-
1
-
-
84962306691
-
The fourth industrial revolution is upon us
-
The Washington Post
-
Hoagland, J., The fourth industrial revolution is upon us. 2017, The Washington Post.
-
(2017)
-
-
Hoagland, J.1
-
2
-
-
85057925771
-
-
DeepMind. Applying machine learning to radiotherapy planning for head & neck cancer. Available at: (Accessed: 1st January 2016)
-
DeepMind. Applying machine learning to radiotherapy planning for head & neck cancer. (2016). Available at: https://deepmind.com/blog/applying-machine-learning-radiotherapy-planning-head-neck-cancer/. (Accessed: 1st January 2016).
-
(2016)
-
-
-
3
-
-
85034827908
-
Clinical decision support of radiotherapy treatment planning: a data-driven machine learning strategy for patient-specific dosimetric decision making
-
Valdes, G., et al. Clinical decision support of radiotherapy treatment planning: a data-driven machine learning strategy for patient-specific dosimetric decision making. Radiother Oncol 125 (2017), 392–397, 10.1016/j.radonc.2017.10.014.
-
(2017)
Radiother Oncol
, vol.125
, pp. 392-397
-
-
Valdes, G.1
-
4
-
-
85057913328
-
The cutting edge: delineating contours with Deep
-
Aljabar, P., Gooding, M.J., The cutting edge: delineating contours with Deep. Learning, 2017.
-
(2017)
Learning
-
-
Aljabar, P.1
Gooding, M.J.2
-
5
-
-
85057907921
-
-
Oncora Medical. Available at: (Accessed: 1st November 2017)
-
Oncora Medical. Available at: https://oncoramedical.com/. (Accessed: 1st November 2017).
-
-
-
-
6
-
-
84976466056
-
Big Data and machine learning in radiation oncology: state of the art and future prospects
-
Bibault, J.-E., Giraud, P., Burgun, A., Big Data and machine learning in radiation oncology: state of the art and future prospects. Cancer Lett 382 (2016), 110–117.
-
(2016)
Cancer Lett
, vol.382
, pp. 110-117
-
-
Bibault, J.-E.1
Giraud, P.2
Burgun, A.3
-
7
-
-
85030466573
-
Lost in thought—The limits of the human mind and the future of medicine
-
Obermeyer, Z., Lee, T.H., Lost in thought—The limits of the human mind and the future of medicine. N Engl J Med 377 (2017), 1209–1211.
-
(2017)
N Engl J Med
, vol.377
, pp. 1209-1211
-
-
Obermeyer, Z.1
Lee, T.H.2
-
8
-
-
85021635595
-
Machine learning and prediction in medicine – beyond the peak of inflated expectations
-
Chen, J.H., Asch, S.M., Machine learning and prediction in medicine – beyond the peak of inflated expectations. N Engl J Med 376 (2017), 2507–2509.
-
(2017)
N Engl J Med
, vol.376
, pp. 2507-2509
-
-
Chen, J.H.1
Asch, S.M.2
-
9
-
-
3442889435
-
Interpretation of observational studies
-
Jepsen, P., Johnsen, S.P., Gillman, M.W., Sørensen, H.T., Interpretation of observational studies. Heart 90 (2004), 956–960.
-
(2004)
Heart
, vol.90
, pp. 956-960
-
-
Jepsen, P.1
Johnsen, S.P.2
Gillman, M.W.3
Sørensen, H.T.4
-
10
-
-
85027869169
-
Unintended consequences of machine learning in medicine
-
Cabitza, F., Rasoini, R., Gensini, G.F., Unintended consequences of machine learning in medicine. JAMA 318 (2017), 517–518.
-
(2017)
JAMA
, vol.318
, pp. 517-518
-
-
Cabitza, F.1
Rasoini, R.2
Gensini, G.F.3
-
11
-
-
0032034227
-
Automatic tumor segmentation using knowledge-based techniques
-
Clark, M.C., et al. Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging 17 (1998), 187–201.
-
(1998)
IEEE Trans Med Imaging
, vol.17
, pp. 187-201
-
-
Clark, M.C.1
-
12
-
-
85057937335
-
-
Project InnerEye – Medical Imaging AI to Empower Clinicians. Available at: (Accessed: 1st November 2017)
-
Project InnerEye – Medical Imaging AI to Empower Clinicians. Available at: https://www.microsoft.com/en-us/research/project/medical-image-analysis/. (Accessed: 1st November 2017).
