESP: a tool to estimate scale parameter for multiresolution image segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 24 (2010), 859–871.
    • (2010) Int. J. Geogr. Inf. Sci. , vol.24 , pp. 859-871
    • Drǎguţ, L.1    Tiede, D.2    Levick, S.R.3
  • 20
    • 84891136260 scopus 로고    scopus 로고
    • Automated parameterisation for multi-scale image segmentation on multiple layers
    • Drăguţ, L., Csillik, O., Eisank, C., Tiede, D., Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS J. Photogramm. Remote Sens. 88 (2014), 119–127.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.88 , pp. 119-127
    • Drăguţ, L.1    Csillik, O.2    Eisank, C.3    Tiede, D.4
  • 21
    • 84971671499 scopus 로고    scopus 로고
    • Water bodies' mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band
    • Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., Li, X., Water bodies' mapping from Sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the SWIR band. Remote Sens., 8, 2016, 354.
    • (2016) Remote Sens. , vol.8 , pp. 354
    • Du, Y.1    Zhang, Y.2    Ling, F.3    Wang, Q.4    Li, W.5    Li, X.6
  • 22
    • 0003948473 scopus 로고
    • Soil Map of the World 1:5000000
    • UNESCO Paris North America
    • FAO-UNESCO, Soil Map of the World 1:5000000. Vol. 2, 1975, UNESCO, Paris North America.
    • (1975) , vol.2
    • FAO-UNESCO1
  • 23
    • 0003948473 scopus 로고
    • Soil Map of the World 1:5000000
    • UNESCO Paris Europe
    • FAO-UNESCO, Soil Map of the World 1:5000000. Vol. 5, 1981, UNESCO, Paris Europe.
    • (1981) , vol.5
    • FAO-UNESCO1
  • 26
    • 77952604955 scopus 로고    scopus 로고
    • Mapping diversified peri-urban agriculture–potential of object-based versus per-field land cover/land use classification
    • Forster, D., Kellenberger, T.W., Buehler, Y., Lennartz, B., Mapping diversified peri-urban agriculture–potential of object-based versus per-field land cover/land use classification. Geocarto Int. 25 (2010), 171–186.
    • (2010) Geocarto Int. , vol.25 , pp. 171-186
    • Forster, D.1    Kellenberger, T.W.2    Buehler, Y.3    Lennartz, B.4
  • 27
    • 84879584263 scopus 로고    scopus 로고
    • Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation
    • Frampton, W.J., Dash, J., Watmough, G., Milton, E.J., Evaluating the capabilities of Sentinel-2 for quantitative estimation of biophysical variables in vegetation. ISPRS J. Photogramm. Remote Sens. 82 (2013), 83–92.
    • (2013) ISPRS J. Photogramm. Remote Sens. , vol.82 , pp. 83-92
    • Frampton, W.J.1    Dash, J.2    Watmough, G.3    Milton, E.J.4
  • 30
    • 84961815144 scopus 로고    scopus 로고
    • Optical remotely sensed time series data for land cover classification: a review
    • Gómez, C., White, J.C., Wulder, M.A., Optical remotely sensed time series data for land cover classification: a review. ISPRS J. Photogramm. Remote Sens. 116 (2016), 55–72.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.116 , pp. 55-72
    • Gómez, C.1    White, J.C.2    Wulder, M.A.3
  • 31
    • 84860271348 scopus 로고    scopus 로고
    • CropScape: a web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support
    • Han, W., Yang, Z., Di, L., Mueller, R., CropScape: a web service based application for exploring and disseminating US conterminous geospatial cropland data products for decision support. Comput. Electron. Agric. 84 (2012), 111–123.
    • (2012) Comput. Electron. Agric. , vol.84 , pp. 111-123
    • Han, W.1    Yang, Z.2    Di, L.3    Mueller, R.4
  • 32
    • 84930024323 scopus 로고    scopus 로고
    • Feature selection of time series MODIS data for early crop classification using random forest: a case study in Kansas, USA
    • Hao, P., Zhan, Y., Wang, L., Niu, Z., Shakir, M., Feature selection of time series MODIS data for early crop classification using random forest: a case study in Kansas, USA. Remote Sens., 7, 2015, 5347.
