-
1
-
-
85019549417
-
-
Ajaz Ahmed, M. A., A., Abd-Elrahman, F. J., Escobedo, W. P., Cropper Jr, T. A., Martin, and N., Timilsina. 2017. “Spatially-Explicit Modeling of Multi-Scale Drivers of Aboveground Forest Biomass and Water Yield in Watersheds of the Southeastern United States.” 199: 158.
-
(2017)
Spatially-Explicit Modeling of Multi-Scale Drivers of Aboveground Forest Biomass and Water Yield in Watersheds of the Southeastern United States
, vol.199
, pp. 158
-
-
Ajaz Ahmed, M.A.1
Abd-Elrahman, A.2
Escobedo, F.J.3
Cropper, W.P.4
Martin, T.A.5
Timilsina, N.6
-
2
-
-
85020312124
-
Simultaneous Extraction of Roads and Buildings in Remote Sensing Imagery with Convolutional Neural Networks
-
Alshehhi, R., P. R., Marpu, W. L., Woon, and M., Dalla Mura. 2017. “Simultaneous Extraction of Roads and Buildings in Remote Sensing Imagery with Convolutional Neural Networks.” ISPRS Journal of Photogrammetry and Remote Sensing 130: 139–149. doi:10.1016/j.isprsjprs.2017.05.002.
-
(2017)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.130
, pp. 139-149
-
-
Alshehhi, R.1
Marpu, P.R.2
Woon, W.L.3
Dalla Mura, M.4
-
3
-
-
85019549417
-
Spatially-explicit modelingof multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States
-
et al
-
Ahmed, Mukhtar, Ahmed, Ajaz, et al. “Spatially-explicit modelingof multi-scale drivers of aboveground forest biomass and water yield in watersheds of the Southeastern United States”. Journal of Environmental Management 199 (2017): 158–171.
-
(2017)
Journal of Environmental Management
, vol.199
, pp. 158-171
-
-
Ahmed, M.1
Ajaz, A.2
-
4
-
-
33846939835
-
Integrating Ranch Forage Production, Cattle Performance, and Economics in Ranch Management Systems for Southern Florida
-
Arthington, J., F., Roka, J., Mullahey, S., Coleman, R., Muchovej, L., Lollis, and D., Hitchcock. 2007. “Integrating Ranch Forage Production, Cattle Performance, and Economics in Ranch Management Systems for Southern Florida.” Rangeland Ecology & Management 60: 12–18. doi:10.2111/05-074R1.1.
-
(2007)
Rangeland Ecology & Management
, vol.60
, pp. 12-18
-
-
Arthington, J.1
Roka, F.2
Mullahey, J.3
Coleman, S.4
Muchovej, R.5
Lollis, L.6
Hitchcock, D.7
-
5
-
-
84961834117
-
Random Forest in Remote Sensing: A Review of Applications and Future Directions
-
Belgiu, M., and L., Drăguţ. 2016. “Random Forest in Remote Sensing: A Review of Applications and Future Directions.” ISPRS Journal of Photogrammetry and Remote Sensing 114: 24–31. doi:10.1016/j.isprsjprs.2016.01.011.
-
(2016)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.114
, pp. 24-31
-
-
Belgiu, M.1
Drăguţ, L.2
-
6
-
-
73249139477
-
Object Based Image Analysis for Remote Sensing
-
Blaschke, T., 2010. “Object Based Image Analysis for Remote Sensing.” ISPRS Journal of Photogrammetry and Remote Sensing 65: 2–16. doi:10.1016/j.isprsjprs.2009.06.004.
-
(2010)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.65
, pp. 2-16
-
-
Blaschke, T.1
-
7
-
-
0035478854
-
Random Forests
-
Breiman, L., 2001. “Random Forests.” Machine Learning 45: 5-32. doi:10.1023/A:1010933404324.
-
(2001)
Machine Learning
, vol.45
, pp. 5-32
-
-
Breiman, L.1
-
8
-
-
1242322065
-
Airborne Measurement of Hot Spot Reflectance Signatures
-
Camacho-de Coca, F., F. M., Bréon, M., Leroy, and F. J., Garcia-Haro. 2004. “Airborne Measurement of Hot Spot Reflectance Signatures.” Remote Sensing of Environment 90: 63–75. doi:10.1016/j.rse.2003.11.019.
-
(2004)
Remote Sensing of Environment
, vol.90
, pp. 63-75
-
-
Camacho-de Coca, F.1
Bréon, F.M.2
Leroy, M.3
Garcia-Haro, F.J.4
-
9
-
-
85027047340
-
Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images
-
Cheng, G., P., Zhou, and J., Han. 2016. “Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images.” IEEE Transactions on Geoscience and Remote Sensing 54: 7405–7415. doi:10.1109/TGRS.2016.2601622.
-
(2016)
IEEE Transactions on Geoscience and Remote Sensing
, vol.54
, pp. 7405-7415
-
-
Cheng, G.1
Zhou, P.2
Han, J.3
-
10
-
-
34249753618
-
Support-Vector Networks
-
Cortes, C., and V., Vapnik. 1995. “Support-Vector Networks.” Machine Learning 20: 273–297. doi:10.1007/BF00994018.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
12
-
-
85043516910
-
-
Trimble eCognition Developer 8.7 Reference Book. Trimble Germany GmbH, Munich
-
Developer, E., 2012. Trimble eCognition Developer 8.7 Reference Book. Trimble Germany GmbH, Munich.
-
(2012)
-
-
Developer, E.1
-
13
-
-
30644464444
-
Gene Selection and Classification of Microarray Data Using Random Forest
-
Díaz-Uriarte, R., and S. A., De Andres. 2006. “Gene Selection and Classification of Microarray Data Using Random Forest.” BMC Bioinformatics 7: 3. doi:10.1186/1471-2105-7-3.
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 3
-
-
Díaz-Uriarte, R.1
De Andres, S.A.2
-
14
-
-
84891136260
-
Automated Parameterisation for Multi-Scale Image Segmentation on Multiple Layers
-
Drăguţ, L., O., Csillik, C., Eisank, and D., Tiede. 2014. “Automated Parameterisation for Multi-Scale Image Segmentation on Multiple Layers.” ISPRS Journal of Photogrammetry and Remote Sensing 88: 119–127. doi:10.1016/j.isprsjprs.2013.11.018.