-
-
-
-
13
-
-
85057933699
-
-
Unsupervised domain adaptation in brain lesion segmentation with adversarial networks.
-
Kamnitsas, K. et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. (2016).
-
(2016)
-
-
Kamnitsas, K.1
-
14
-
-
84910147436
-
Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer
-
Walker, G.V., et al. Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer. Radiother Oncol 112 (2014), 321–325.
-
(2014)
Radiother Oncol
, vol.112
, pp. 321-325
-
-
Walker, G.V.1
-
15
-
-
85015598280
-
Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks
-
Ibragimov, B., Xing, L., Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med Phys 44 (2017), 547–557.
-
(2017)
Med Phys
, vol.44
, pp. 547-557
-
-
Ibragimov, B.1
Xing, L.2
-
16
-
-
84990026646
-
Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy
-
Delpon, G., et al. Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy. Front Oncol, 6, 2016, 178.
-
(2016)
Front Oncol
, vol.6
, pp. 178
-
-
Delpon, G.1
-
17
-
-
84881368203
-
A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning
-
Good, D., et al. A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning. Int J Radiat Oncol Biol Phys 87 (2013), 176–181.
-
(2013)
Int J Radiat Oncol Biol Phys
, vol.87
, pp. 176-181
-
-
Good, D.1
-
18
-
-
84873604523
-
Using overlap volume histogram and IMRT plan data to guide and automate VMAT planning: a head-and-neck case study
-
Wu, B., et al. Using overlap volume histogram and IMRT plan data to guide and automate VMAT planning: a head-and-neck case study. Med Phys, 40, 2013, 21714.
-
(2013)
Med Phys
, vol.40
, pp. 21714
-
-
Wu, B.1
-
19
-
-
80052799311
-
Experience-based quality control of clinical intensity-modulated radiotherapy planning
-
Moore, K.L., Brame, R.S., Low, D.A., Mutic, S., Experience-based quality control of clinical intensity-modulated radiotherapy planning. Int J Radiat Oncol Biol Phys 81 (2011), 545–551.
-
(2011)
Int J Radiat Oncol Biol Phys
, vol.81
, pp. 545-551
-
-
Moore, K.L.1
Brame, R.S.2
Low, D.A.3
Mutic, S.4
-
20
-
-
84930211229
-
Knowledge-based radiation therapy (KBRT) treatment planning versus planning by experts: validation of a KBRT algorithm for prostate cancer treatment planning
-
Nwankwo, O., Mekdash, H., Sihono, D.S.K., Wenz, F., Glatting, G., Knowledge-based radiation therapy (KBRT) treatment planning versus planning by experts: validation of a KBRT algorithm for prostate cancer treatment planning. Radiat Oncol, 10, 2015, 111.
-
(2015)
Radiat Oncol
, vol.10
, pp. 111
-
-
Nwankwo, O.1
Mekdash, H.2
Sihono, D.S.K.3
Wenz, F.4
Glatting, G.5
-
21
-
-
85019868236
-
Intercenter validation of a knowledge based model for automated planning of volumetric modulated arc therapy for prostate cancer. The experience of the German RapidPlan Consortium
-
Schubert, C., et al. Intercenter validation of a knowledge based model for automated planning of volumetric modulated arc therapy for prostate cancer. The experience of the German RapidPlan Consortium. PLoS One, 12, 2017, e0178034.
-
(2017)
PLoS One
, vol.12
, pp. e0178034
-
-
Schubert, C.1
-
22
-
-
85003828464
-
Highly efficient training, refinement, and validation of a knowledge-based planning quality-control system for radiation therapy clinical trials
-
Li, N., et al. Highly efficient training, refinement, and validation of a knowledge-based planning quality-control system for radiation therapy clinical trials. Int J Radiat Oncol Biol Phys 97 (2017), 164–172.
-
(2017)
Int J Radiat Oncol Biol Phys
, vol.97
, pp. 164-172
-
-
Li, N.1
-
23
-
-
85028660153
-
Performance of knowledge-based radiation therapy planning for the glioblastoma disease site
-
Chatterjee, A., et al. Performance of knowledge-based radiation therapy planning for the glioblastoma disease site. Int J Radiat Oncol, 2017, 10.1016/j.ijrobp.2017.07.012.
