메뉴 건너뛰기




Volumn 55, Issue 2, 2018, Pages 243-264

Comparing fully convolutional networks, random forest, support vector machine, and patch-based deep convolutional neural networks for object-based wetland mapping using images from small unmanned aircraft system

Author keywords

convolutional neural network; deep learning; FCN; OBIA; UAS

Indexed keywords

ACCURACY ASSESSMENT; AIRCRAFT; ARTIFICIAL NEURAL NETWORK; COMPARATIVE STUDY; IMAGE ANALYSIS; LAND COVER; SUPPORT VECTOR MACHINE; UNMANNED VEHICLE; VEGETATION MAPPING; WETLAND;

EID: 85040978796     PISSN: 15481603     EISSN: None     Source Type: Journal    
DOI: 10.1080/15481603.2018.1426091     Document Type: Article
Times cited : (226)

References (98)
  • 2
    • 85020312124 scopus 로고    scopus 로고
    • Simultaneous Extraction of Roads and Buildings in Remote Sensing Imagery with Convolutional Neural Networks
    • Alshehhi, R., P. R., Marpu, W. L., Woon, and M., Dalla Mura. 2017. “Simultaneous Extraction of Roads and Buildings in Remote Sensing Imagery with Convolutional Neural Networks.” ISPRS Journal of Photogrammetry and Remote Sensing 130: 139–149. doi:10.1016/j.isprsjprs.2017.05.002.
    • (2017) ISPRS Journal of Photogrammetry and Remote Sensing , vol.130 , pp. 139-149
    • Alshehhi, R.1    Marpu, P.R.2    Woon, W.L.3    Dalla Mura, M.4
  • 3
    • 85019549417 scopus 로고    scopus 로고
    • Spatially-explicit modelingof multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States
    • et al
    • Ahmed, Mukhtar, Ahmed, Ajaz, et al. “Spatially-explicit modelingof multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States”. Journal of Environmental Management 199 (2017): 158–171.
    • (2017) Journal of Environmental Management , vol.199 , pp. 158-171
    • Ahmed, M.1    Ajaz, A.2
  • 4
    • 33846939835 scopus 로고    scopus 로고
    • Integrating Ranch Forage Production, Cattle Performance, and Economics in Ranch Management Systems for Southern Florida
    • Arthington, J., F., Roka, J., Mullahey, S., Coleman, R., Muchovej, L., Lollis, and D., Hitchcock. 2007. “Integrating Ranch Forage Production, Cattle Performance, and Economics in Ranch Management Systems for Southern Florida.” Rangeland Ecology & Management 60: 12–18. doi:10.2111/05-074R1.1.
    • (2007) Rangeland Ecology & Management , vol.60 , pp. 12-18
    • Arthington, J.1    Roka, F.2    Mullahey, J.3    Coleman, S.4    Muchovej, R.5    Lollis, L.6    Hitchcock, D.7
  • 5
    • 84961834117 scopus 로고    scopus 로고
    • Random Forest in Remote Sensing: A Review of Applications and Future Directions
    • Belgiu, M., and L., Drăguţ. 2016. “Random Forest in Remote Sensing: A Review of Applications and Future Directions.” ISPRS Journal of Photogrammetry and Remote Sensing 114: 24–31. doi:10.1016/j.isprsjprs.2016.01.011.
    • (2016) ISPRS Journal of Photogrammetry and Remote Sensing , vol.114 , pp. 24-31
    • Belgiu, M.1    Drăguţ, L.2
  • 6
    • 73249139477 scopus 로고    scopus 로고
    • Object Based Image Analysis for Remote Sensing
    • Blaschke, T., 2010. “Object Based Image Analysis for Remote Sensing.” ISPRS Journal of Photogrammetry and Remote Sensing 65: 2–16. doi:10.1016/j.isprsjprs.2009.06.004.
    • (2010) ISPRS Journal of Photogrammetry and Remote Sensing , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 7
    • 0035478854 scopus 로고    scopus 로고
    • Random Forests
    • Breiman, L., 2001. “Random Forests.” Machine Learning 45: 5-32. doi:10.1023/A:1010933404324.
    • (2001) Machine Learning , vol.45 , pp. 5-32
    • Breiman, L.1
  • 9
    • 85027047340 scopus 로고    scopus 로고
    • Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images
    • Cheng, G., P., Zhou, and J., Han. 2016. “Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images.” IEEE Transactions on Geoscience and Remote Sensing 54: 7405–7415. doi:10.1109/TGRS.2016.2601622.