    • (2015) Remote Sens. , vol.7 , pp. 5347
    • Hao, P.1    Zhan, Y.2    Wang, L.3    Niu, Z.4    Shakir, M.5
  • 33
    • 0024165401 scopus 로고
    • A soil-adjusted vegetation index (SAVI)
    • Huete, A.R., A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 25 (1988), 295–309.
    • (1988) Remote Sens. Environ. , vol.25 , pp. 295-309
    • Huete, A.R.1
  • 34
    • 0036846393 scopus 로고    scopus 로고
    • Overview of the radiometric and biophysical performance of the MODIS vegetation indices
    • Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83 (2002), 195–213.
    • (2002) Remote Sens. Environ. , vol.83 , pp. 195-213
    • Huete, A.1    Didan, K.2    Miura, T.3    Rodriguez, E.P.4    Gao, X.5    Ferreira, L.G.6
  • 35
    • 84962488348 scopus 로고    scopus 로고
    • First experience with sentinel-2 data for crop and tree species classifications in Central Europe
    • Immitzer, M., Vuolo, F., Atzberger, C., First experience with sentinel-2 data for crop and tree species classifications in Central Europe. Remote Sens., 8, 2016, 166.
    • (2016) Remote Sens. , vol.8 , pp. 166
    • Immitzer, M.1    Vuolo, F.2    Atzberger, C.3
  • 36
    • 84899680136 scopus 로고    scopus 로고
    • Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data
    • Jia, K., Liang, S., Zhang, N., Wei, X., Gu, X., Zhao, X., Yao, Y., Xie, X., Land cover classification of finer resolution remote sensing data integrating temporal features from time series coarser resolution data. ISPRS J. Photogramm. Remote Sens. 93 (2014), 49–55.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.93 , pp. 49-55
    • Jia, K.1    Liang, S.2    Zhang, N.3    Wei, X.4    Gu, X.5    Zhao, X.6    Yao, Y.7    Xie, X.8
  • 37
    • 79957819255 scopus 로고    scopus 로고
    • Unsupervised image segmentation evaluation and refinement using a multi-scale approach
    • Johnson, B., Xie, Z., Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS J. Photogramm. Remote Sens. 66 (2011), 473–483.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , pp. 473-483
    • Johnson, B.1    Xie, Z.2
  • 39
    • 31344453556 scopus 로고    scopus 로고
    • Mapping invasive plants using hyperspectral imagery and Breiman cutler classifications (randomForest)
    • Lawrence, R.L., Wood, S.D., Sheley, R.L., Mapping invasive plants using hyperspectral imagery and Breiman cutler classifications (randomForest). Remote Sens. Environ. 100 (2006), 356–362.
    • (2006) Remote Sens. Environ. , vol.100 , pp. 356-362
    • Lawrence, R.L.1    Wood, S.D.2    Sheley, R.L.3
  • 40
    • 85019381440 scopus 로고    scopus 로고
    • A combined random forest and OBIA classification scheme for mapping smallholder agriculture at different nomenclature levels using multisource data (simulated Sentinel-2 time series, VHRS and DEM)
    • Lebourgeois, V., Dupuy, S., Vintrou, É., Ameline, M., Butler, S., Bégué, A., A combined random forest and OBIA classification scheme for mapping smallholder agriculture at different nomenclature levels using multisource data (simulated Sentinel-2 time series, VHRS and DEM). Remote Sens., 9, 2017, 259.
    • (2017) Remote Sens. , vol.9 , pp. 259
    • Lebourgeois, V.1    Dupuy, S.2    Vintrou, É.3    Ameline, M.4    Butler, S.5    Bégué, A.6
  • 41
    • 84987748851 scopus 로고    scopus 로고
    • Object-based crop classification with Landsat-MODIS enhanced time-series data
    • Li, Q., Wang, C., Zhang, B., Lu, L., Object-based crop classification with Landsat-MODIS enhanced time-series data. Remote Sens., 7, 2015, 15820.