-
(2017)
Int J Radiat Oncol
-
-
Chatterjee, A.1
-
24
-
-
84923240850
-
Evaluation of a knowledge-based planning solution for head and neck cancer
-
Tol, J.P., Delaney, A.R., Dahele, M., Slotman, B.J., Verbakel, W.F.A.R., Evaluation of a knowledge-based planning solution for head and neck cancer. Int J Radiat Oncol Biol Phys 91 (2015), 612–620.
-
(2015)
Int J Radiat Oncol Biol Phys
, vol.91
, pp. 612-620
-
-
Tol, J.P.1
Delaney, A.R.2
Dahele, M.3
Slotman, B.J.4
Verbakel, W.F.A.R.5
-
25
-
-
85017503411
-
An analysis of knowledge-based planning for stereotactic body radiation therapy of the spine
-
Foy, J.J., et al. An analysis of knowledge-based planning for stereotactic body radiation therapy of the spine. Pract Radiat Oncol, 2017, 10.1016/j.prro.2017.02.007.
-
(2017)
Pract Radiat Oncol
-
-
Foy, J.J.1
-
26
-
-
79551664662
-
A planning quality evaluation tool for prostate adaptive IMRT based on machine learning
-
Zhu, X., et al. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med Phys 38 (2011), 719–726.
-
(2011)
Med Phys
, vol.38
, pp. 719-726
-
-
Zhu, X.1
-
27
-
-
84870905344
-
Predicting dose-volume histograms for organs-at-risk in IMRT planning
-
Appenzoller, L.M., Michalski, J.M., Thorstad, W.L., Mutic, S., Moore, K.L., Predicting dose-volume histograms for organs-at-risk in IMRT planning. Med Phys 39 (2012), 7446–7461.
-
(2012)
Med Phys
, vol.39
, pp. 7446-7461
-
-
Appenzoller, L.M.1
Michalski, J.M.2
Thorstad, W.L.3
Mutic, S.4
Moore, K.L.5
-
28
-
-
84928938597
-
Quantifying unnecessary normal tissue complication risks due to suboptimal planning: a secondary study of RTOG 0126
-
Moore, K.L., et al. Quantifying unnecessary normal tissue complication risks due to suboptimal planning: a secondary study of RTOG 0126. Int J Radiat Oncol Biol Phys 92 (2015), 228–235.
-
(2015)
Int J Radiat Oncol Biol Phys
, vol.92
, pp. 228-235
-
-
Moore, K.L.1
-
29
-
-
85009761160
-
Comparison of planning quality and efficiency between conventional and knowledge-based algorithms in nasopharyngeal cancer patients using intensity modulated radiation therapy
-
Chang, A.T.Y., et al. Comparison of planning quality and efficiency between conventional and knowledge-based algorithms in nasopharyngeal cancer patients using intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys 95 (2016), 981–990.
-
(2016)
Int J Radiat Oncol Biol Phys
, vol.95
, pp. 981-990
-
-
Chang, A.T.Y.1
-
30
-
-
84960288475
-
Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer - Comparison of dose, toxicity and cost-effectiveness
-
Cheng, Q., et al. Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer - Comparison of dose, toxicity and cost-effectiveness. Radiother Oncol 118 (2016), 281–285.
-
(2016)
Radiother Oncol
, vol.118
, pp. 281-285
-
-
Cheng, Q.1
-
31
-
-
84881478145
-
Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach
-
Langendijk, J.A., et al. Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach. Radiother Oncol 107 (2013), 267–273.
-
(2013)
Radiother Oncol
, vol.107
, pp. 267-273
-
-
Langendijk, J.A.1
-
32
-
-
85015347575
-
Predicting patient-specific dosimetric benefits of proton therapy for skull-base tumors using a geometric knowledge-based method
-
Hall, D.C., Trofimov, A.V., Winey, B.A., Liebsch, N.J., Paganetti, H., Predicting patient-specific dosimetric benefits of proton therapy for skull-base tumors using a geometric knowledge-based method. Int J Radiat Oncol Biol Phys 97 (2017), 1087–1094.
-
(2017)
Int J Radiat Oncol Biol Phys
, vol.97
, pp. 1087-1094
-
-
Hall, D.C.1
Trofimov, A.V.2
Winey, B.A.3
Liebsch, N.J.4
Paganetti, H.5
-
33
-
-
77958187748
-
Datamining approaches for modeling tumor control probability
-
Naqa, I.E., et al. Datamining approaches for modeling tumor control probability. Acta Oncol 49 (2010), 1363–1373.