    • (2016) IEEE Transactions on Geoscience and Remote Sensing , vol.54 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 10
    • 34249753618 scopus 로고
    • Support-Vector Networks
    • Cortes, C., and V., Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20: 273–297. doi:10.1007/BF00994018.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 12
    • 85043516910 scopus 로고    scopus 로고
    • Trimble eCognition Developer 8.7 Reference Book. Trimble Germany GmbH, Munich
    • Developer, E., 2012. Trimble eCognition Developer 8.7 Reference Book. Trimble Germany GmbH, Munich.
    • (2012)
    • Developer, E.1
  • 13
    • 30644464444 scopus 로고    scopus 로고
    • Gene Selection and Classification of Microarray Data Using Random Forest
    • Díaz-Uriarte, R., and S. A., De Andres. 2006. “Gene Selection and Classification of Microarray Data Using Random Forest.” BMC Bioinformatics 7: 3. doi:10.1186/1471-2105-7-3.
    • (2006) BMC Bioinformatics , vol.7 , pp. 3
    • Díaz-Uriarte, R.1    De Andres, S.A.2
  • 14
    • 84891136260 scopus 로고    scopus 로고
    • Automated Parameterisation for Multi-Scale Image Segmentation on Multiple Layers
    • Drăguţ, L., O., Csillik, C., Eisank, and D., Tiede. 2014. “Automated Parameterisation for Multi-Scale Image Segmentation on Multiple Layers.” ISPRS Journal of Photogrammetry and Remote Sensing 88: 119–127. doi:10.1016/j.isprsjprs.2013.11.018.
    • (2014) ISPRS Journal of Photogrammetry and Remote Sensing , vol.88 , pp. 119-127
    • Drăguţ, L.1    Csillik, O.2    Eisank, C.3    Tiede, D.4
  • 15
    • 85043515833 scopus 로고    scopus 로고
    • Features Reference
    • eCognition, 2012. Features Reference, http://community.ecognition.com/home/features-reference.
    • (2012)
  • 16
    • 85007330170 scopus 로고    scopus 로고
    • Analysis of Landslide Evolution Affecting Olive Groves Using UAV and Photogrammetric Techniques
    • Fernández, T., J. L., Pérez, J., Cardenal, J. M., Gómez, C., Colomo, and J., Delgado. 2016. “Analysis of Landslide Evolution Affecting Olive Groves Using UAV and Photogrammetric Techniques.” Remote Sensing 8: 837. doi:10.3390/rs8100837.
    • (2016) Remote Sensing , vol.8 , pp. 837
    • Fernández, T.1    Pérez, J.L.2    Cardenal, J.3    Gómez, J.M.4    Colomo, C.5    Delgado, J.6
  • 17
    • 84872754117 scopus 로고    scopus 로고
    • Exotic Species in the Everglades Protection Area
    • 15. South FloridaWater Management District (SFWMD) and Florida Department ofEnvironmental Protection (FDEP)
    • Ferriter, A., K., Serbesoff-King, M., Bodle, C., Goodyear, B., Doren, and K., Langeland. 2004. “Exotic Species in the Everglades Protection Area.” In: 2004 Everglades Consolidated Report, 11–15. South FloridaWater Management District (SFWMD) and Florida Department ofEnvironmental Protection (FDEP).
    • (2004) 2004 Everglades Consolidated Report , pp. 11
    • Ferriter, A.1    Serbesoff-King, K.2    Bodle, M.3    Goodyear, C.4    Doren, B.5    Langeland, K.6
  • 18
    • 84864187384 scopus 로고    scopus 로고
    • Forest Biomass Estimation from Airborne LiDAR Data Using Machine Learning Approaches
    • Gleason, C. J., and J., Im. 2012. “Forest Biomass Estimation from Airborne LiDAR Data Using Machine Learning Approaches.” Remote Sensing of Environment 125: 80–91. doi:10.1016/j.rse.2012.07.006.
    • (2012) Remote Sensing of Environment , vol.125 , pp. 80-91
    • Gleason, C.J.1    Im, J.2
  • 19
    • 85011844325 scopus 로고    scopus 로고
    • A Comparison of Unsupervised Segmentation Parameter Optimization Approaches Using Moderate- and High-Resolution Imagery
    • Grybas, H., L., Melendy, and R. G., Congalton. 2017. “A Comparison of Unsupervised Segmentation Parameter Optimization Approaches Using Moderate- and High-Resolution Imagery.” GIScience & Remote Sensing,54: 1–19.
    • (2017) GIScience & Remote Sensing,54: , pp. 1-19
    • Grybas, H.1    Melendy, L.2    Congalton, R.G.3
  • 22
    • 33745805403 scopus 로고    scopus 로고
    • A Fast Learning Algorithm for Deep Belief Nets
    • Hinton, G. E., S., Osindero, and Y.-W., Teh. 2006. “A Fast Learning Algorithm for Deep Belief Nets.” Neural Computation 18: 1527–1554. doi:10.1162/neco.2006.18.7.1527.