    • (2015) Remote Sens. , vol.7
    • Li, Q.1    Wang, C.2    Zhang, B.3    Lu, L.4
  • 42
    • 84883510217 scopus 로고    scopus 로고
    • Object-oriented crop classification using multitemporal ETM + SLC-off imagery and random forest
    • Long, J.A., Lawrence, R.L., Greenwood, M.C., Marshall, L., Miller, P.R., Object-oriented crop classification using multitemporal ETM + SLC-off imagery and random forest. GISci. Remote Sens. 50 (2013), 418–436.
    • (2013) GISci. Remote Sens. , vol.50 , pp. 418-436
    • Long, J.A.1    Lawrence, R.L.2    Greenwood, M.C.3    Marshall, L.4    Miller, P.R.5
  • 43
    • 0034925944 scopus 로고    scopus 로고
    • Estimation of timber volume at the sample plot level by means of image segmentation and Landsat TM imagery
    • Mäkelä, H., Pekkarinen, A., Estimation of timber volume at the sample plot level by means of image segmentation and Landsat TM imagery. Remote Sens. Environ. 77 (2001), 66–75.
    • (2001) Remote Sens. Environ. , vol.77 , pp. 66-75
    • Mäkelä, H.1    Pekkarinen, A.2
  • 44
    • 84945907812 scopus 로고    scopus 로고
    • An automated method for annual cropland mapping along the season for various globally-distributed agrosystems using high spatial and temporal resolution time series
    • Matton, N., Canto, G.S., Waldner, F., Valero, S., Morin, D., Inglada, J., Arias, M., Bontemps, S., Koetz, B., Defourny, P., An automated method for annual cropland mapping along the season for various globally-distributed agrosystems using high spatial and temporal resolution time series. Remote Sens. 7 (2015), 13208–13232.
    • (2015) Remote Sens. , vol.7 , pp. 13208-13232
    • Matton, N.1    Canto, G.S.2    Waldner, F.3    Valero, S.4    Morin, D.5    Inglada, J.6    Arias, M.7    Bontemps, S.8    Koetz, B.9    Defourny, P.10
  • 45
    • 85167060068 scopus 로고    scopus 로고
    • dtwSat: time-weighted dynamic time warping for satellite image time series analysis
    • Maus, V., dtwSat: time-weighted dynamic time warping for satellite image time series analysis. R Package Version 0.2.0, 2016.
    • (2016) R Package Version 0.2.0
    • Maus, V.1
  • 47
    • 0030136491 scopus 로고    scopus 로고
    • The use of the normalized difference water index (NDWI) in the delineation of open water features
    • McFeeters, S.K., The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17 (1996), 1425–1432.
    • (1996) Int. J. Remote Sens. , vol.17 , pp. 1425-1432
    • McFeeters, S.K.1
  • 48
    • 84937918615 scopus 로고    scopus 로고
    • On the importance of training data sample selection in random forest image classification: a case study in peatland ecosystem mapping
    • Millard, K., Richardson, M., On the importance of training data sample selection in random forest image classification: a case study in peatland ecosystem mapping. Remote Sens., 7, 2015, 8489.
    • (2015) Remote Sens. , vol.7 , pp. 8489
    • Millard, K.1    Richardson, M.2
  • 49
    • 40649083532 scopus 로고    scopus 로고
    • The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI
    • Montandon, L.M., Small, E.E., The impact of soil reflectance on the quantification of the green vegetation fraction from NDVI. Remote Sens. Environ. 112 (2008), 1835–1845.