-
(2014)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.88
, pp. 119-127
-
-
Drăguţ, L.1
Csillik, O.2
Eisank, C.3
Tiede, D.4
-
15
-
-
85043515833
-
-
Features Reference
-
eCognition, 2012. Features Reference, http://community.ecognition.com/home/features-reference.
-
(2012)
-
-
-
16
-
-
85007330170
-
Analysis of Landslide Evolution Affecting Olive Groves Using UAV and Photogrammetric Techniques
-
Fernández, T., J. L., Pérez, J., Cardenal, J. M., Gómez, C., Colomo, and J., Delgado. 2016. “Analysis of Landslide Evolution Affecting Olive Groves Using UAV and Photogrammetric Techniques.” Remote Sensing 8: 837. doi:10.3390/rs8100837.
-
(2016)
Remote Sensing
, vol.8
, pp. 837
-
-
Fernández, T.1
Pérez, J.L.2
Cardenal, J.3
Gómez, J.M.4
Colomo, C.5
Delgado, J.6
-
17
-
-
84872754117
-
Exotic Species in the Everglades Protection Area
-
15. South FloridaWater Management District (SFWMD) and Florida Department ofEnvironmental Protection (FDEP)
-
Ferriter, A., K., Serbesoff-King, M., Bodle, C., Goodyear, B., Doren, and K., Langeland. 2004. “Exotic Species in the Everglades Protection Area.” In: 2004 Everglades Consolidated Report, 11–15. South FloridaWater Management District (SFWMD) and Florida Department ofEnvironmental Protection (FDEP).
-
(2004)
2004 Everglades Consolidated Report
, pp. 11
-
-
Ferriter, A.1
Serbesoff-King, K.2
Bodle, M.3
Goodyear, C.4
Doren, B.5
Langeland, K.6
-
18
-
-
84864187384
-
Forest Biomass Estimation from Airborne LiDAR Data Using Machine Learning Approaches
-
Gleason, C. J., and J., Im. 2012. “Forest Biomass Estimation from Airborne LiDAR Data Using Machine Learning Approaches.” Remote Sensing of Environment 125: 80–91. doi:10.1016/j.rse.2012.07.006.
-
(2012)
Remote Sensing of Environment
, vol.125
, pp. 80-91
-
-
Gleason, C.J.1
Im, J.2
-
19
-
-
85011844325
-
A Comparison of Unsupervised Segmentation Parameter Optimization Approaches Using Moderate- and High-Resolution Imagery
-
Grybas, H., L., Melendy, and R. G., Congalton. 2017. “A Comparison of Unsupervised Segmentation Parameter Optimization Approaches Using Moderate- and High-Resolution Imagery.” GIScience & Remote Sensing,54: 1–19.
-
(2017)
GIScience & Remote Sensing,54:
, pp. 1-19
-
-
Grybas, H.1
Melendy, L.2
Congalton, R.G.3
-
20
-
-
84986274465
-
Deep Residual Learning for Image Recognition
-
In:, IEEE
-
He, K., X., Zhang, S., Ren, and J., Sun. 2016. “Deep Residual Learning for Image Recognition.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 770–778.
-
(2016)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
21
-
-
85032751458
-
Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups
-
Hinton, G., L., Deng, D., Yu, G. E., Dahl, A.-R., Mohamed, N., Jaitly, A., Senior, V., Vanhoucke, P., Nguyen, and T. N., Sainath. 2012. “Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups.” IEEE Signal Processing Magazine 29: 82–97. doi:10.1109/MSP.2012.2205597.
-
(2012)
IEEE Signal Processing Magazine
, vol.29
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.E.4
Mohamed, A.-R.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.N.10
-
22
-
-
33745805403
-
A Fast Learning Algorithm for Deep Belief Nets
-
Hinton, G. E., S., Osindero, and Y.-W., Teh. 2006. “A Fast Learning Algorithm for Deep Belief Nets.” Neural Computation 18: 1527–1554. doi:10.1162/neco.2006.18.7.1527.
-
(2006)
Neural Computation
, vol.18
, pp. 1527-1554
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
23
-
-
0003533021
-
-
University Press, Honolulu, Hawaii, and
-
Holm, L. G., D. L., Plucknett, J. V., Pancho, and J. P., Herberger. 1977. The World’s Worst Weeds. University Press, Honolulu, Hawaii.
-
(1977)
The World’s Worst Weeds
-
-
Holm, L.G.1
Plucknett, D.L.2
Pancho, J.V.3
Herberger, J.P.4
-
24
-
-
0036505670
-
A Comparison of Methods for Multiclass Support Vector Machines
-
Hsu, C.-W., and C.-J., Lin. 2002. “A Comparison of Methods for Multiclass Support Vector Machines.” IEEE Transactions on Neural Networks 13: 415–425. doi:10.1109/72.991427.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
25
-
-
84961087827
-
-
Huval, B., T., Wang, S., Tandon, J., Kiske, W., Song, J., Pazhayampallil, M., Andriluka, P., Rajpurkar, T., Migimatsu, and R., Cheng-Yue. 2015. “An Empirical Evaluation of Deep Learning on Highway Driving.” arXiv Preprint arXiv:1504.01716.
-
(2015)
An Empirical Evaluation of Deep Learning on Highway Driving
-
-
Huval, B.1
Wang, T.2
Tandon, S.3
Kiske, J.4
Song, W.5
Pazhayampallil, J.6
Andriluka, M.7
Rajpurkar, P.8
Migimatsu, T.9
Cheng-Yue, R.10
-
26
-
-
84939141053
-
Deepconvolutional neural networks for hyperspectral image classification
-
Hu, W., Huang, Y., Wei, L., Zhang, F., Li, H., 2015. Deepconvolutional neural networks for hyperspectral image classification. Journal of Sensors.
-
(2015)
Journal of Sensors
-
-
Hu, W.1
Huang, Y.2
Wei, L.3
Zhang, F.4
Li, H.5
-
27
-
-
37249089673
-
Object‐Based Change Detection Using Correlation Image Analysis and Image Segmentation
-
Im, J., J., Jensen, and J., Tullis. 2008. “Object‐Based Change Detection Using Correlation Image Analysis and Image Segmentation.” International Journal of Remote Sensing 29: 399–423. doi:10.1080/01431160601075582.
