메뉴 건너뛰기




Volumn 16, Issue 8, 2016, Pages

Deepfruits: A fruit detection system using deep neural networks

Author keywords

Agricultural robotics; Deep convolutional neural network; Harvesting robots; Horticulture; Multi modal; Rapid training; Real time performance; Visual fruit detection

Indexed keywords

AGRICULTURE; CONVOLUTION; IMAGE SEGMENTATION; INFRARED DEVICES; NEURAL NETWORKS; ROBOTICS;

EID: 84982682350     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s16081222     Document Type: Article
Times cited : (922)

References (38)
  • 1
    • 84982746716 scopus 로고    scopus 로고
    • Australian Vegetable Growing Farms: An Economic Survey, 2013–14 and 2014–15; Research report; Australian Bureau of Agricultural and Resource Economics (ABARE): Canberra, Australia
    • ABARE. Australian Vegetable Growing Farms: An Economic Survey, 2013–14 and 2014–15; Research report; Australian Bureau of Agricultural and Resource Economics (ABARE): Canberra, Australia, 2015.
    • (2015)
  • 3
    • 84939470657 scopus 로고    scopus 로고
    • Harvesting Robots for High-Value Crops: State-of-the-Art Review and Challenges Ahead
    • Bac, C.W.; van Henten, E.J.; Hemming, J.; Edan, Y. Harvesting Robots for High-Value Crops: State-of-the-Art Review and Challenges Ahead. J. Field Robot. 2014, 31, 888–911.
    • (2014) J. Field Robot , vol.31 , pp. 888-911
    • Bac, C.W.1    Van Henten, E.J.2    Hemming, J.3    Edan, Y.4
  • 7
    • 84982687886 scopus 로고    scopus 로고
    • F1 Score, accessed on 31 July 2016
    • Wikipedia. F1 Score, 2016. Available online: https://en.wikipedia.org/wiki/F1_score (accessed on 31 July 2016).
    • (2016)
  • 10
    • 84904179901 scopus 로고    scopus 로고
    • On plant detection of intact tomato fruits using image analysis and machine learning methods
    • Yamamoto, K.; Guo, W.; Yoshioka, Y.; Ninomiya, S. On plant detection of intact tomato fruits using image analysis and machine learning methods. Sensors 2014, 14, 12191–12206.
    • (2014) Sensors , vol.14 , pp. 12191-12206
    • Yamamoto, K.1    Guo, W.2    Yoshioka, Y.3    Ninomiya, S.4
  • 12
    • 84879189778 scopus 로고    scopus 로고
    • Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper
    • Bac, C.W.; Hemming, J.; van Henten, E.J. Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Comput. Electron. Agric. 2013, 96, 148–162.
    • (2013) Comput. Electron. Agric , vol.96 , pp. 148-162
    • Bac, C.W.1    Hemming, J.2    Van Henten, E.J.3
  • 20
    • 84906489617 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • Springer: Zurich, Switzerland
    • Zitnick, C.L.; Dollár, P. Edge boxes: Locating object proposals from edges. In Computer Vision–ECCV 2014; Springer: Zurich, Switzerland, 2014; pp. 391–405.
    • (2014) Computer Vision–ECCV 2014 , pp. 391-405
    • Zitnick, C.L.1    Dollár, P.2
  • 21
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • Montréal, QC, Canada, 7–12 December
    • Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 7–12 December 2015; pp. 91–99.
    • (2015) Proceedings of the Advances in Neural Information Processing Systems , pp. 91-99
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 22
    • 84939247735 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916.
    • (2015) IEEE Trans. Pattern Anal. Mach. Intell , vol.37 , pp. 1904-1916
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 26
    • 84928013181 scopus 로고    scopus 로고
    • Deep learning for detecting robotic grasps
    • Lenz, I.; Lee, H.; Saxena, A. Deep learning for detecting robotic grasps. Int. J. Robot. Res. 2015, 34, 705–724.
    • (2015) Int. J. Robot. Res , vol.34 , pp. 705-724
    • Lenz, I.1    Lee, H.2    Saxena, A.3
  • 27
    • 84883162364 scopus 로고    scopus 로고
    • Learning graphical model parameters with approximate marginal inference
    • Domke, J. Learning graphical model parameters with approximate marginal inference. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2454–2467.
    • (2013) IEEE Trans. Pattern Anal. Mach. Intell , vol.35 , pp. 2454-2467
    • Domke, J.1
  • 28
    • 0036647193 scopus 로고    scopus 로고
    • Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
    • Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell , vol.24 , pp. 971-987
    • Ojala, T.1    Pietikainen, M.2    Maenpaa, T.3
  • 33
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer: Zurich, Switzerland
    • Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014; Springer: Zurich, Switzerland, 2014; pp. 818–833.
    • (2014) Computer Vision–ECCV 2014 , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 36
    • 84982772903 scopus 로고    scopus 로고
    • 2016, accessed on 31 July 2016
    • University of California, Berkeley. Fine-Tuning CaffeNet for Style Recognition on Flickr Style Data (2016), 2016. Available online: http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html (accessed on 31 July 2016).
    • (2016) Fine-Tuning Caffenet for Style Recognition on Flickr Style Data
  • 37
    • 33751033207 scopus 로고
    • Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention
    • Lindeberg, T. Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention. Int. J. Comput. Vis. 1993, 11, 283–318.
    • (1993) Int. J. Comput. Vis , vol.11 , pp. 283-318
    • Lindeberg, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.