메뉴 건너뛰기




Volumn 17, Issue 2, 2017, Pages

Vehicle detection in aerial images based on region convolutional neural networks and hard negative example mining

Author keywords

Convolutional neural networks; Hard negative example mining; Hyper region proposal network; Vehicle detection

Indexed keywords

AERIAL PHOTOGRAPHY; CLASSIFICATION (OF INFORMATION); COMPLEX NETWORKS; CONVOLUTION; IMAGE PROCESSING; NEURAL NETWORKS; OBJECT DETECTION; VEHICLES;

EID: 85012254070     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s17020336     Document Type: Article
Times cited : (268)

References (33)
  • 1
    • 84912110068 scopus 로고    scopus 로고
    • An Operational System for Estimating Road Traffic Information from Aerial Images
    • Leitloff, J.; Rosenbaum, D.; Kurz, F.; Meynberg, O.; Reinartz, P. An Operational System for Estimating Road Traffic Information from Aerial Images. Remote Sens. 2014, 6, 11315–11341.
    • (2014) Remote Sens , vol.6 , pp. 11315-11341
    • Leitloff, J.1    Rosenbaum, D.2    Kurz, F.3    Meynberg, O.4    Reinartz, P.5
  • 2
    • 84973887007 scopus 로고    scopus 로고
    • Fast Multiclass Vehicle Detection on Aerial Images
    • Liu, K.; Mattyus, G. Fast Multiclass Vehicle Detection on Aerial Images. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1–5.
    • (2015) IEEE Geosci. Remote Sens. Lett , vol.12 , pp. 1-5
    • Liu, K.1    Mattyus, G.2
  • 3
    • 84891557748 scopus 로고    scopus 로고
    • Automatic Car Counting Method for Unmanned Aerial Vehicle Images
    • Moranduzzo, T.; Melgani, F. Automatic Car Counting Method for Unmanned Aerial Vehicle Images. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1635–1647.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 1635-1647
    • Moranduzzo, T.1    Melgani, F.2
  • 4
    • 84902086179 scopus 로고    scopus 로고
    • Detecting Cars in UAV Images With a Catalog-Based Approach
    • Moranduzzo, T.; Melgani, F. Detecting Cars in UAV Images With a Catalog-Based Approach. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6356–6367.
    • (2014) IEEE Trans. Geosci. Remote Sens , vol.52 , pp. 6356-6367
    • Moranduzzo, T.1    Melgani, F.2
  • 5
    • 84959141767 scopus 로고    scopus 로고
    • Vehicle Detection in High-Resolution Aerial Images Based on Fast Sparse Representation Classification and Multiorder Feature
    • Chen, Z.; Wang, C.; Luo, H.; Wang, H. Vehicle Detection in High-Resolution Aerial Images Based on Fast Sparse Representation Classification and Multiorder Feature. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2296–2309.
    • (2016) IEEE Trans. Intell. Transp. Syst , vol.17 , pp. 2296-2309
    • Chen, Z.1    Wang, C.2    Luo, H.3    Wang, H.4
  • 6
    • 84859072436 scopus 로고    scopus 로고
    • Vehicle detection in aerial surveillance using dynamic Bayesian networks
    • Cheng, H.Y.; Weng, C.C.; Chen, Y.Y. Vehicle detection in aerial surveillance using dynamic Bayesian networks. IEEE Trans. Image Process. 2012, 21, 2152–2159.
    • (2012) IEEE Trans. Image Process , vol.21 , pp. 2152-2159
    • Cheng, H.Y.1    Weng, C.C.2    Chen, Y.Y.3
  • 7
    • 84873163266 scopus 로고    scopus 로고
    • Car detection from high-resolution aerial imagery using multiple features
    • Shao, W.; Yang, W.; Liu, G.; Liu, J. Car detection from high-resolution aerial imagery using multiple features. IEEE Int. Geosci. Remote Sens. Symp. 2012, 53, 4379–4382.
    • (2012) IEEE Int. Geosci. Remote Sens. Symp , vol.53 , pp. 4379-4382
    • Shao, W.1    Yang, W.2    Liu, G.3    Liu, J.4
  • 10
    • 84947028673 scopus 로고    scopus 로고