-
(2008)
International Journal of Remote Sensing
, vol.29
, pp. 399-423
-
-
Im, J.1
Jensen, J.2
Tullis, J.3
-
28
-
-
84979497459
-
Downscaling of AMSR-E Soil Moisture with MODIS Products Using Machine Learning Approaches
-
Im, J., S., Park, J., Rhee, J., Baik, and M., Choi. 2016. “Downscaling of AMSR-E Soil Moisture with MODIS Products Using Machine Learning Approaches.” Environmental Earth Sciences 75: 1120. doi:10.1007/s12665-016-5917-6.
-
(2016)
Environmental Earth Sciences
, vol.75
, pp. 1120
-
-
Im, J.1
Park, S.2
Rhee, J.3
Baik, J.4
Choi, M.5
-
30
-
-
0029239860
-
Inland Wetland Change Detection in the Everglades Water Conservation Area 2A Using a Time Series of Normalized Remotely Sensed Data
-
Jensen, J. R., K., Rutchey, M. S., Koch, and S., Narumalani. 1995. “Inland Wetland Change Detection in the Everglades Water Conservation Area 2A Using a Time Series of Normalized Remotely Sensed Data.” Photogrammetric Engineering and Remote Sensing 61: 199–209.
-
(1995)
Photogrammetric Engineering and Remote Sensing
, vol.61
, pp. 199-209
-
-
Jensen, J.R.1
Rutchey, K.2
Koch, M.S.3
Narumalani, S.4
-
31
-
-
77949657728
-
Synergistic Use of QuickBird Multispectral Imagery and LIDAR Data for Object-Based Forest Species Classification
-
Ke, Y., L. J., Quackenbush, and J., Im. 2010. “Synergistic Use of QuickBird Multispectral Imagery and LIDAR Data for Object-Based Forest Species Classification.” Remote Sensing of Environment 114: 1141–1154. doi:10.1016/j.rse.2010.01.002.
-
(2010)
Remote Sensing of Environment
, vol.114
, pp. 1141-1154
-
-
Ke, Y.1
Quackenbush, L.J.2
Im, J.3
-
35
-
-
85017192157
-
Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data
-
Kussul, N., M., Lavreniuk, S., Skakun, and A., Shelestov. 2017. “Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data.” IEEE Geoscience and Remote Sensing Letters 14: 778–782. doi:10.1109/LGRS.2017.2681128.
-
(2017)
IEEE Geoscience and Remote Sensing Letters
, vol.14
, pp. 778-782
-
-
Kussul, N.1
Lavreniuk, M.2
Skakun, S.3
Shelestov, A.4
-
36
-
-
84930630277
-
Deep Learning
-
LeCun, Y., Y., Bengio, and G., Hinton. 2015. “Deep Learning.” Nature 521: 436–444. doi:10.1038/nature14539.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
37
-
-
85019910702
-
Detection of Deterministic and Probabilistic Convection Initiation Using Himawari-8 Advanced Himawari Imager Data
-
Lee, S., H., Han, J., Im, E., Jang, and M.-I., Lee. 2017. “Detection of Deterministic and Probabilistic Convection Initiation Using Himawari-8 Advanced Himawari Imager Data.” Atmospheric Measurement Techniques 10: 1859–1874. doi:10.5194/amt-10-1859-2017.
-
(2017)
Atmospheric Measurement Techniques
, vol.10
, pp. 1859-1874
-
-
Lee, S.1
Han, H.2
Im, J.3
Jang, E.4
Lee, M.-I.5
-
38
-
-
84928653893
-
Super-Resolution Mapping of Wetland Inundation from Remote Sensing Imagery Based on Integration of Back-Propagation Neural Network and Genetic Algorithm
-
Li, L., Y., Chen, T., Xu, R., Liu, K., Shi, and C., Huang. 2015. “Super-Resolution Mapping of Wetland Inundation from Remote Sensing Imagery Based on Integration of Back-Propagation Neural Network and Genetic Algorithm.” Remote Sensing of Environment 164: 142–154. doi:10.1016/j.rse.2015.04.009.
-
(2015)
Remote Sensing of Environment
, vol.164
, pp. 142-154
-
-
Li, L.1
Chen, Y.2
Xu, T.3
Liu, R.4
Shi, K.5
Huang, C.6
-
39
-
-
84906945992
-
Forest Biomass and Carbon Stock Quantification Using Airborne LiDAR Data: A Case Study over Huntington Wildlife Forest in the Adirondack Park
-
Li, M., J., Im, L. J., Quackenbush, and T., Liu. 2014. “Forest Biomass and Carbon Stock Quantification Using Airborne LiDAR Data: A Case Study over Huntington Wildlife Forest in the Adirondack Park.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 7: 3143–3156. doi:10.1109/JSTARS.2014.2304642.
-
(2014)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, vol.7
, pp. 3143-3156
-
-
Li, M.1
Im, J.2
Quackenbush, L.J.3
Liu, T.4
-
40
-
-
85017406334
-
A Systematic Comparison of Different Object-Based Classification Techniques Using High Spatial Resolution Imagery in Agricultural Environments
-
Li, M., L., Ma, T., Blaschke, L., Cheng, and D., Tiede. 2016a. “A Systematic Comparison of Different Object-Based Classification Techniques Using High Spatial Resolution Imagery in Agricultural Environments.” International Journal of Applied Earth Observation and Geoinformation 49: 87–98. doi:10.1016/j.jag.2016.01.011.
-
(2016)
International Journal of Applied Earth Observation and Geoinformation
, vol.49
, pp. 87-98
-
-
Li, M.1
Ma, L.2
Blaschke, T.3
Cheng, L.4
Tiede, D.5
-
41
-
-
84991434399
-
Landslide Mapping from Aerial Photographs Using Change Detection-Based Markov Random Field
-
Li, Z., W., Shi, P., Lu, L., Yan, Q., Wang, and Z., Miao. 2016b. “Landslide Mapping from Aerial Photographs Using Change Detection-Based Markov Random Field.” Remote Sensing of Environment 187: 76–90. doi:10.1016/j.rse.2016.10.008.