-
(2010)
Acta Oncol
, vol.49
, pp. 1363-1373
-
-
Naqa, I.E.1
-
34
-
-
33644534479
-
Multivariable modeling of radiotherapy outcomes, including dose-volume and clinical factors
-
Naqa, I.E., et al. Multivariable modeling of radiotherapy outcomes, including dose-volume and clinical factors. Int J Radiat Oncol Biol Phys 64 (2006), 1275–1286.
-
(2006)
Int J Radiat Oncol Biol Phys
, vol.64
, pp. 1275-1286
-
-
Naqa, I.E.1
-
35
-
-
84908222160
-
A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making
-
Oberije, C., et al. A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making. Radiother Oncol 112 (2014), 37–43.
-
(2014)
Radiother Oncol
, vol.112
, pp. 37-43
-
-
Oberije, C.1
-
36
-
-
1542376214
-
Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma
-
Bradley, J., Deasy, J.O., Bentzen, S., Naqa, I.E., Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma. Int J Radiat Oncol Biol Phys 58 (2004), 1106–1113.
-
(2004)
Int J Radiat Oncol Biol Phys
, vol.58
, pp. 1106-1113
-
-
Bradley, J.1
Deasy, J.O.2
Bentzen, S.3
Naqa, I.E.4
-
37
-
-
33646015056
-
Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters
-
Hope, A.J., et al. Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters. Int J Radiat Oncol Biol Phys 65 (2006), 112–124.
-
(2006)
Int J Radiat Oncol Biol Phys
, vol.65
, pp. 112-124
-
-
Hope, A.J.1
-
38
-
-
84991101893
-
CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer
-
Huynh, E., et al. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother Oncol 120 (2016), 258–266.
-
(2016)
Radiother Oncol
, vol.120
, pp. 258-266
-
-
Huynh, E.1
-
39
-
-
85028727313
-
Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT
-
Deist, T.M., et al. Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT. Clin Transl Radiat Oncol 4 (2017), 24–31.
-
(2017)
Clin Transl Radiat Oncol
, vol.4
, pp. 24-31
-
-
Deist, T.M.1
-
40
-
-
85057944612
-
-
OncoSpace. Available at: (Accessed: 1st December 2017)
-
OncoSpace. Available at: https://oncospace.radonc.jhmi.edu/. (Accessed: 1st December 2017).
-
-
-
-
41
-
-
85057926499
-
-
Flatiron Health. Available at: (Accessed: 1st November 2017)
-
Flatiron Health. Available at: https://flatiron.com/. (Accessed: 1st November 2017).
-
-
-
-
42
-
-
84888072190
-
‘Rapid Learning health care in oncology’ – an approach towards decision support systems enabling customised radiotherapy
-
Lambin, P., et al. ‘Rapid Learning health care in oncology’ – an approach towards decision support systems enabling customised radiotherapy. Radiother Oncol 109 (2013), 159–164.
-
(2013)
Radiother Oncol
, vol.109
, pp. 159-164
-
-
Lambin, P.1
-
43
-
-
85057943813
-
-
OMOP Common Data Model v5.2 Specifications. Available at:
-
Reich, C., Ryan, P., Belenkaya, R., Natarajan, K. & Blacketer, C. OMOP Common Data Model v5.2 Specifications. (2017). Available at: https://github.com/OHDSI/CommonDataModel/blob/master/OMOP_CDM_v5_2.pdf.
-
(2017)
-
-
Reich, C.1
Ryan, P.2
Belenkaya, R.3
Natarajan, K.4
Blacketer, C.5
-
44
-
-
85057932686
-
-
Radiation Oncology Ontology. Available at:
-
Dekker, A. Radiation Oncology Ontology. Available at: http://bioportal.bioontology.org/ontologies/ROO.
-
-
-
Dekker, A.1
-
45
-
-
85034964412
-
Radiation oncology needs to adopt a comprehensive standard for data transfer: the case for HL7 FHIR
-
Phillips, M., Halasz, L., Radiation oncology needs to adopt a comprehensive standard for data transfer: the case for HL7 FHIR. Int J Radiat Oncol Biol Phys 99 (2017), 1073–1075.
-
(2017)
Int J Radiat Oncol Biol Phys
, vol.99
, pp. 1073-1075
-
-
Phillips, M.1
Halasz, L.2
-
46
-
-
85041819854
-
Representing knowledge consistently across health systems
-
Rosenbloom, S.T., Carroll, R.J., Warner, J.L., Matheny, M.E., Denny, J.C., Representing knowledge consistently across health systems. Yearb Med Inform 26 (2017), 139–147.