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 24
    • 0036505670 scopus 로고    scopus 로고
    • A Comparison of Methods for Multiclass Support Vector Machines
    • Hsu, C.-W., and C.-J., Lin. 2002. “A Comparison of Methods for Multiclass Support Vector Machines.” IEEE Transactions on Neural Networks 13: 415–425. doi:10.1109/72.991427.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 26
    • 84939141053 scopus 로고    scopus 로고
    • Deepconvolutional neural networks for hyperspectral image classification
    • Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H., 2015. Deepconvolutional neural networks for hyperspectral image classification. Journal of Sensors.
    • (2015) Journal of Sensors
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 27
    • 37249089673 scopus 로고    scopus 로고
    • Object‐Based Change Detection Using Correlation Image Analysis and Image Segmentation
    • Im, J., J., Jensen, and J., Tullis. 2008. “Object‐Based Change Detection Using Correlation Image Analysis and Image Segmentation.” International Journal of Remote Sensing 29: 399–423. doi:10.1080/01431160601075582.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 399-423
    • Im, J.1    Jensen, J.2    Tullis, J.3
  • 28
    • 84979497459 scopus 로고    scopus 로고
    • Downscaling of AMSR-E Soil Moisture with MODIS Products Using Machine Learning Approaches
    • Im, J., S., Park, J., Rhee, J., Baik, and M., Choi. 2016. “Downscaling of AMSR-E Soil Moisture with MODIS Products Using Machine Learning Approaches.” Environmental Earth Sciences 75: 1120. doi:10.1007/s12665-016-5917-6.
    • (2016) Environmental Earth Sciences , vol.75 , pp. 1120
    • Im, J.1    Park, S.2    Rhee, J.3    Baik, J.4    Choi, M.5
  • 30
    • 0029239860 scopus 로고
    • Inland Wetland Change Detection in the Everglades Water Conservation Area 2A Using a Time Series of Normalized Remotely Sensed Data
    • Jensen, J. R., K., Rutchey, M. S., Koch, and S., Narumalani. 1995. “Inland Wetland Change Detection in the Everglades Water Conservation Area 2A Using a Time Series of Normalized Remotely Sensed Data.” Photogrammetric Engineering and Remote Sensing 61: 199–209.
    • (1995) Photogrammetric Engineering and Remote Sensing , vol.61 , pp. 199-209
    • Jensen, J.R.1    Rutchey, K.2    Koch, M.S.3    Narumalani, S.4
  • 31
    • 77949657728 scopus 로고    scopus 로고
    • Synergistic Use of QuickBird Multispectral Imagery and LIDAR Data for Object-Based Forest Species Classification
    • Ke, Y., L. J., Quackenbush, and J., Im. 2010. “Synergistic Use of QuickBird Multispectral Imagery and LIDAR Data for Object-Based Forest Species Classification.” Remote Sensing of Environment 114: 1141–1154. doi:10.1016/j.rse.2010.01.002.
    • (2010) Remote Sensing of Environment , vol.114 , pp. 1141-1154
    • Ke, Y.1    Quackenbush, L.J.2    Im, J.3
  • 35
    • 85017192157 scopus 로고    scopus 로고
    • Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data
    • Kussul, N., M., Lavreniuk, S., Skakun, and A., Shelestov. 2017. “Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data.” IEEE Geoscience and Remote Sensing Letters 14: 778–782. doi:10.1109/LGRS.2017.2681128.
    • (2017) IEEE Geoscience and Remote Sensing Letters , vol.14 , pp. 778-782
    • Kussul, N.1    Lavreniuk, M.2    Skakun, S.3    Shelestov, A.4
  • 36
    • 84930630277 scopus 로고    scopus 로고
    • Deep Learning
    • LeCun, Y., Y., Bengio, and G., Hinton. 2015. “Deep Learning.” Nature 521: 436–444. doi:10.1038/nature14539.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 37
    • 85019910702 scopus 로고    scopus 로고
    • Detection of Deterministic and Probabilistic Convection Initiation Using Himawari-8 Advanced Himawari Imager Data
    • Lee, S., H., Han, J., Im, E., Jang, and M.-I., Lee. 2017. “Detection of Deterministic and Probabilistic Convection Initiation Using Himawari-8 Advanced Himawari Imager Data.” Atmospheric Measurement Techniques 10: 1859–1874. doi:10.5194/amt-10-1859-2017.