-
(2016)
Remote Sensing of Environment
, vol.187
, pp. 76-90
-
-
Li, Z.1
Shi, W.2
Lu, P.3
Yan, L.4
Wang, Q.5
Miao, Z.6
-
42
-
-
84871735507
-
Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the Page 2 of 4 recognition of orange beverage and Chinese vinegar
-
Liu, M., Wang, M., Wang, J., Li, D., 2013. Comparison of random forest, support vector machine and back propagation neural network for electronic tongue data classification: Application to the Page 2 of 4 recognition of orange beverage and Chinese vinegar. Sensors and Actuators B: Chemical 177, 970–980.
-
(2013)
Sensors and Actuators B: Chemical
, vol.177
, pp. 970-980
-
-
Liu, M.1
Wang, M.2
Wang, J.3
Li, D.4
-
43
-
-
84945250026
-
A Novel Transferable Individual Tree Crown Delineation Model Based on Fishing Net Dragging and Boundary Classification
-
Liu, T., J., Im, and L. J., Quackenbush. 2015. “A Novel Transferable Individual Tree Crown Delineation Model Based on Fishing Net Dragging and Boundary Classification.” ISPRS Journal of Photogrammetry and Remote Sensing 110: 34–47. doi:10.1016/j.isprsjprs.2015.10.002.
-
(2015)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.110
, pp. 34-47
-
-
Liu, T.1
Im, J.2
Quackenbush, L.J.3
-
44
-
-
84959205572
-
Fully Convolutional Networks for Semantic Segmentation
-
Long, J., E., Shelhamer, and T., Darrell. 2015. “Fully Convolutional Networks for Semantic Segmentation.” In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 3431–3440.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, IEEE
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
45
-
-
85016257803
-
Species Classification Using Unmanned Aerial Vehicle (UAV)-Acquired High Spatial Resolution Imagery in a Heterogeneous Grassland
-
Lu, B., and Y., He. 2017. “Species Classification Using Unmanned Aerial Vehicle (UAV)-Acquired High Spatial Resolution Imagery in a Heterogeneous Grassland.” ISPRS Journal of Photogrammetry and Remote Sensing 128: 73–85. doi:10.1016/j.isprsjprs.2017.03.011.
-
(2017)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.128
, pp. 73-85
-
-
Lu, B.1
He, Y.2
-
46
-
-
85021219961
-
A Review of Supervised Object-Based Land-Cover Image Classification
-
Ma, L., M., Li, X., Ma, L., Cheng, P., Du, and Y., Liu. 2017. “A Review of Supervised Object-Based Land-Cover Image Classification.” ISPRS Journal of Photogrammetry and Remote Sensing 130: 277–293. doi:10.1016/j.isprsjprs.2017.06.001.
-
(2017)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.130
, pp. 277-293
-
-
Ma, L.1
Li, M.2
Ma, X.3
Cheng, L.4
Du, P.5
Liu, Y.6
-
47
-
-
84988038682
-
Semisupervised Classification for Hyperspectral Image Based on Multi-Decision Labeling and Deep Feature Learning
-
Ma, X., H., Wang, and J., Wang. 2016. “Semisupervised Classification for Hyperspectral Image Based on Multi-Decision Labeling and Deep Feature Learning.” ISPRS Journal of Photogrammetry and Remote Sensing 120: 99–107. doi:10.1016/j.isprsjprs.2016.09.001.
-
(2016)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.120
, pp. 99-107
-
-
Ma, X.1
Wang, H.2
Wang, J.3
-
48
-
-
84962569483
-
Deep Supervised Learning for Hyperspectral Data Classification through Convolutional Neural Networks
-
IEEE, and,.” In
-
Makantasis, K., K., Karantzalos, A., Doulamis, and N., Doulamis. 2015. “Deep Supervised Learning for Hyperspectral Data Classification through Convolutional Neural Networks.” In: Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International, 4959–4962. IEEE.
-
(2015)
Geoscience and Remote Sensing Symposium (IGARSS), 2015 IEEE International
, pp. 4959-4962
-
-
Makantasis, K.1
Karantzalos, K.2
Doulamis, A.3
Doulamis, N.4
-
49
-
-
85043526632
-
-
Stilla, U.,. Classification with an edge: improving semanticimage segmentation with boundary detection.
-
Marmanis, D., K., Schindler, J.D., Wegner, S., Galliani, and M, Datcu.,Stilla, U., 2016. Classification with an edge: improving semanticimage segmentation with boundary detection. arXiv preprintarXiv: 1612.01337.
-
(2016)
-
-
Marmanis, D.1
Schindler, K.2
Wegner, J.D.3
Galliani, S.4
Datcu, M.5
-
50
-
-
84897585461
-
Remote Sensing of Plant Communities as a Tool for Assessing the Condition of Semiarid Mediterranean Saline Wetlands in Agricultural Catchments
-
Martínez-López, J., M. F., Carreño, J. A., Palazón-Ferrando, J., Martínez-Fernández, and M. A., Esteve. 2014. “Remote Sensing of Plant Communities as a Tool for Assessing the Condition of Semiarid Mediterranean Saline Wetlands in Agricultural Catchments.” International Journal of Applied Earth Observation and Geoinformation 26: 193–204. doi:10.1016/j.jag.2013.07.005.
-
(2014)
International Journal of Applied Earth Observation and Geoinformation
, vol.26
, pp. 193-204
-
-
Martínez-López, J.1
Carreño, M.F.2
Palazón-Ferrando, J.A.3
Martínez-Fernández, J.4
Esteve, M.A.5
-
51
-
-
84868556067
-
Multiscale Assessment of Green Leaf Cover in a Semi-Arid Rangeland with a Small Unmanned Aerial Vehicle
-
McGwire, K. C., M. A., Weltz, J. A., Finzel, C. E., Morris, L. F., Fenstermaker, and D. S., McGraw. 2013. “Multiscale Assessment of Green Leaf Cover in a Semi-Arid Rangeland with a Small Unmanned Aerial Vehicle.” International Journal of Remote Sensing 34: 1615–1632. doi:10.1080/01431161.2012.723836.
-
(2013)
International Journal of Remote Sensing
, vol.34
, pp. 1615-1632
-
-
McGwire, K.C.1
Weltz, M.A.2
Finzel, J.A.3
Morris, C.E.4
Fenstermaker, L.F.5
McGraw, D.S.6
-
52
-
-
84916893905
-
-
5th, Hoboken, NJ: Wiley, and, ed
-
Mitsch, W. J., and J. G., Gosselink. 2015. Wetlands. 5th ed. Hoboken, NJ: Wiley.
