-
1
-
-
84982746716
-
-
Australian Vegetable Growing Farms: An Economic Survey, 2013–14 and 2014–15; Research report; Australian Bureau of Agricultural and Resource Economics (ABARE): Canberra, Australia
-
ABARE. Australian Vegetable Growing Farms: An Economic Survey, 2013–14 and 2014–15; Research report; Australian Bureau of Agricultural and Resource Economics (ABARE): Canberra, Australia, 2015.
-
(2015)
-
-
-
3
-
-
84939470657
-
Harvesting Robots for High-Value Crops: State-of-the-Art Review and Challenges Ahead
-
Bac, C.W.; van Henten, E.J.; Hemming, J.; Edan, Y. Harvesting Robots for High-Value Crops: State-of-the-Art Review and Challenges Ahead. J. Field Robot. 2014, 31, 888–911.
-
(2014)
J. Field Robot
, vol.31
, pp. 888-911
-
-
Bac, C.W.1
Van Henten, E.J.2
Hemming, J.3
Edan, Y.4
-
4
-
-
84977560460
-
Visual Detection of Occluded Crop: For automated harvesting
-
Stockholm, Sweden, 16–21 May
-
McCool, C.; Sa, I.; Dayoub, F.; Lehnert, C.; Perez, T.; Upcroft, B. Visual Detection of Occluded Crop: For automated harvesting. In Proceedings of the International Conference on Robotics and Automation, Stockholm, Sweden, 16–21 May 2016.
-
(2016)
Proceedings of the International Conference on Robotics and Automation
-
-
McCool, C.1
Sa, I.2
Dayoub, F.3
Lehnert, C.4
Perez, T.5
Upcroft, B.6
-
5
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M., et al. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252.
-
(2015)
Int. J. Comput. Vis.
, vol.115
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
-
7
-
-
84982687886
-
-
F1 Score, accessed on 31 July 2016
-
Wikipedia. F1 Score, 2016. Available online: https://en.wikipedia.org/wiki/F1_score (accessed on 31 July 2016).
-
(2016)
-
-
-
8
-
-
84355167662
-
Yield Estimation in Vineyards by Visual Grape Detection
-
San Francisco, CA, USA, 25–30 September
-
Nuske, S.T.; Achar, S.; Bates, T.; Narasimhan, S.G.; Singh, S. Yield Estimation in Vineyards by Visual Grape Detection. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’11), San Francisco, CA, USA, 25–30 September 2011.
-
(2011)
Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS ’11)
-
-
Nuske, S.T.1
Achar, S.2
Bates, T.3
Narasimhan, S.G.4
Singh, S.5
-
9
-
-
84905719438
-
Automated visual yield estimation in vineyards
-
Nuske, S.; Wilshusen, K.; Achar, S.; Yoder, L.; Narasimhan, S.; Singh, S. Automated visual yield estimation in vineyards. J. Field Robot. 2014, 31, 837–860.
-
(2014)
J. Field Robot
, vol.31
, pp. 837-860
-
-
Nuske, S.1
Wilshusen, K.2
Achar, S.3
Yoder, L.4
Narasimhan, S.5
Singh, S.6
-
10
-
-
84904179901
-
On plant detection of intact tomato fruits using image analysis and machine learning methods
-
Yamamoto, K.; Guo, W.; Yoshioka, Y.; Ninomiya, S. On plant detection of intact tomato fruits using image analysis and machine learning methods. Sensors 2014, 14, 12191–12206.
-
(2014)
Sensors
, vol.14
, pp. 12191-12206
-
-
Yamamoto, K.1
Guo, W.2
Yoshioka, Y.3
Ninomiya, S.4
-
11
-
-
84920090595
-
Automated Crop Yield Estimation for Apple Orchards
-
Québec City, QC, Canada, 17–22 June
-
Wang, Q.; Nuske, S.T.; Bergerman, M.; Singh, S. Automated Crop Yield Estimation for Apple Orchards. In Proceedings of the 13th Internation Symposium on Experimental Robotics (ISER 2012), Québec City, QC, Canada, 17–22 June 2012.
-
(2012)
Proceedings of the 13Th Internation Symposium on Experimental Robotics (ISER 2012)
-
-
Wang, Q.1
Nuske, S.T.2
Bergerman, M.3
Singh, S.4
-
12
-
-
84879189778
-
Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper
-
Bac, C.W.; Hemming, J.; van Henten, E.J. Robust pixel-based classification of obstacles for robotic harvesting of sweet-pepper. Comput. Electron. Agric. 2013, 96, 148–162.