    • (2017) Atmospheric Measurement Techniques , vol.10 , pp. 1859-1874
    • Lee, S.1    Han, H.2    Im, J.3    Jang, E.4    Lee, M.-I.5
  • 38
    • 84928653893 scopus 로고    scopus 로고
    • Super-Resolution Mapping of Wetland Inundation from Remote Sensing Imagery Based on Integration of Back-Propagation Neural Network and Genetic Algorithm
    • Li, L., Y., Chen, T., Xu, R., Liu, K., Shi, and C., Huang. 2015. “Super-Resolution Mapping of Wetland Inundation from Remote Sensing Imagery Based on Integration of Back-Propagation Neural Network and Genetic Algorithm.” Remote Sensing of Environment 164: 142–154. doi:10.1016/j.rse.2015.04.009.
    • (2015) Remote Sensing of Environment , vol.164 , pp. 142-154
    • Li, L.1    Chen, Y.2    Xu, T.3    Liu, R.4    Shi, K.5    Huang, C.6
  • 39
    • 84906945992 scopus 로고    scopus 로고
    • Forest Biomass and Carbon Stock Quantification Using Airborne LiDAR Data: A Case Study over Huntington Wildlife Forest in the Adirondack Park
    • Li, M., J., Im, L. J., Quackenbush, and T., Liu. 2014. “Forest Biomass and Carbon Stock Quantification Using Airborne LiDAR Data: A Case Study over Huntington Wildlife Forest in the Adirondack Park.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7: 3143–3156. doi:10.1109/JSTARS.2014.2304642.
    • (2014) IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing , vol.7 , pp. 3143-3156
    • Li, M.1    Im, J.2    Quackenbush, L.J.3    Liu, T.4
  • 40
    • 85017406334 scopus 로고    scopus 로고
    • A Systematic Comparison of Different Object-Based Classification Techniques Using High Spatial Resolution Imagery in Agricultural Environments
    • Li, M., L., Ma, T., Blaschke, L., Cheng, and D., Tiede. 2016a. “A Systematic Comparison of Different Object-Based Classification Techniques Using High Spatial Resolution Imagery in Agricultural Environments.” International Journal of Applied Earth Observation and Geoinformation 49: 87–98. doi:10.1016/j.jag.2016.01.011.
    • (2016) International Journal of Applied Earth Observation and Geoinformation , vol.49 , pp. 87-98
    • Li, M.1    Ma, L.2    Blaschke, T.3    Cheng, L.4    Tiede, D.5
  • 41
    • 84991434399 scopus 로고    scopus 로고
    • Landslide Mapping from Aerial Photographs Using Change Detection-Based Markov Random Field
    • Li, Z., W., Shi, P., Lu, L., Yan, Q., Wang, and Z., Miao. 2016b. “Landslide Mapping from Aerial Photographs Using Change Detection-Based Markov Random Field.” Remote Sensing of Environment 187: 76–90. doi:10.1016/j.rse.2016.10.008.
    • (2016) Remote Sensing of Environment , vol.187 , pp. 76-90
    • Li, Z.1    Shi, W.2    Lu, P.3    Yan, L.4    Wang, Q.5    Miao, Z.6
  • 42
    • 84871735507 scopus 로고    scopus 로고
    • Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the Page 2 of 4 recognition of orange beverage and Chinese vinegar
    • Liu, M., Wang, M., Wang, J., Li, D., 2013. Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the Page 2 of 4 recognition of orange beverage and Chinese vinegar. Sensors and Actuators B: Chemical 177, 970–980.
    • (2013) Sensors and Actuators B: Chemical , vol.177 , pp. 970-980
    • Liu, M.1    Wang, M.2    Wang, J.3    Li, D.4
  • 43
    • 84945250026 scopus 로고    scopus 로고
    • A Novel Transferable Individual Tree Crown Delineation Model Based on Fishing Net Dragging and Boundary Classification
    • Liu, T., J., Im, and L. J., Quackenbush. 2015. “A Novel Transferable Individual Tree Crown Delineation Model Based on Fishing Net Dragging and Boundary Classification.” ISPRS Journal of Photogrammetry and Remote Sensing 110: 34–47. doi:10.1016/j.isprsjprs.2015.10.002.
    • (2015) ISPRS Journal of Photogrammetry and Remote Sensing , vol.110 , pp. 34-47
    • Liu, T.1    Im, J.2    Quackenbush, L.J.3
  • 45
    • 85016257803 scopus 로고    scopus 로고
    • Species Classification Using Unmanned Aerial Vehicle (UAV)-Acquired High Spatial Resolution Imagery in a Heterogeneous Grassland
    • Lu, B., and Y., He. 2017. “Species Classification Using Unmanned Aerial Vehicle (UAV)-Acquired High Spatial Resolution Imagery in a Heterogeneous Grassland.” ISPRS Journal of Photogrammetry and Remote Sensing 128: 73–85. doi:10.1016/j.isprsjprs.2017.03.011.