    • (2008) Remote Sens. Environ. , vol.112 , pp. 1835-1845
    • Montandon, L.M.1    Small, E.E.2
  • 50
    • 84922238304 scopus 로고    scopus 로고
    • Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape
    • Müller, H., Rufin, P., Griffiths, P., Siqueira, A.J.B., Hostert, P., Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens. Environ. 156 (2015), 490–499.
    • (2015) Remote Sens. Environ. , vol.156 , pp. 490-499
    • Müller, H.1    Rufin, P.2    Griffiths, P.3    Siqueira, A.J.B.4    Hostert, P.5
  • 52
    • 85010645005 scopus 로고    scopus 로고
    • Assessing the potential of Sentinel-2 and Pléiades data for the detection of Prosopis and Vachellia Spp. in Kenya
    • Ng, W.-T., Rima, P., Einzmann, K., Immitzer, M., Atzberger, C., Eckert, S., Assessing the potential of Sentinel-2 and Pléiades data for the detection of Prosopis and Vachellia Spp. in Kenya. Remote Sensing, Vol. 9, 2017, 74.
    • (2017) Remote Sensing , vol.9 , pp. 74
    • Ng, W.-T.1    Rima, P.2    Einzmann, K.3    Immitzer, M.4    Atzberger, C.5    Eckert, S.6
  • 53
    • 84998673750 scopus 로고    scopus 로고
    • Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: a case study from Almería (Spain)
    • Novelli, A., Aguilar, M.A., Nemmaoui, A., Aguilar, F.J., Tarantino, E., Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: a case study from Almería (Spain). Int. J. Appl. Earth Obs. Geoinf. 52 (2016), 403–411.
    • (2016) Int. J. Appl. Earth Obs. Geoinf. , vol.52 , pp. 403-411
    • Novelli, A.1    Aguilar, M.A.2    Nemmaoui, A.3    Aguilar, F.J.4    Tarantino, E.5
  • 54
    • 84870202759 scopus 로고    scopus 로고
    • Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation
    • Olofsson, P., Foody, G.M., Stehman, S.V., Woodcock, C.E., Making better use of accuracy data in land change studies: estimating accuracy and area and quantifying uncertainty using stratified estimation. Remote Sens. Environ. 129 (2013), 122–131.
    • (2013) Remote Sens. Environ. , vol.129 , pp. 122-131
    • Olofsson, P.1    Foody, G.M.2    Stehman, S.V.3    Woodcock, C.E.4
  • 55
    • 84992151859 scopus 로고    scopus 로고
    • Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas
    • Pelletier, C., Valero, S., Inglada, J., Champion, N., Dedieu, G., Assessing the robustness of random forests to map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 187 (2016), 156–168.
    • (2016) Remote Sens. Environ. , vol.187 , pp. 156-168
    • Pelletier, C.1    Valero, S.2    Inglada, J.3    Champion, N.4    Dedieu, G.5
  • 57
    • 84894080200 scopus 로고    scopus 로고
    • Efficient satellite image time series analysis under time warping
    • Petitjean, F., Weber, J., Efficient satellite image time series analysis under time warping. IEEE Geosci. Remote Sens. Lett. 11 (2014), 1143–1147.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , pp. 1143-1147
    • Petitjean, F.1    Weber, J.2
  • 59
    • 84864067444 scopus 로고    scopus 로고
    • Spatio-temporal reasoning for the classification of satellite image time series
    • Petitjean, F., Kurtz, C., Passat, N., Gançarski, P., Spatio-temporal reasoning for the classification of satellite image time series. Pattern Recogn. Lett. 33 (2012), 1805–1815.
    • (2012) Pattern Recogn. Lett. , vol.33 , pp. 1805-1815
    • Petitjean, F.1    Kurtz, C.2    Passat, N.3    Gançarski, P.4
  • 60
    • 0004244302 scopus 로고
    • Fundamentals of Speech Recognition
    • PTR Prentice Hall Englewood Cliffs, N.J
    • Rabiner, L.R., Juang, B.H., Fundamentals of Speech Recognition. 1993, PTR Prentice Hall, Englewood Cliffs, N.J.