-
(2013)
Comput. Electron. Agric
, vol.96
, pp. 148-162
-
-
Bac, C.W.1
Hemming, J.2
Van Henten, E.J.3
-
13
-
-
84893754811
-
Orchard fruit segmentation using multi-spectral feature learning
-
Tokyo, Japan, 3–7 November
-
Hung, C.; Nieto, J.; Taylor, Z.; Underwood, J.; Sukkarieh, S. Orchard fruit segmentation using multi-spectral feature learning. In Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, 3–7 November 2013; pp. 5314–5320.
-
(2013)
Proceedings of the 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp. 5314-5320
-
-
Hung, C.1
Nieto, J.2
Taylor, Z.3
Underwood, J.4
Sukkarieh, S.5
-
14
-
-
84865588818
-
Computer vision for fruit harvesting robots-state of the art and challenges ahead
-
Kapach, K.; Barnea, E.; Mairon, R.; Edan, Y.; Ben-Shahar, O. Computer vision for fruit harvesting robots-state of the art and challenges ahead. Int. J. Comput. Vis. Robot. 2012, 3, 4–34.
-
(2012)
Int. J. Comput. Vis. Robot.
, vol.3
, pp. 4-34
-
-
Kapach, K.1
Barnea, E.2
Mairon, R.3
Edan, Y.4
Ben-Shahar, O.5
-
15
-
-
84892634674
-
Automatic fruit recognition and counting from multiple images
-
Song, Y.; Glasbey, C.; Horgan, G.; Polder, G.; Dieleman, J.; van der Heijden, G., Automatic fruit recognition and counting from multiple images. Biosyst. Eng. 2014, 118, 203–215.
-
(2014)
Biosyst. Eng
, vol.118
, pp. 203-215
-
-
Song, Y.1
Glasbey, C.2
Horgan, G.3
Polder, G.4
Dieleman, J.5
Van Der Heijden, G.6
-
16
-
-
84937862424
-
Two-stream convolutional networks for action recognition in videos
-
Montréal, QC, Canada, 8–13 December
-
Simonyan, K.; Zisserman, A. Two-stream convolutional networks for action recognition in videos. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 8–13 December 2014; pp. 568–576.
-
(2014)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 568-576
-
-
Simonyan, K.1
Zisserman, A.2
-
17
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Tahoe City, CA, USA, 3–8 December
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Advances in Neural Information Processing Systems, Tahoe City, CA, USA, 3–8 December 2012; pp. 1097–1105.
-
(2012)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
18
-
-
84921069139
-
The pascal visual object classes challenge: A retrospective
-
Everingham, M.; Eslami, S.M.A.; van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The pascal visual object classes challenge: A retrospective. Int. J. Comput. Vis. 2015, 111, 98–136.
-
(2015)
Int. J. Comput. Vis
, vol.111
, pp. 98-136
-
-
Everingham, M.1
Eslami, S.M.A.2
Van Gool, L.3
Williams, C.K.I.4
Winn, J.5
Zisserman, A.6
-
19
-
-
84881160857
-
Selective search for object recognition
-
Uijlings, J.R.; van de Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J. Comput. Vis. 2013, 104, 154–171.
-
(2013)
Int. J. Comput. Vis
, vol.104
, pp. 154-171
-
-
Uijlings, J.R.1
Van De Sande, K.E.2
Gevers, T.3
Smeulders, A.W.4
-
20
-
-
84906489617
-
Edge boxes: Locating object proposals from edges
-
Springer: Zurich, Switzerland
-
Zitnick, C.L.; Dollár, P. Edge boxes: Locating object proposals from edges. In Computer Vision–ECCV 2014; Springer: Zurich, Switzerland, 2014; pp. 391–405.
-
(2014)
Computer Vision–ECCV 2014
, pp. 391-405
-
-
Zitnick, C.L.1
Dollár, P.2
-
21
-
-
84960980241
-
Faster R-CNN: Towards real-time object detection with region proposal networks
-
Montréal, QC, Canada, 7–12 December
-
Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada, 7–12 December 2015; pp. 91–99.
-
(2015)
Proceedings of the Advances in Neural Information Processing Systems
, pp. 91-99
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
22
-
-
84939247735
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916.