    • (2017) ISPRS Journal of Photogrammetry and Remote Sensing , vol.128 , pp. 73-85
    • Lu, B.1    He, Y.2
  • 46
  • 47
    • 84988038682 scopus 로고    scopus 로고
    • Semisupervised Classification for Hyperspectral Image Based on Multi-Decision Labeling and Deep Feature Learning
    • Ma, X., H., Wang, and J., Wang. 2016. “Semisupervised Classification for Hyperspectral Image Based on Multi-Decision Labeling and Deep Feature Learning.” ISPRS Journal of Photogrammetry and Remote Sensing 120: 99–107. doi:10.1016/j.isprsjprs.2016.09.001.
    • (2016) ISPRS Journal of Photogrammetry and Remote Sensing , vol.120 , pp. 99-107
    • Ma, X.1    Wang, H.2    Wang, J.3
  • 49
    • 85043526632 scopus 로고    scopus 로고
    • Stilla, U.,. Classification with an edge: improving semanticimage segmentation with boundary detection.
    • Marmanis, D., K., Schindler, J.D., Wegner, S., Galliani, and M, Datcu.,Stilla, U., 2016. Classification with an edge: improving semanticimage segmentation with boundary detection. arXiv preprintarXiv: 1612.01337.
    • (2016)
    • Marmanis, D.1    Schindler, K.2    Wegner, J.D.3    Galliani, S.4    Datcu, M.5
  • 53
    • 84865983502 scopus 로고    scopus 로고
    • Canopy Height Measurement by Photogrammetric Analysis of Aerial Images: Application to Buckwheat (Fagopyrum Esculentum Moench) Lodging Evaluation
    • Murakami, T., M., Yui, and K., Amaha. 2012. “Canopy Height Measurement by Photogrammetric Analysis of Aerial Images: Application to Buckwheat (Fagopyrum Esculentum Moench) Lodging Evaluation.” Computers and Electronics in Agriculture 89: 70–75. doi:10.1016/j.compag.2012.08.003.
    • (2012) Computers and Electronics in Agriculture , vol.89 , pp. 70-75
    • Murakami, T.1    Yui, M.2    Amaha, K.3
  • 55
    • 84973493588 scopus 로고    scopus 로고
    • Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs)
    • Pajares, G., 2015. “Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs).” Photogrammetric Engineering & Remote Sensing 81: 281–330. doi:10.14358/PERS.81.4.281.
    • (2015) Photogrammetric Engineering & Remote Sensing , vol.81 , pp. 281-330
    • Pajares, G.1
  • 56
    • 13344278660 scopus 로고    scopus 로고
    • Random Forest Classifier for Remote Sensing Classification
    • Pal, M., 2005. “Random Forest Classifier for Remote Sensing Classification.” International Journal of Remote Sensing 26: 217–222. doi:10.1080/01431160412331269698.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 217-222
    • Pal, M.1
  • 57
    • 85043535581 scopus 로고    scopus 로고
    • Object-Based Classification of Wetland Vegetation Using Very High-Resolution Unmanned Air System Imagery
    • Pande-Chhetri, R., A., Abd-Elrahman, T., Liu, J., Morton, and V. L., Wilhelm. 2017. “Object-Based Classification of Wetland Vegetation Using Very High-Resolution Unmanned Air System Imagery.” European Journal of Remote Sensing 50: 564–576. doi:10.1080/22797254.2017.1373602.
    • (2017) European Journal of Remote Sensing , vol.50 , pp. 564-576
    • Pande-Chhetri, R.1    Abd-Elrahman, A.2    Liu, T.3    Morton, J.4    Wilhelm, V.L.5
  • 58
    • 84945550767 scopus 로고    scopus 로고
    • Drought Assessment and Monitoring through Blending of Multi-Sensor Indices Using Machine Learning Approaches for Different Climate Regions
    • Park, S., J., Im, E., Jang, and J., Rhee. 2016. “Drought Assessment and Monitoring through Blending of Multi-Sensor Indices Using Machine Learning Approaches for Different Climate Regions.” Agricultural and Forest Meteorology 216: 157–169. doi:10.1016/j.agrformet.2015.10.011.
    • (2016) Agricultural and Forest Meteorology , vol.216 , pp. 157-169
    • Park, S.1    Im, J.2    Jang, E.3    Rhee, J.4
  • 59
    • 79952732827 scopus 로고    scopus 로고
    • Architecture for a Helicopter-Based Unmanned Aerial Systems Wildfire Surveillance System
    • Pastor, E., C., Barrado, P., Royo, E., Santamaria, J., Lopez, and E., Salami. 2011. “Architecture for a Helicopter-Based Unmanned Aerial Systems Wildfire Surveillance System.” Geocarto International 26: 113–131. doi:10.1080/10106049.2010.531769.