    • (1993)
    • Rabiner, L.R.1    Juang, B.H.2
  • 61
    • 84938935110 scopus 로고    scopus 로고
    • Potential of Sentinel-2 spectral configuration to assess rangeland quality
    • 094096–094096
    • Ramoelo, A., Cho, M., Mathieu, R., Skidmore, A.K., Potential of Sentinel-2 spectral configuration to assess rangeland quality. J. Appl. Remote. Sens., 9, 2015 094096–094096.
    • (2015) J. Appl. Remote. Sens. , vol.9
    • Ramoelo, A.1    Cho, M.2    Mathieu, R.3    Skidmore, A.K.4
  • 62
    • 0017930815 scopus 로고
    • Dynamic programming algorithm optimization for spoken word recognition
    • Sakoe, H., Chiba, S., Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26 (1978), 43–49.
    • (1978) IEEE Trans. Acoust. Speech Signal Process. , vol.26 , pp. 43-49
    • Sakoe, H.1    Chiba, S.2
  • 64
    • 84922219472 scopus 로고    scopus 로고
    • Mapping land cover in complex Mediterranean landscapes using Landsat: improved classification accuracies from integrating multi-seasonal and synthetic imagery
    • Senf, C., Leitão, P.J., Pflugmacher, D., van der Linden, S., Hostert, P., Mapping land cover in complex Mediterranean landscapes using Landsat: improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens. Environ. 156 (2015), 527–536.
    • (2015) Remote Sens. Environ. , vol.156 , pp. 527-536
    • Senf, C.1    Leitão, P.J.2    Pflugmacher, D.3    van der Linden, S.4    Hostert, P.5
  • 66
    • 0018465733 scopus 로고
    • Red and photographic infrared linear combinations for monitoring vegetation
    • Tucker, C.J., Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8 (1979), 127–150.
    • (1979) Remote Sens. Environ. , vol.8 , pp. 127-150
    • Tucker, C.J.1
  • 70
    • 84944743397 scopus 로고    scopus 로고
    • Automated annual cropland mapping using knowledge-based temporal features
    • Waldner, F., Canto, G.S., Defourny, P., Automated annual cropland mapping using knowledge-based temporal features. ISPRS J. Photogramm. Remote Sens. 110 (2015), 1–13.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.110 , pp. 1-13
    • Waldner, F.1    Canto, G.S.2    Defourny, P.3
  • 71
    • 78650862532 scopus 로고    scopus 로고
    • Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
    • Wood, S.N., Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat Methodol. 73 (2011), 3–36.
    • (2011) J. R. Stat. Soc. Ser. B Stat Methodol. , vol.73 , pp. 3-36
    • Wood, S.N.1
  • 73
    • 84893445992 scopus 로고    scopus 로고
    • Automated crop field extraction from multi-temporal web enabled Landsat data
    • Yan, L., Roy, D.P., Automated crop field extraction from multi-temporal web enabled Landsat data. Remote Sens. Environ. 144 (2014), 42–64.
    • (2014) Remote Sens. Environ. , vol.144 , pp. 42-64
    • Yan, L.1    Roy, D.P.2
  • 74
    • 84921314842 scopus 로고    scopus 로고
    • Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction
    • Yan, L., Roy, D.P., Improved time series land cover classification by missing-observation-adaptive nonlinear dimensionality reduction. Remote Sens. Environ. 158 (2015), 478–491.
    • (2015) Remote Sens. Environ. , vol.158 , pp. 478-491
    • Yan, L.1    Roy, D.P.2
  • 75
    • 84946888122 scopus 로고    scopus 로고
    • Conterminous United States crop field size quantification from multi-temporal Landsat data
    • Yan, L., Roy, D., Conterminous United States crop field size quantification from multi-temporal Landsat data. Remote Sens. Environ. 172 (2016), 67–86.
    • (2016) Remote Sens. Environ. , vol.172 , pp. 67-86
    • Yan, L.1    Roy, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.