-
(2015)
Wetlands
-
-
Mitsch, W.J.1
Gosselink, J.G.2
-
53
-
-
84865983502
-
Canopy Height Measurement by Photogrammetric Analysis of Aerial Images: Application to Buckwheat (Fagopyrum Esculentum Moench) Lodging Evaluation
-
Murakami, T., M., Yui, and K., Amaha. 2012. “Canopy Height Measurement by Photogrammetric Analysis of Aerial Images: Application to Buckwheat (Fagopyrum Esculentum Moench) Lodging Evaluation.” Computers and Electronics in Agriculture 89: 70–75. doi:10.1016/j.compag.2012.08.003.
-
(2012)
Computers and Electronics in Agriculture
, vol.89
, pp. 70-75
-
-
Murakami, T.1
Yui, M.2
Amaha, K.3
-
55
-
-
84973493588
-
Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs)
-
Pajares, G., 2015. “Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs).” Photogrammetric Engineering & Remote Sensing 81: 281–330. doi:10.14358/PERS.81.4.281.
-
(2015)
Photogrammetric Engineering & Remote Sensing
, vol.81
, pp. 281-330
-
-
Pajares, G.1
-
56
-
-
13344278660
-
Random Forest Classifier for Remote Sensing Classification
-
Pal, M., 2005. “Random Forest Classifier for Remote Sensing Classification.” International Journal of Remote Sensing 26: 217–222. doi:10.1080/01431160412331269698.
-
(2005)
International Journal of Remote Sensing
, vol.26
, pp. 217-222
-
-
Pal, M.1
-
57
-
-
85043535581
-
Object-Based Classification of Wetland Vegetation Using Very High-Resolution Unmanned Air System Imagery
-
Pande-Chhetri, R., A., Abd-Elrahman, T., Liu, J., Morton, and V. L., Wilhelm. 2017. “Object-Based Classification of Wetland Vegetation Using Very High-Resolution Unmanned Air System Imagery.” European Journal of Remote Sensing 50: 564–576. doi:10.1080/22797254.2017.1373602.
-
(2017)
European Journal of Remote Sensing
, vol.50
, pp. 564-576
-
-
Pande-Chhetri, R.1
Abd-Elrahman, A.2
Liu, T.3
Morton, J.4
Wilhelm, V.L.5
-
58
-
-
84945550767
-
Drought Assessment and Monitoring through Blending of Multi-Sensor Indices Using Machine Learning Approaches for Different Climate Regions
-
Park, S., J., Im, E., Jang, and J., Rhee. 2016. “Drought Assessment and Monitoring through Blending of Multi-Sensor Indices Using Machine Learning Approaches for Different Climate Regions.” Agricultural and Forest Meteorology 216: 157–169. doi:10.1016/j.agrformet.2015.10.011.
-
(2016)
Agricultural and Forest Meteorology
, vol.216
, pp. 157-169
-
-
Park, S.1
Im, J.2
Jang, E.3
Rhee, J.4
-
59
-
-
79952732827
-
Architecture for a Helicopter-Based Unmanned Aerial Systems Wildfire Surveillance System
-
Pastor, E., C., Barrado, P., Royo, E., Santamaria, J., Lopez, and E., Salami. 2011. “Architecture for a Helicopter-Based Unmanned Aerial Systems Wildfire Surveillance System.” Geocarto International 26: 113–131. doi:10.1080/10106049.2010.531769.
-
(2011)
Geocarto International
, vol.26
, pp. 113-131
-
-
Pastor, E.1
Barrado, C.2
Royo, P.3
Santamaria, E.4
Lopez, J.5
Salami, E.6
-
60
-
-
84979243750
-
Accuracy Assessment of a UAV-Based Landslide Monitoring System. ISPRS-International Archives of the Photogrammetry
-
Peppa, M., J., Mills, P., Moore, P., Miller, and J., Chambers. 2016. “Accuracy Assessment of a UAV-Based Landslide Monitoring System. ISPRS-International Archives of the Photogrammetry.” Remote Sensing and Spatial Information Sciences 895–902.
-
(2016)
Remote Sensing and Spatial Information Sciences
, pp. 895-902
-
-
Peppa, M.1
Mills, J.2
Moore, P.3
Miller, P.4
Chambers, J.5
-
61
-
-
84863436949
-
A Flexible Unmanned Aerial Vehicle for Precision Agriculture
-
Primicerio, J., S. F., Di Gennaro, E., Fiorillo, L., Genesio, E., Lugato, A., Matese, and F. P., Vaccari. 2012. “A Flexible Unmanned Aerial Vehicle for Precision Agriculture.” Precision Agriculture 13: 517–523. doi:10.1007/s11119-012-9257-6.
-
(2012)
Precision Agriculture
, vol.13
, pp. 517-523
-
-
Primicerio, J.1
Di Gennaro, S.F.2
Fiorillo, E.3
Genesio, L.4
Lugato, E.5
Matese, A.6
Vaccari, F.P.7
-
62
-
-
85011339638
-
-
Piramanayagam, S., Schwartzkopf, W., Koehler, F., Saber E., 2016. Classification of remote sensed images using random forests and deep learning framework, SPIE Remote Sensing. International Society for Optics and Photonics, pp. 100040L-100040L-100048.
-
(2016)
Classification of remote sensed images using random forests and deep learning framework, SPIE Remote Sensing. International Society for Optics and Photonics, pp. 100040L-100040L-100048
-
-
Piramanayagam, S.1
Schwartzkopf, W.2
Koehler, F.3
Saber, E.4
-
63
-
-
33947129688
-
Using Unmanned Aerial Vehicles for Rangelands: Current Applications and Future Potentials
-
Rango, A., A., Laliberte, C., Steele, J. E., Herrick, B., Bestelmeyer, T., Schmugge, A., Roanhorse, and V., Jenkins. 2006. “Using Unmanned Aerial Vehicles for Rangelands: Current Applications and Future Potentials.” Environmental Practice 8: 159–168. doi:10.1017/S1466046606060224.