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.37
, pp. 1904-1916
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
24
-
-
80053437179
-
Multimodal deep learning
-
Bellevue,WA, USA, 28 June–2 July
-
Ngiam, J.; Khosla, A.; Kim, M.; Nam, J.; Lee, H.; Ng, A.Y. Multimodal deep learning. In Proceedings of the 28th international conference on machine learning (ICML-11), Bellevue,WA, USA, 28 June–2 July 2011; pp. 689–696.
-
(2011)
Proceedings of the 28Th International Conference on Machine Learning (ICML-11)
, pp. 689-696
-
-
Ngiam, J.1
Khosla, A.2
Kim, M.3
Nam, J.4
Lee, H.5
Ng, A.Y.6
-
25
-
-
84958157379
-
Multimodal deep learning for robust RGB-D object recognition
-
Hamburg, Germany, 28 September–2 October
-
Eitel, A.; Springenberg, J.T.; Spinello, L.; Riedmiller, M.; Burgard, W. Multimodal deep learning for robust RGB-D object recognition. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2 October 2015; pp. 681–687.
-
(2015)
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, pp. 681-687
-
-
Eitel, A.1
Springenberg, J.T.2
Spinello, L.3
Riedmiller, M.4
Burgard, W.5
-
26
-
-
84928013181
-
Deep learning for detecting robotic grasps
-
Lenz, I.; Lee, H.; Saxena, A. Deep learning for detecting robotic grasps. Int. J. Robot. Res. 2015, 34, 705–724.
-
(2015)
Int. J. Robot. Res
, vol.34
, pp. 705-724
-
-
Lenz, I.1
Lee, H.2
Saxena, A.3
-
27
-
-
84883162364
-
Learning graphical model parameters with approximate marginal inference
-
Domke, J. Learning graphical model parameters with approximate marginal inference. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 2454–2467.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.35
, pp. 2454-2467
-
-
Domke, J.1
-
28
-
-
0036647193
-
Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
-
Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.24
, pp. 971-987
-
-
Ojala, T.1
Pietikainen, M.2
Maenpaa, T.3
-
29
-
-
33645146449
-
Histograms of oriented gradients for human detection
-
San Diego, CA, USA, 25 June
-
Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), San Diego, CA, USA, 25 June 2005; Volume 1, pp. 886–893.
-
(2005)
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005)
, vol.1
, pp. 886-893
-
-
Dalal, N.1
Triggs, B.2
-
31
-
-
84904482223
-
-
accessed on 31 July 2016
-
Donahue, J.; Jia, Y.; Vinyals, O.; Hoffman, J.; Zhang, N.; Tzeng, E.; Darrell, T. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition, 2013. Available online: https://arxiv.org/abs/1310.1531 (accessed on 31 July 2016).
-
(2013)
Decaf: A Deep Convolutional Activation Feature for Generic Visual Recognition
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
33
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
Springer: Zurich, Switzerland
-
Zeiler, M.D.; Fergus, R. Visualizing and understanding convolutional networks. In Computer Vision–ECCV 2014; Springer: Zurich, Switzerland, 2014; pp. 818–833.
-
(2014)
Computer Vision–ECCV 2014
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
34
-
-
84937522268
-
Going deeper with convolutions
-
Boston, MA, USA, 7–12 June
-
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
36
-
-
84982772903
-
-
2016, accessed on 31 July 2016
-
University of California, Berkeley. Fine-Tuning CaffeNet for Style Recognition on Flickr Style Data (2016), 2016. Available online: http://caffe.berkeleyvision.org/gathered/examples/finetune_flickr_style.html (accessed on 31 July 2016).
-
(2016)
Fine-Tuning Caffenet for Style Recognition on Flickr Style Data
-
-
-
37
-
-
33751033207
-
Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention
-
Lindeberg, T. Detecting salient blob-like image structures and their scales with a scale-space primal sketch: A method for focus-of-attention. Int. J. Comput. Vis. 1993, 11, 283–318.
-
(1993)
Int. J. Comput. Vis
, vol.11
, pp. 283-318
-
-
Lindeberg, T.1
-
38
-
-
84908537903
-
CNN features off-the-shelf: An astounding baseline for recognition
-
Columbus, OH, USA, 23–28 June
-
Razavian, A.; Azizpour, H.; Sullivan, J.; Carlsson, S. CNN features off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; pp. 806–813.
-
(2014)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops
, pp. 806-813
-
-
Razavian, A.1
Azizpour, H.2
Sullivan, J.3
Carlsson, S.4
|