-
(2017)
Yearb Med Inform
, vol.26
, pp. 139-147
-
-
Rosenbloom, S.T.1
Carroll, R.J.2
Warner, J.L.3
Matheny, M.E.4
Denny, J.C.5
-
47
-
-
84975512963
-
A mathematical framework for virtual IMRT QA using machine learning
-
Valdes, G., et al. A mathematical framework for virtual IMRT QA using machine learning. Med Phys, 43, 2016, 4323.
-
(2016)
Med Phys
, vol.43
, pp. 4323
-
-
Valdes, G.1
-
48
-
-
85027501141
-
IMRT QA using machine learning: a multi-institutional validation
-
Valdes, G., et al. IMRT QA using machine learning: a multi-institutional validation. J Appl Clin Med Phys 18 (2017), 279–284.
-
(2017)
J Appl Clin Med Phys
, vol.18
, pp. 279-284
-
-
Valdes, G.1
-
49
-
-
84938919088
-
Use of TrueBeam developer mode for imaging QA
-
Valdes, G., et al. Use of TrueBeam developer mode for imaging QA. J Appl Clin Med Phys 16 (2015), 322–333.
-
(2015)
J Appl Clin Med Phys
, vol.16
, pp. 322-333
-
-
Valdes, G.1
-
50
-
-
84987711717
-
Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study
-
Li, Q., Chan, M.F., Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study. Ann N Y Acad Sci 1387 (2017), 84–94.
-
(2017)
Ann N Y Acad Sci
, vol.1387
, pp. 84-94
-
-
Li, Q.1
Chan, M.F.2
-
51
-
-
84907028637
-
Improving linear accelerator service response with a real- time electronic event reporting system
-
Hoisak, J.D.P., Pawlicki, T., Kim, G.-Y., Fletcher, R., Moore, K.L., Improving linear accelerator service response with a real- time electronic event reporting system. J Appl Clin Med Phys, 15, 2014, 4807.
-
(2014)
J Appl Clin Med Phys
, vol.15
, pp. 4807
-
-
Hoisak, J.D.P.1
Pawlicki, T.2
Kim, G.-Y.3
Fletcher, R.4
Moore, K.L.5
-
52
-
-
85015869563
-
Decaying relevance of clinical data towards future decisions in data-driven inpatient clinical order sets
-
Chen, J.H., Alagappan, M., Goldstein, M.K., Asch, S.M., Altman, R.B., Decaying relevance of clinical data towards future decisions in data-driven inpatient clinical order sets. Int J Med Inform 102 (2017), 71–79.
-
(2017)
Int J Med Inform
, vol.102
, pp. 71-79
-
-
Chen, J.H.1
Alagappan, M.2
Goldstein, M.K.3
Asch, S.M.4
Altman, R.B.5
-
53
-
-
85029212126
-
Online adaptive radiation therapy
-
Lim-Reinders, S., Keller, B.M., Al-Ward, S., Sahgal, A., Kim, A., Online adaptive radiation therapy. Int J Radiat Oncol Biol Phys 99 (2017), 994–1003.
-
(2017)
Int J Radiat Oncol Biol Phys
, vol.99
, pp. 994-1003
-
-
Lim-Reinders, S.1
Keller, B.M.2
Al-Ward, S.3
Sahgal, A.4
Kim, A.5
-
54
-
-
80052679695
-
Deskilling and adaptation among primary care physicians using two work innovations
-
Hoff, T., Deskilling and adaptation among primary care physicians using two work innovations. Health Care Manage Rev 36 (2011), 338–348.
-
(2011)
Health Care Manage Rev
, vol.36
, pp. 338-348
-
-
Hoff, T.1
-
55
-
-
84977269675
-
Benefits of adaptive radiation therapy in lung cancer as a function of replanning frequency
-
Dial, C., Weiss, E., Siebers, J.V., Hugo, G.D., Benefits of adaptive radiation therapy in lung cancer as a function of replanning frequency. Med Phys, 43, 2016, 1787.