-
(2006)
Environmental Practice
, vol.8
, pp. 159-168
-
-
Rango, A.1
Laliberte, A.2
Steele, C.3
Herrick, J.E.4
Bestelmeyer, B.5
Schmugge, T.6
Roanhorse, A.7
Jenkins, V.8
-
64
-
-
85012065300
-
Meteorological Drought Forecasting for Ungauged Areas Based on Machine Learning: Using Long-Range Climate Forecast and Remote Sensing Data
-
Rhee, J., and J., Im. 2017. “Meteorological Drought Forecasting for Ungauged Areas Based on Machine Learning: Using Long-Range Climate Forecast and Remote Sensing Data.” Agricultural and Forest Meteorology 237: 105–122. doi:10.1016/j.agrformet.2017.02.011.
-
(2017)
Agricultural and Forest Meteorology
, vol.237
, pp. 105-122
-
-
Rhee, J.1
Im, J.2
-
65
-
-
63849152172
-
-
Petersburg, FL: US Geological Survey St, and
-
Rutchey, K., T., Schall, R., Doren, A., Atkinson, M., Ross, D., Jones, M., Madden, L., Vilchek, K., Bradley, and J., Snyder. 2006. Vegetation Classification for South Florida Natural Areas. Petersburg, FL: US Geological Survey St.
-
(2006)
Vegetation Classification for South Florida Natural Areas
-
-
Rutchey, K.1
Schall, T.2
Doren, R.3
Atkinson, A.4
Ross, M.5
Jones, D.6
Madden, M.7
Vilchek, L.8
Bradley, K.9
Snyder, J.10
-
66
-
-
84925433505
-
Development of Hyperspectral Imaging Sensor, Which Mounted on UAV for Environmental Study at Coastal Zone
-
Saito, G., H., Seki, K., Uto, Y., Kosugi, and T., Komatsu. 2014. “Development of Hyperspectral Imaging Sensor, Which Mounted on UAV for Environmental Study at Coastal Zone.” In: 35th Asian Conference on Remote Sensing.
-
(2014)
35th Asian Conference on Remote Sensing
-
-
Saito, G.1
Seki, H.2
Uto, K.3
Kosugi, Y.4
Komatsu, T.5
-
67
-
-
84868629417
-
Application of Low Altitude Remote Sensing (LARS) Platform for Monitoring Crop Growth and Weed Infestation in a Soybean Plantation
-
Samseemoung, G., P., Soni, H. P., Jayasuriya, and V. M., Salokhe. 2012. “Application of Low Altitude Remote Sensing (LARS) Platform for Monitoring Crop Growth and Weed Infestation in a Soybean Plantation.” Precision Agriculture 13: 611–627. doi:10.1007/s11119-012-9271-8.
-
(2012)
Precision Agriculture
, vol.13
, pp. 611-627
-
-
Samseemoung, G.1
Soni, P.2
Jayasuriya, H.P.3
Salokhe, V.M.4
-
68
-
-
85006749146
-
Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition
-
Scherer, D., A., Müller, and S., Behnke. 2010. “Evaluation of Pooling Operations in Convolutional Architectures for Object Recognition.” Artificial Neural Networks–ICANN 2010: 92–101.
-
(2010)
Artificial Neural Networks–ICANN
, vol.2010
, pp. 92-101
-
-
Scherer, D.1
Müller, A.2
Behnke, S.3
-
69
-
-
85043501691
-
-
Learning with kernels: supportvector machines, regularization, optimization, and beyond. MIT press, and
-
Scholkopf, B., and A.J, Smola., 2001. Learning with kernels: supportvector machines, regularization, optimization, and beyond. MIT press.
-
(2001)
-
-
Scholkopf, B.1
Smola, A.J.2
-
72
-
-
84963949906
-
Mastering the Game of Go with Deep Neural Networks and Tree Search
-
Silver, D., A., Huang, C. J., Maddison, A., Guez, L., Sifre, G., Van Den Driessche, J., Schrittwieser, I., Antonoglou, V., Panneershelvam, and M., Lanctot. 2016. “Mastering the Game of Go with Deep Neural Networks and Tree Search.” Nature 529: 484–489. doi:10.1038/nature16961.
-
(2016)
Nature
, vol.529
, pp. 484-489
-
-
Silver, D.1
Huang, A.2
Maddison, C.J.3
Guez, A.4
Sifre, L.5
Van Den Driessche, G.6
Schrittwieser, J.7
Antonoglou, I.8
Panneershelvam, V.9
Lanctot, M.10
-
74
-
-
84961245681
-
-
Springer, and
-
Skeele, R. C., and G. A., Hollinger. 2016. Aerial Vehicle Path Planning for Monitoring Wildfire Frontiers, Field and Service Robotics, 455–467. Springer.
-
(2016)
Aerial Vehicle Path Planning for Monitoring Wildfire Frontiers, Field and Service Robotics
, pp. 455-467
-
-
Skeele, R.C.1
Hollinger, G.A.2
-
75
-
-
84904163933
-
Dropout: A Simple Way to Prevent Neural Networks from Overfitting
-
Srivastava, N., G. E., Hinton, A., Krizhevsky, I., Sutskever, and R., Salakhutdinov. 2014. “Dropout: A Simple Way to Prevent Neural Networks from Overfitting.” Journal of Machine Learning Research 15: 1929–1958.
-
(2014)
Journal of Machine Learning Research
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
76
-
-
48549094895
-
A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-Based Cancer Classification
-
Statnikov, A., L., Wang, and C. F., Aliferis. 2008. “A Comprehensive Comparison of Random Forests and Support Vector Machines for Microarray-Based Cancer Classification.” BMC Bioinformatics 9: 319. doi:10.1186/1471-2105-9-319.
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 319
-
-
Statnikov, A.1
Wang, L.2
Aliferis, C.F.3
-
77
-
-
84907019192
-
Hierarchical Feature Representation and Multimodal Fusion with Deep Learning for AD/MCI Diagnosis
-
Suk, H.-I., S.-W., Lee, D., Shen, and A. S. D. N., Initiative. 2014. “Hierarchical Feature Representation and Multimodal Fusion with Deep Learning for AD/MCI Diagnosis.” NeuroImage 101: 569–582. doi:10.1016/j.neuroimage.2014.06.077.