    • (2011) Geocarto International , vol.26 , pp. 113-131
    • Pastor, E.1    Barrado, C.2    Royo, P.3    Santamaria, E.4    Lopez, J.5    Salami, E.6
  • 60
    • 84979243750 scopus 로고    scopus 로고
    • Accuracy Assessment of a UAV-Based Landslide Monitoring System. ISPRS-International Archives of the Photogrammetry
    • Peppa, M., J., Mills, P., Moore, P., Miller, and J., Chambers. 2016. “Accuracy Assessment of a UAV-Based Landslide Monitoring System. ISPRS-International Archives of the Photogrammetry.” Remote Sensing and Spatial Information Sciences 895–902.
    • (2016) Remote Sensing and Spatial Information Sciences , pp. 895-902
    • Peppa, M.1    Mills, J.2    Moore, P.3    Miller, P.4    Chambers, J.5
  • 64
    • 85012065300 scopus 로고    scopus 로고
    • Meteorological Drought Forecasting for Ungauged Areas Based on Machine Learning: Using Long-Range Climate Forecast and Remote Sensing Data
    • Rhee, J., and J., Im. 2017. “Meteorological Drought Forecasting for Ungauged Areas Based on Machine Learning: Using Long-Range Climate Forecast and Remote Sensing Data.” Agricultural and Forest Meteorology 237: 105–122. doi:10.1016/j.agrformet.2017.02.011.
    • (2017) Agricultural and Forest Meteorology , vol.237 , pp. 105-122
    • Rhee, J.1    Im, J.2
  • 66
    • 84925433505 scopus 로고    scopus 로고
    • Development of Hyperspectral Imaging Sensor, Which Mounted on UAV for Environmental Study at Coastal Zone
    • Saito, G., H., Seki, K., Uto, Y., Kosugi, and T., Komatsu. 2014. “Development of Hyperspectral Imaging Sensor, Which Mounted on UAV for Environmental Study at Coastal Zone.” In: 35th Asian Conference on Remote Sensing.
    • (2014) 35th Asian Conference on Remote Sensing
    • Saito, G.1    Seki, H.2    Uto, K.3    Kosugi, Y.4    Komatsu, T.5
  • 67
    • 84868629417 scopus 로고    scopus 로고
    • Application of Low Altitude Remote Sensing (LARS) Platform for Monitoring Crop Growth and Weed Infestation in a Soybean Plantation
    • Samseemoung, G., P., Soni, H. P., Jayasuriya, and V. M., Salokhe. 2012. “Application of Low Altitude Remote Sensing (LARS) Platform for Monitoring Crop Growth and Weed Infestation in a Soybean Plantation.” Precision Agriculture 13: 611–627. doi:10.1007/s11119-012-9271-8.
    • (2012) Precision Agriculture , vol.13 , pp. 611-627
    • Samseemoung, G.1    Soni, P.2    Jayasuriya, H.P.3    Salokhe, V.M.4
  • 68
    • 85006749146 scopus 로고    scopus 로고
    • Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition
    • Scherer, D., A., Müller, and S., Behnke. 2010. “Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition.” Artificial Neural Networks–ICANN 2010: 92–101.
    • (2010) Artificial Neural Networks–ICANN , vol.2010 , pp. 92-101
    • Scherer, D.1    Müller, A.2    Behnke, S.3
  • 69
    • 85043501691 scopus 로고    scopus 로고
    • Learning with kernels: supportvector machines, regularization, optimization, and beyond. MIT press, and
    • Scholkopf, B., and A.J, Smola., 2001. Learning with kernels: supportvector machines, regularization, optimization, and beyond. MIT press.
    • (2001)
    • Scholkopf, B.1    Smola, A.J.2
  • 76
    • 48549094895 scopus 로고    scopus 로고
    • A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-Based Cancer Classification
    • Statnikov, A., L., Wang, and C. F., Aliferis. 2008. “A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-Based Cancer Classification.” BMC Bioinformatics 9: 319. doi:10.1186/1471-2105-9-319.
    • (2008) BMC Bioinformatics , vol.9 , pp. 319
    • Statnikov, A.1    Wang, L.2    Aliferis, C.F.3
  • 77
    • 84907019192 scopus 로고    scopus 로고
    • Hierarchical Feature Representation and Multimodal Fusion with Deep Learning for AD/MCI Diagnosis
    • Suk, H.-I., S.-W., Lee, D., Shen, and A. S. D. N., Initiative. 2014. “Hierarchical Feature Representation and Multimodal Fusion with Deep Learning for AD/MCI Diagnosis.” NeuroImage 101: 569–582. doi:10.1016/j.neuroimage.2014.06.077.