-
(2016)
Med Phys
, vol.43
, pp. 1787
-
-
Dial, C.1
Weiss, E.2
Siebers, J.V.3
Hugo, G.D.4
-
56
-
-
84931271939
-
Clinical outcomes among patients with head and neck cancer treated by intensity-modulated radiotherapy with and without adaptive replanning
-
Chen, A.M., et al. Clinical outcomes among patients with head and neck cancer treated by intensity-modulated radiotherapy with and without adaptive replanning. Head Neck 36 (2014), 1541–1546.
-
(2014)
Head Neck
, vol.36
, pp. 1541-1546
-
-
Chen, A.M.1
-
57
-
-
85040554337
-
Artificial intelligence will reduce the need for clinical medical physicists
-
Tang, X., Wang, B., Rong, Y., Artificial intelligence will reduce the need for clinical medical physicists. J. Appl Clin Med Phys 19 (2018), 6–9.
-
(2018)
J. Appl Clin Med Phys
, vol.19
, pp. 6-9
-
-
Tang, X.1
Wang, B.2
Rong, Y.3
-
58
-
-
85037822623
-
Care for patients, not for charts: a future for clinical medical physics
-
Atwood, T.F., et al. Care for patients, not for charts: a future for clinical medical physics. Int J Radiat Oncol Biol Phys 100 (2018), 21–22.
-
(2018)
Int J Radiat Oncol Biol Phys
, vol.100
, pp. 21-22
-
-
Atwood, T.F.1
-
59
-
-
85054746087
-
Half of hospitals to adopt artificial intelligence within 5 years
-
Healthcare IT News
-
Sullivan, T., Half of hospitals to adopt artificial intelligence within 5 years. 2017, Healthcare IT News.
-
(2017)
-
-
Sullivan, T.1
-
60
-
-
85027891236
-
Data sharing: guard the privacy of donors
-
Hill, S.Y., Data sharing: guard the privacy of donors. Nature, 548, 2017, 281.
-
(2017)
Nature
, vol.548
, pp. 281
-
-
Hill, S.Y.1
-
61
-
-
85044139214
-
Patient privacy in the era of big data
-
Kayaalp, M., Patient privacy in the era of big data. Balkan Med J, 2017, 10.4274/balkanmedj.2017.0966.
-
(2017)
Balkan Med J
-
-
Kayaalp, M.1
-
62
-
-
84916203454
-
Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets
-
Skripcak, T., et al. Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets. Radiother Oncol 113 (2014), 303–309.
-
(2014)
Radiother Oncol
, vol.113
, pp. 303-309
-
-
Skripcak, T.1
-
63
-
-
85006046138
-
Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital – a real life proof of concept
-
Jochems, A., et al. Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital – a real life proof of concept. Radiother Oncol 121 (2016), 459–467.
-
(2016)
Radiother Oncol
, vol.121
, pp. 459-467
-
-
Jochems, A.1
-
64
-
-
84874370270
-
Data re-identification: prioritize privacy
-
Gutmann, A., Data re-identification: prioritize privacy. Science, 339, 2013, 1032.
-
(2013)
Science
, vol.339
, pp. 1032
-
-
Gutmann, A.1
-
65
-
-
85014841011
-
The effect of the general data protection regulation on medical research
-
Rumbold, J.M.M., Pierscionek, B., The effect of the general data protection regulation on medical research. J Med Internet Res, 19, 2017, e47.
-
(2017)
J Med Internet Res
, vol.19
, pp. e47
-
-
Rumbold, J.M.M.1
Pierscionek, B.2
-
66
-
-
85019348495
-
-
The new EU General Data Protection Regulation: what the radiologist should know. Insights Imaging 2017;8:.
-
European Society of Radiology (ESR). The new EU General Data Protection Regulation: what the radiologist should know. Insights Imaging 2017;8:295–299.
-
-
-
-
67
-
-
85057898014
-
NHS illegally handed Google firm 1.6m patient records, UK data watchdog finds
-
The Telegraph
-
McGoon, C., NHS illegally handed Google firm 1.6m patient records, UK data watchdog finds. 2017, The Telegraph.
-
(2017)
-
-
McGoon, C.1
-
68
-
-
79960864492
-
Factors affecting the implementation of complex and evolving technologies: multiple case study of intensity-modulated radiation therapy (IMRT) in Ontario Canada
-
Bak, K., Dobrow, M.J., Hodgson, D., Whitton, A., Factors affecting the implementation of complex and evolving technologies: multiple case study of intensity-modulated radiation therapy (IMRT) in Ontario Canada. BMC Health Serv Res, 11, 2011, 178.