-
(2014)
NeuroImage
, vol.101
, pp. 569-582
-
-
Suk, H.-I.1
Lee, S.-W.2
Shen, D.3
Initiative, A.S.D.N.4
-
78
-
-
84897694587
-
Generation of Large Mosaic Images for Vegetation Monitoring Using a Small Unmanned Aerial Vehicle
-
Suzuki, T., Y., Amano, T., Hashizume, S., Suzuki, and A., Yamaba. 2010. “Generation of Large Mosaic Images for Vegetation Monitoring Using a Small Unmanned Aerial Vehicle.” Journal of Robotics and Mechatronics 22: 212–220. doi:10.20965/jrm.2010.p0212.
-
(2010)
Journal of Robotics and Mechatronics
, vol.22
, pp. 212-220
-
-
Suzuki, T.1
Amano, Y.2
Hashizume, T.3
Suzuki, S.4
Yamaba, A.5
-
79
-
-
84886028687
-
Trade-Offs among Ecosystem Services and Disservices on a Florida Ranch
-
Swain, H. M., E. H., Boughton, P. J., Bohlen, and L. O. G., Lollis. 2013. “Trade-Offs among Ecosystem Services and Disservices on a Florida Ranch.” Rangelands 35: 75–87. doi:10.2111/RANGELANDS-D-13-00053.1.
-
(2013)
Rangelands
, vol.35
, pp. 75-87
-
-
Swain, H.M.1
Boughton, E.H.2
Bohlen, P.J.3
Lollis, L.O.G.4
-
80
-
-
84880301950
-
Analyzing Fine-Scale Wetland Composition Using High Resolution Imagery and Texture Features
-
Szantoi, Z., F., Escobedo, A., Abd-Elrahman, S., Smith, and L., Pearlstine. 2013. “Analyzing Fine-Scale Wetland Composition Using High Resolution Imagery and Texture Features.” International Journal of Applied Earth Observation and Geoinformation 23: 204–212. doi:10.1016/j.jag.2013.01.003.
-
(2013)
International Journal of Applied Earth Observation and Geoinformation
, vol.23
, pp. 204-212
-
-
Szantoi, Z.1
Escobedo, F.2
Abd-Elrahman, A.3
Smith, S.4
Pearlstine, L.5
-
82
-
-
85014668630
-
Disaster Damage Detection through Synergistic Use of Deep Learning and 3D Point Cloud Features Derived from Very High Resolution Oblique Aerial Images, and Multiple-Kernel-Learning
-
Vetrivel, A., M., Gerke, N., Kerle, F., Nex, and G., Vosselman. 2017. “Disaster Damage Detection through Synergistic Use of Deep Learning and 3D Point Cloud Features Derived from Very High Resolution Oblique Aerial Images, and Multiple-Kernel-Learning.” ISPRS Journal of Photogrammetry and Remote Sensing. doi:10.1016/j.isprsjprs.2017.03.001.
-
(2017)
ISPRS Journal of Photogrammetry and Remote Sensing
-
-
Vetrivel, A.1
Gerke, M.2
Kerle, N.3
Nex, F.4
Vosselman, G.5
-
83
-
-
84961198624
-
Channel Bar Feature Extraction for a Mining-Contaminated River Using High-Spatial Multispectral Remote-Sensing Imagery
-
Wang, C., R. T., Pavlowsky, Q., Huang, and C., Chang. 2016. “Channel Bar Feature Extraction for a Mining-Contaminated River Using High-Spatial Multispectral Remote-Sensing Imagery.” GIScience & Remote Sensing 53: 283–302. doi:10.1080/15481603.2016.1148229.
-
(2016)
GIScience & Remote Sensing
, vol.53
, pp. 283-302
-
-
Wang, C.1
Pavlowsky, R.T.2
Huang, Q.3
Chang, C.4
-
84
-
-
34047138873
-
Improved Wetland Remote Sensing in Yellowstone National Park Using Classification Trees to Combine TM Imagery and Ancillary Environmental Data
-
Wright, C., and A., Gallant. 2007. “Improved Wetland Remote Sensing in Yellowstone National Park Using Classification Trees to Combine TM Imagery and Ancillary Environmental Data.” Remote Sensing of Environment 107: 582–605. doi:10.1016/j.rse.2006.10.019.
-
(2007)
Remote Sensing of Environment
, vol.107
, pp. 582-605
-
-
Wright, C.1
Gallant, A.2
-
85
-
-
84963645315
-
-
Xie, M., N., Jean, M., Burke, D., Lobell, and S., Ermon. 2015. “Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping.” arXiv Preprint arXiv:1510.00098.
-
(2015)
Transfer Learning from Deep Features for Remote Sensing and Poverty Mapping
-
-
Xie, M.1
Jean, N.2
Burke, M.3
Lobell, D.4
Ermon, S.5
-
86
-
-
85043537858
-
-
Artificial neural networks. PHI Learning Pvt. Ltd
-
Yegnanarayana, B., 2009. Artificial neural networks. PHI Learning Pvt. Ltd
-
(2009)
-
-
Yegnanarayana, B.1
-
87
-
-
33745615125
-
Object-Based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery
-
Yu, Q., P., Gong, N., Clinton, G., Biging, M., Kelly, and D., Schirokauer. 2006. “Object-Based Detailed Vegetation Classification with Airborne High Spatial Resolution Remote Sensing Imagery.” Photogrammetric Engineering & Remote Sensing 72: 799–811. doi:10.14358/PERS.72.7.799.
-
(2006)
Photogrammetric Engineering & Remote Sensing
, vol.72
, pp. 799-811
-
-
Yu, Q.1
Gong, P.2
Clinton, N.3
Biging, G.4
Kelly, M.5
Schirokauer, D.6
-
88
-
-
84876316434
-
The Application of Unmanned Aerial Vehicle Remote Sensing in Quickly Monitoring Crop Pests
-
Yue, J., T., Lei, C., Li, and J., Zhu. 2012. “The Application of Unmanned Aerial Vehicle Remote Sensing in Quickly Monitoring Crop Pests.” Intelligent Automation & Soft Computing 18: 1043–1052. doi:10.1080/10798587.2008.10643309.