    • (2014) NeuroImage , vol.101 , pp. 569-582
    • Suk, H.-I.1    Lee, S.-W.2    Shen, D.3    Initiative, A.S.D.N.4
  • 78
    • 84897694587 scopus 로고    scopus 로고
    • Generation of Large Mosaic Images for Vegetation Monitoring Using a Small Unmanned Aerial Vehicle
    • Suzuki, T., Y., Amano, T., Hashizume, S., Suzuki, and A., Yamaba. 2010. “Generation of Large Mosaic Images for Vegetation Monitoring Using a Small Unmanned Aerial Vehicle.” Journal of Robotics and Mechatronics 22: 212–220. doi:10.20965/jrm.2010.p0212.
    • (2010) Journal of Robotics and Mechatronics , vol.22 , pp. 212-220
    • Suzuki, T.1    Amano, Y.2    Hashizume, T.3    Suzuki, S.4    Yamaba, A.5
  • 79
    • 84886028687 scopus 로고    scopus 로고
    • Trade-Offs among Ecosystem Services and Disservices on a Florida Ranch
    • Swain, H. M., E. H., Boughton, P. J., Bohlen, and L. O. G., Lollis. 2013. “Trade-Offs among Ecosystem Services and Disservices on a Florida Ranch.” Rangelands 35: 75–87. doi:10.2111/RANGELANDS-D-13-00053.1.
    • (2013) Rangelands , vol.35 , pp. 75-87
    • Swain, H.M.1    Boughton, E.H.2    Bohlen, P.J.3    Lollis, L.O.G.4
  • 82
    • 85014668630 scopus 로고    scopus 로고
    • Disaster Damage Detection through Synergistic Use of Deep Learning and 3D Point Cloud Features Derived from Very High Resolution Oblique Aerial Images, and Multiple-Kernel-Learning
    • Vetrivel, A., M., Gerke, N., Kerle, F., Nex, and G., Vosselman. 2017. “Disaster Damage Detection through Synergistic Use of Deep Learning and 3D Point Cloud Features Derived from Very High Resolution Oblique Aerial Images, and Multiple-Kernel-Learning.” ISPRS Journal of Photogrammetry and Remote Sensing. doi:10.1016/j.isprsjprs.2017.03.001.
    • (2017) ISPRS Journal of Photogrammetry and Remote Sensing
    • Vetrivel, A.1    Gerke, M.2    Kerle, N.3    Nex, F.4    Vosselman, G.5
  • 83
    • 84961198624 scopus 로고    scopus 로고
    • Channel Bar Feature Extraction for a Mining-Contaminated River Using High-Spatial Multispectral Remote-Sensing Imagery
    • Wang, C., R. T., Pavlowsky, Q., Huang, and C., Chang. 2016. “Channel Bar Feature Extraction for a Mining-Contaminated River Using High-Spatial Multispectral Remote-Sensing Imagery.” GIScience & Remote Sensing 53: 283–302. doi:10.1080/15481603.2016.1148229.
    • (2016) GIScience & Remote Sensing , vol.53 , pp. 283-302
    • Wang, C.1    Pavlowsky, R.T.2    Huang, Q.3    Chang, C.4
  • 84
    • 34047138873 scopus 로고    scopus 로고
    • Improved Wetland Remote Sensing in Yellowstone National Park Using Classification Trees to Combine TM Imagery and Ancillary Environmental Data
    • Wright, C., and A., Gallant. 2007. “Improved Wetland Remote Sensing in Yellowstone National Park Using Classification Trees to Combine TM Imagery and Ancillary Environmental Data.” Remote Sensing of Environment 107: 582–605. doi:10.1016/j.rse.2006.10.019.
    • (2007) Remote Sensing of Environment , vol.107 , pp. 582-605
    • Wright, C.1    Gallant, A.2
  • 86
    • 85043537858 scopus 로고    scopus 로고
    • Artificial neural networks. PHI Learning Pvt. Ltd
    • Yegnanarayana, B., 2009. Artificial neural networks. PHI Learning Pvt. Ltd
    • (2009)
    • Yegnanarayana, B.1
  • 87
    • 33745615125 scopus 로고    scopus 로고
    • Object-Based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery
    • Yu, Q., P., Gong, N., Clinton, G., Biging, M., Kelly, and D., Schirokauer. 2006. “Object-Based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery.” Photogrammetric Engineering & Remote Sensing 72: 799–811. doi:10.14358/PERS.72.7.799.