-
(2011)
BMC Health Serv Res
, vol.11
, pp. 178
-
-
Bak, K.1
Dobrow, M.J.2
Hodgson, D.3
Whitton, A.4
-
69
-
-
33748869892
-
Monte Carlo characterization of target doses in stereotactic body radiation therapy (SBRT)
-
Rassiah-Szegedi, P., et al. Monte Carlo characterization of target doses in stereotactic body radiation therapy (SBRT). Acta Oncol 45 (2006), 989–994.
-
(2006)
Acta Oncol
, vol.45
, pp. 989-994
-
-
Rassiah-Szegedi, P.1
-
70
-
-
84897093663
-
Study of 201 non-small cell lung cancer patients given stereotactic ablative radiation therapy shows local control dependence on dose calculation algorithm
-
Latifi, K., et al. Study of 201 non-small cell lung cancer patients given stereotactic ablative radiation therapy shows local control dependence on dose calculation algorithm. Int J Radiat Oncol Biol Phys 88 (2014), 1108–1113.
-
(2014)
Int J Radiat Oncol Biol Phys
, vol.88
, pp. 1108-1113
-
-
Latifi, K.1
-
71
-
-
85057898089
-
-
™ to Guide Artificial Intelligence Use in Medical Imaging. Available at:
-
ACR Data Science Institute™ to Guide Artificial Intelligence Use in Medical Imaging. (2017). Available at: https://www.acr.org/About-Us/Media-Center/Press-Releases/2017-Press-Releases/20170521-ACR-Data-Science-Institute-to-Guide-Artificial-Intelligence-Use-in-Medical-Imaging.
-
(2017)
-
-
ACR Data Science Institute1
-
72
-
-
85031726444
-
Knowledge sharing as a social dilemma in pharmaceutical innovation
-
Kim, D., Knowledge sharing as a social dilemma in pharmaceutical innovation. Food Drug Law J 71 (2016), 673–709.
-
(2016)
Food Drug Law J
, vol.71
, pp. 673-709
-
-
Kim, D.1
-
73
-
-
85016289170
-
Advantages of a truly open-access data-sharing model
-
Bertagnolli, M.M., et al. Advantages of a truly open-access data-sharing model. N Engl J Med 376 (2017), 1178–1181.
-
(2017)
N Engl J Med
, vol.376
, pp. 1178-1181
-
-
Bertagnolli, M.M.1
-
74
-
-
85043343934
-
Data sharing: convert challenges into opportunities
-
Figueiredo, A.S., Data sharing: convert challenges into opportunities. Front Public Heal, 5, 2017, 327.
-
(2017)
Front Public Heal
, vol.5
, pp. 327
-
-
Figueiredo, A.S.1
-
75
-
-
33745699139
-
Whose data set is it anyway? Sharing raw data from randomized trials
-
Vickers, A.J., Whose data set is it anyway? Sharing raw data from randomized trials. Trials, 7, 2006, 15.
-
(2006)
Trials
, vol.7
, pp. 15
-
-
Vickers, A.J.1
-
76
-
-
77954531078
-
The delay in sharing research data is costing lives
-
Sommer, J., The delay in sharing research data is costing lives. Nat Med, 16, 2010, 744.
-
(2010)
Nat Med
, vol.16
, pp. 744
-
-
Sommer, J.1
-
77
-
-
84896404677
-
International data-sharing for radiotherapy research: an open-source based infrastructure for multicentric clinical data mining
-
Roelofs, E., et al. International data-sharing for radiotherapy research: an open-source based infrastructure for multicentric clinical data mining. Radiother Oncol 110 (2014), 370–374.
-
(2014)
Radiother Oncol
, vol.110
, pp. 370-374
-
-
Roelofs, E.1
-
78
-
-
33846889320
-
Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships
-
Naqa, I.E., et al. Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships. Phys Med Biol 51 (2006), 5719–5735.
-
(2006)
Phys Med Biol
, vol.51
, pp. 5719-5735
-
-
Naqa, I.E.1
-
79
-
-
84894900429
-
Development of a software for quantitative evaluation radiotherapy target and organ-at-risk segmentation comparison
-
Kalpathy-Cramer, J., et al. Development of a software for quantitative evaluation radiotherapy target and organ-at-risk segmentation comparison. J Digit Imaging 27 (2014), 108–119.
-
(2014)
J Digit Imaging
, vol.27
, pp. 108-119
-
-
Kalpathy-Cramer, J.1
-
80
-
-
84923913977
-
IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics
-
Zhang, L., et al. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys 42 (2015), 1341–1353.