    • Vehicle Detection in High-Resolution Aerial Images via Sparse Representation and Superpixels
    • Chen, Z.; Wang, C.; Wen, C.; Teng, X. Vehicle Detection in High-Resolution Aerial Images via Sparse Representation and Superpixels. IEEE Trans. Geosci. Remote Sens. 2015, 54, 1–14.
    • (2015) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 1-14
    • Chen, Z.1    Wang, C.2    Wen, C.3    Teng, X.4
  • 11
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks
    • Chen, X.; Xiang, S.; Liu, C.L.; Pan, C.H. Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1797–1801.
    • (2014) IEEE Geosci. Remote Sens. Lett , vol.11 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.L.3    Pan, C.H.4
  • 12
    • 85027047340 scopus 로고    scopus 로고
    • Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images
    • Cheng, G.; Zhou, P.; Han, J. Learning Rotation-Invariant Convolutional Neural Networks for Object Detection in VHR Optical Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016. 54, 7405–7415.
    • (2016) IEEE Trans. Geosci. Remote Sens , vol.54 , pp. 7405-7415
    • Cheng, G.1    Zhou, P.2    Han, J.3
  • 17
    • 84973861966 scopus 로고    scopus 로고
    • DeepBox: Learning Objectness with Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision, Los Alamitos, CA
    • Kuo, W.; Hariharan, B.; Malik, J. DeepBox: Learning Objectness with Convolutional Networks. In Proceedings of the IEEE International Conference on Computer Vision, Los Alamitos, CA, USA, 7–13 December 2015; pp. 2479–2487.
    • (2015) USA , vol.713 , pp. 2479-2487
    • Kuo, W.1    Hariharan, B.2    Malik, J.3
  • 25
    • 85012277026 scopus 로고    scopus 로고
    • Faster _ rcnn, accessed on 1 October 2016
    • Shaoqing, R. Faster _ rcnn. Available online: https://github.com/ShaoqingRen/faster_rcnn (accessed on 1 October 2016).
    • Shaoqing, R.1
  • 26
    • 84919950045 scopus 로고    scopus 로고
    • accessed on 1 October 2016
    • Lab, S.V. ImageNet. Available online: http://www.image-net.org/(accessed on 1 October 2016).
    • Imagenet
    • Lab, S.V.1
  • 27
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors)
    • Friedman, J.; Hastie, T.; Tibshirani, R. Additive logistic regression: A statistical view of boosting (With discussion and a rejoinder by the authors). Ann. Stat. 2000, 28, 374–376.
    • (2000) Ann. Stat , vol.28 , pp. 374-376
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 31
    • 84909977972 scopus 로고    scopus 로고
    • Multi-class geospatial object detection and geographic image classification based on collection of part detectors
    • Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132.
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.98 , pp. 119-132
    • Cheng, G.1    Han, J.2    Zhou, P.3    Guo, L.4
  • 32
    • 84961970561 scopus 로고    scopus 로고
    • A Survey on Object Detection in Optical Remote Sensing Images
    • Cheng, G.; Han, J. A Survey on Object Detection in Optical Remote Sensing Images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11–28.
    • (2016) ISPRS J. Photogramm. Remote Sens , vol.117 , pp. 11-28
    • Cheng, G.1    Han, J.2
  • 33
    • 79958822032 scopus 로고    scopus 로고
    • The DGPF-Test on Digital Airborne Camera Evaluation—Overview and Test Design
    • Cramer, M. The DGPF-Test on Digital Airborne Camera Evaluation—Overview and Test Design. Photogramm. Fernerkund. Geoinform. 2010, 2010, 73–82.
    • (2010) Photogramm. Fernerkund. Geoinform , vol.2010 , pp. 73-82
    • Cramer, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.