    • (2006) Photogrammetric Engineering & Remote Sensing , vol.72 , pp. 799-811
    • Yu, Q.1    Gong, P.2    Clinton, N.3    Biging, G.4    Kelly, M.5    Schirokauer, D.6
  • 88
    • 84876316434 scopus 로고    scopus 로고
    • The Application of Unmanned Aerial Vehicle Remote Sensing in Quickly Monitoring Crop Pests
    • Yue, J., T., Lei, C., Li, and J., Zhu. 2012. “The Application of Unmanned Aerial Vehicle Remote Sensing in Quickly Monitoring Crop Pests.” Intelligent Automation & Soft Computing 18: 1043–1052. doi:10.1080/10798587.2008.10643309.
    • (2012) Intelligent Automation & Soft Computing , vol.18 , pp. 1043-1052
    • Yue, J.1    Lei, T.2    Li, C.3    Zhu, J.4
  • 90
    • 84855428733 scopus 로고    scopus 로고
    • Fluorescence, Temperature and Narrow-Band Indices Acquired from a UAV Platform for Water Stress Detection Using a Micro-Hyperspectral Imager and a Thermal Camera
    • Zarco-Tejada, P. J., V., González-Dugo, and J. A., Berni. 2012. “Fluorescence, Temperature and Narrow-Band Indices Acquired from a UAV Platform for Water Stress Detection Using a Micro-Hyperspectral Imager and a Thermal Camera.” Remote Sensing of Environment 117: 322–337. doi:10.1016/j.rse.2011.10.007.
    • (2012) Remote Sensing of Environment , vol.117 , pp. 322-337
    • Zarco-Tejada, P.J.1    González-Dugo, V.2    Berni, J.A.3
  • 91
    • 6344291626 scopus 로고    scopus 로고
    • Causes and Consequences of Invasive Plants in Wetlands: Opportunities, Opportunists, and Outcomes
    • Zedler, J. B., and S., Kercher. 2004. “Causes and Consequences of Invasive Plants in Wetlands: Opportunities, Opportunists, and Outcomes.” Critical Reviews in Plant Sciences 23: 431–452. doi:10.1080/07352680490514673.
    • (2004) Critical Reviews in Plant Sciences , vol.23 , pp. 431-452
    • Zedler, J.B.1    Kercher, S.2
  • 92
    • 28644431944 scopus 로고    scopus 로고
    • Wetland Resources: Status, Trends, Ecosystem Services, and Restorability
    • Zedler, J. B., and S., Kercher. 2005. “Wetland Resources: Status, Trends, Ecosystem Services, and Restorability.” Annu. Rev. Environ. Resour. 30: 39–74. doi:10.1146/annurev.energy.30.050504.144248.
    • (2005) Annu. Rev. Environ. Resour. , vol.30 , pp. 39-74
    • Zedler, J.B.1    Kercher, S.2
  • 93
  • 94
    • 84960327084 scopus 로고    scopus 로고
    • Change Detection Based on Deep Feature Representation and Mapping Transformation for Multi-Spatial-Resolution Remote Sensing Images
    • Zhang, P., M., Gong, L., Su, J., Liu, and Z., Li. 2016. “Change Detection Based on Deep Feature Representation and Mapping Transformation for Multi-Spatial-Resolution Remote Sensing Images.” ISPRS Journal of Photogrammetry and Remote Sensing 116: 24–41. doi:10.1016/j.isprsjprs.2016.02.013.
    • (2016) ISPRS Journal of Photogrammetry and Remote Sensing , vol.116 , pp. 24-41
    • Zhang, P.1    Gong, M.2    Su, L.3    Liu, J.4    Li, Z.5
  • 95
    • 84956620231 scopus 로고    scopus 로고
    • Learning Multiscale and Deep Representations for Classifying Remotely Sensed Imagery
    • Zhao, W., and S., Du. 2016. “Learning Multiscale and Deep Representations for Classifying Remotely Sensed Imagery.” ISPRS Journal of Photogrammetry and Remote Sensing 113: 155–165. doi:10.1016/j.isprsjprs.2016.01.004.
    • (2016) ISPRS Journal of Photogrammetry and Remote Sensing , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 98
    • 84925234205 scopus 로고    scopus 로고
    • Use of Unmanned Aircraft Systems to Delineate Fine-Scale Wetland Vegetation Communities
    • Zweig, C. L., M. A., Burgess, H. F., Percival, and W. M., Kitchens. 2015. “Use of Unmanned Aircraft Systems to Delineate Fine-Scale Wetland Vegetation Communities.” Wetlands 35: 303–309. doi:10.1007/s13157-014-0612-4.
    • (2015) Wetlands , vol.35 , pp. 303-309
    • Zweig, C.L.1    Burgess, M.A.2    Percival, H.F.3    Kitchens, W.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.