-
(2015)
Med Phys
, vol.42
, pp. 1341-1353
-
-
Zhang, L.1
-
81
-
-
84988431524
-
An open source solution for an in-house built dynamic platform for the validation of stereotactic ablative body radiotherapy for VMAT and IMRT
-
Munoz, L., Ziebell, A., Morton, J., Bhat, M., An open source solution for an in-house built dynamic platform for the validation of stereotactic ablative body radiotherapy for VMAT and IMRT. Australas Phys Eng Sci Med 39 (2016), 957–964.
-
(2016)
Australas Phys Eng Sci Med
, vol.39
, pp. 957-964
-
-
Munoz, L.1
Ziebell, A.2
Morton, J.3
Bhat, M.4
-
82
-
-
85042648969
-
Anderson Cancer Center Head and Neck Quantitative Imaging Working Group. Matched computed tomography segmentation and demographic data for oropharyngeal cancer radiomics challenges
-
MICCAI/M.D., Anderson Cancer Center Head and Neck Quantitative Imaging Working Group. Matched computed tomography segmentation and demographic data for oropharyngeal cancer radiomics challenges. Sci Data, 4, 2017, 170077.
-
(2017)
Sci Data
, vol.4
, pp. 170077
-
-
MICCAI/M.D.1
-
83
-
-
85029332732
-
A multi-institutional comparison of dynamic contrast-enhanced magnetic resonance imaging parameter calculations
-
Ger, R.B., et al. A multi-institutional comparison of dynamic contrast-enhanced magnetic resonance imaging parameter calculations. Sci Rep, 7, 2017, 11185.
-
(2017)
Sci Rep
, vol.7
, pp. 11185
-
-
Ger, R.B.1
-
84
-
-
84902513849
-
Quantitative imaging network: data sharing and competitive algorithm validation leveraging the cancer imaging archive
-
Kalpathy-Cramer, J., Freymann, J.B., Kirby, J.S., Kinahan, P.E., Prior, F.W., Quantitative imaging network: data sharing and competitive algorithm validation leveraging the cancer imaging archive. Transl Oncol 7 (2014), 147–152.
-
(2014)
Transl Oncol
, vol.7
, pp. 147-152
-
-
Kalpathy-Cramer, J.1
Freymann, J.B.2
Kirby, J.S.3
Kinahan, P.E.4
Prior, F.W.5
-
85
-
-
84982187833
-
Genetic misdiagnoses and the potential for health disparities
-
Manrai, A.K., et al. Genetic misdiagnoses and the potential for health disparities. N Engl J Med 375 (2016), 655–665.
-
(2016)
N Engl J Med
, vol.375
, pp. 655-665
-
-
Manrai, A.K.1
-
86
-
-
85013625078
-
Regulatory watch: From big data to smart data: FDA's INFORMED initiative
-
Khozin, S., Kim, G., Pazdur, R., Regulatory watch: From big data to smart data: FDA's INFORMED initiative. Nat Rev Drug Discovery, 16, 2017, 306.
-
(2017)
Nat Rev Drug Discovery
, vol.16
, pp. 306
-
-
Khozin, S.1
Kim, G.2
Pazdur, R.3
-
87
-
-
85057906820
-
-
NCI announces oncology data science fellowship. Available at:
-
NCI announces oncology data science fellowship. (2017). Available at: https://astroblog.weebly.com/blog/nci-announces-oncology-data-science-fellowship.
-
(2017)
-
-
-
88
-
-
79951878870
-
The future of radiation oncology in the United States from 2010 to 2020: will supply keep pace with demand?
-
Smith, B.D., et al. The future of radiation oncology in the United States from 2010 to 2020: will supply keep pace with demand?. J Clin Oncol 28 (2010), 5160–5165.
-
(2010)
J Clin Oncol
, vol.28
, pp. 5160-5165
-
-
Smith, B.D.1
-
89
-
-
84969528752
-
Supply and demand for radiation oncology in the United States: updated projections for 2015 to 2025
-
Pan, H.Y., et al. Supply and demand for radiation oncology in the United States: updated projections for 2015 to 2025. Int J Radiat Oncol Biol Phys 96 (2016), 493–500.
-
(2016)
Int J Radiat Oncol Biol Phys
, vol.96
, pp. 493-500
-
-
Pan, H.Y.1
|