-
(2012)
Intelligent Automation & Soft Computing
, vol.18
, pp. 1043-1052
-
-
Yue, J.1
Lei, T.2
Li, C.3
Zhu, J.4
-
89
-
-
33745726473
-
Precision Management of Winter Wheat Based on Aerial Images and Hyperspectral Data Obtained by Unmanned Aircraft
-
IEEE, and,.” In
-
Yunxia, H., L., Minzan, Z., Xijie, J., Liangliang, C., Xingping, and Z., Fusuo. 2005. “Precision Management of Winter Wheat Based on Aerial Images and Hyperspectral Data Obtained by Unmanned Aircraft.” In: Geoscience and Remote Sensing Symposium, 2005. IGARSS’05. Proceedings. 2005 IEEE International, 3109–3112. IEEE.
-
(2005)
Geoscience and Remote Sensing Symposium, 2005. IGARSS’05. Proceedings. 2005 IEEE International
, pp. 3109-3112
-
-
Yunxia, H.1
Minzan, L.2
Xijie, Z.3
Liangliang, J.4
Xingping, C.5
Fusuo, Z.6
-
90
-
-
84855428733
-
Fluorescence, Temperature and Narrow-Band Indices Acquired from a UAV Platform for Water Stress Detection Using a Micro-Hyperspectral Imager and a Thermal Camera
-
Zarco-Tejada, P. J., V., González-Dugo, and J. A., Berni. 2012. “Fluorescence, Temperature and Narrow-Band Indices Acquired from a UAV Platform for Water Stress Detection Using a Micro-Hyperspectral Imager and a Thermal Camera.” Remote Sensing of Environment 117: 322–337. doi:10.1016/j.rse.2011.10.007.
-
(2012)
Remote Sensing of Environment
, vol.117
, pp. 322-337
-
-
Zarco-Tejada, P.J.1
González-Dugo, V.2
Berni, J.A.3
-
91
-
-
6344291626
-
Causes and Consequences of Invasive Plants in Wetlands: Opportunities, Opportunists, and Outcomes
-
Zedler, J. B., and S., Kercher. 2004. “Causes and Consequences of Invasive Plants in Wetlands: Opportunities, Opportunists, and Outcomes.” Critical Reviews in Plant Sciences 23: 431–452. doi:10.1080/07352680490514673.
-
(2004)
Critical Reviews in Plant Sciences
, vol.23
, pp. 431-452
-
-
Zedler, J.B.1
Kercher, S.2
-
92
-
-
28644431944
-
Wetland Resources: Status, Trends, Ecosystem Services, and Restorability
-
Zedler, J. B., and S., Kercher. 2005. “Wetland Resources: Status, Trends, Ecosystem Services, and Restorability.” Annu. Rev. Environ. Resour. 30: 39–74. doi:10.1146/annurev.energy.30.050504.144248.
-
(2005)
Annu. Rev. Environ. Resour.
, vol.30
, pp. 39-74
-
-
Zedler, J.B.1
Kercher, S.2
-
93
-
-
85016103093
-
A Deep Learning Approach to UAV Image Multilabeling
-
Zeggada, A., F., Melgani, and Y., Bazi. 2017. “A Deep Learning Approach to UAV Image Multilabeling.” IEEE Geoscience and Remote Sensing Letters 14: 694–698. doi:10.1109/LGRS.2017.2671922.
-
(2017)
IEEE Geoscience and Remote Sensing Letters
, vol.14
, pp. 694-698
-
-
Zeggada, A.1
Melgani, F.2
Bazi, Y.3
-
94
-
-
84960327084
-
Change Detection Based on Deep Feature Representation and Mapping Transformation for Multi-Spatial-Resolution Remote Sensing Images
-
Zhang, P., M., Gong, L., Su, J., Liu, and Z., Li. 2016. “Change Detection Based on Deep Feature Representation and Mapping Transformation for Multi-Spatial-Resolution Remote Sensing Images.” ISPRS Journal of Photogrammetry and Remote Sensing 116: 24–41. doi:10.1016/j.isprsjprs.2016.02.013.
-
(2016)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.116
, pp. 24-41
-
-
Zhang, P.1
Gong, M.2
Su, L.3
Liu, J.4
Li, Z.5
-
95
-
-
84956620231
-
Learning Multiscale and Deep Representations for Classifying Remotely Sensed Imagery
-
Zhao, W., and S., Du. 2016. “Learning Multiscale and Deep Representations for Classifying Remotely Sensed Imagery.” ISPRS Journal of Photogrammetry and Remote Sensing 113: 155–165. doi:10.1016/j.isprsjprs.2016.01.004.
-
(2016)
ISPRS Journal of Photogrammetry and Remote Sensing
, vol.113
, pp. 155-165
-
-
Zhao, W.1
Du, S.2
-
96
-
-
85017136781
-
Object-Based Convolutional Neural Network for High-Resolution Imagery Classification
-
Zhao, W., S., Du, and W. J., Emery. 2017. “Object-Based Convolutional Neural Network for High-Resolution Imagery Classification.” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10: 3386–3396. doi:10.1109/JSTARS.2017.2680324.
-
(2017)
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
, vol.10
, pp. 3386-3396
-
-
Zhao, W.1
Du, S.2
Emery, W.J.3
-
97
-
-
85016393818
-
Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification
-
Zhong, P., Z., Gong, S., Li, and C.-B., Schönlieb. 2017. “Learning to Diversify Deep Belief Networks for Hyperspectral Image Classification.” IEEE Transactions on Geoscience and Remote Sensing. doi:10.1109/TGRS.2017.2755542.
-
(2017)
IEEE Transactions on Geoscience and Remote Sensing
-
-
Zhong, P.1
Gong, Z.2
Li, S.3
Schönlieb, C.-B.4
-
98
-
-
84925234205
-
Use of Unmanned Aircraft Systems to Delineate Fine-Scale Wetland Vegetation Communities
-
Zweig, C. L., M. A., Burgess, H. F., Percival, and W. M., Kitchens. 2015. “Use of Unmanned Aircraft Systems to Delineate Fine-Scale Wetland Vegetation Communities.” Wetlands 35: 303–309. doi:10.1007/s13157-014-0612-4.
-
(2015)
Wetlands
, vol.35
, pp. 303-309
-
-
Zweig, C.L.1
Burgess, M.A.2
Percival, H.F.3
Kitchens, W.M.4
|