메뉴 건너뛰기




Volumn 129, Issue 3, 2018, Pages 421-426

Artificial intelligence in radiation oncology: A specialty-wide disruptive transformation?

(13)  Thompson, Reid F a,b   Valdes, Gilmer c   Fuller, Clifton D d   Carpenter, Colin M e   Morin, Olivier c   Aneja, Sanjay f   Lindsay, William D g   Aerts, Hugo J W L h,i   Agrimson, Barbara a   Deville, Curtiland j   Rosenthal, Seth A k   Yu, James B f   Thomas, Charles R a  


Author keywords

Artificial intelligence; Deep learning; Machine learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLINICAL DECISION SUPPORT SYSTEM; CLINICAL OUTCOME; DOSIMETRY; HUMAN; IMAGE SEGMENTATION; MEDICAL EDUCATION; PATIENT CARE; PHYSICS; PREDICTION; PRIORITY JOURNAL; QUALITY CONTROL; RADIATION ONCOLOGY; RADIOTHERAPY DOSAGE; REVIEW; DECISION SUPPORT SYSTEM; FORECASTING; HEALTH CARE QUALITY; MACHINE LEARNING; PROCEDURES; RADIOLOGY;

EID: 85048335962     PISSN: 01678140     EISSN: 18790887     Source Type: Journal    
DOI: 10.1016/j.radonc.2018.05.030     Document Type: Review
Times cited : (185)

References (89)
  • 1
    • 84962306691 scopus 로고    scopus 로고
    • The fourth industrial revolution is upon us
    • The Washington Post
    • Hoagland, J., The fourth industrial revolution is upon us. 2017, The Washington Post.
    • (2017)
    • Hoagland, J.1
  • 2
    • 85057925771 scopus 로고    scopus 로고
    • DeepMind. Applying machine learning to radiotherapy planning for head & neck cancer. Available at: (Accessed: 1st January 2016)
    • DeepMind. Applying machine learning to radiotherapy planning for head & neck cancer. (2016). Available at: https://deepmind.com/blog/applying-machine-learning-radiotherapy-planning-head-neck-cancer/. (Accessed: 1st January 2016).
    • (2016)
  • 3
    • 85034827908 scopus 로고    scopus 로고
    • Clinical decision support of radiotherapy treatment planning: a data-driven machine learning strategy for patient-specific dosimetric decision making
    • Valdes, G., et al. Clinical decision support of radiotherapy treatment planning: a data-driven machine learning strategy for patient-specific dosimetric decision making. Radiother Oncol 125 (2017), 392–397, 10.1016/j.radonc.2017.10.014.
    • (2017) Radiother Oncol , vol.125 , pp. 392-397
    • Valdes, G.1
  • 4
    • 85057913328 scopus 로고    scopus 로고
    • The cutting edge: delineating contours with Deep
    • Aljabar, P., Gooding, M.J., The cutting edge: delineating contours with Deep. Learning, 2017.
    • (2017) Learning
    • Aljabar, P.1    Gooding, M.J.2
  • 5
    • 85057907921 scopus 로고    scopus 로고
    • Oncora Medical. Available at: (Accessed: 1st November 2017)
    • Oncora Medical. Available at: https://oncoramedical.com/. (Accessed: 1st November 2017).
  • 6
    • 84976466056 scopus 로고    scopus 로고
    • Big Data and machine learning in radiation oncology: state of the art and future prospects
    • Bibault, J.-E., Giraud, P., Burgun, A., Big Data and machine learning in radiation oncology: state of the art and future prospects. Cancer Lett 382 (2016), 110–117.
    • (2016) Cancer Lett , vol.382 , pp. 110-117
    • Bibault, J.-E.1    Giraud, P.2    Burgun, A.3
  • 7
    • 85030466573 scopus 로고    scopus 로고
    • Lost in thought—The limits of the human mind and the future of medicine
    • Obermeyer, Z., Lee, T.H., Lost in thought—The limits of the human mind and the future of medicine. N Engl J Med 377 (2017), 1209–1211.
    • (2017) N Engl J Med , vol.377 , pp. 1209-1211
    • Obermeyer, Z.1    Lee, T.H.2
  • 8
    • 85021635595 scopus 로고    scopus 로고
    • Machine learning and prediction in medicine – beyond the peak of inflated expectations
    • Chen, J.H., Asch, S.M., Machine learning and prediction in medicine – beyond the peak of inflated expectations. N Engl J Med 376 (2017), 2507–2509.
    • (2017) N Engl J Med , vol.376 , pp. 2507-2509
    • Chen, J.H.1    Asch, S.M.2
  • 10
    • 85027869169 scopus 로고    scopus 로고
    • Unintended consequences of machine learning in medicine
    • Cabitza, F., Rasoini, R., Gensini, G.F., Unintended consequences of machine learning in medicine. JAMA 318 (2017), 517–518.
    • (2017) JAMA , vol.318 , pp. 517-518
    • Cabitza, F.1    Rasoini, R.2    Gensini, G.F.3
  • 11
    • 0032034227 scopus 로고    scopus 로고
    • Automatic tumor segmentation using knowledge-based techniques
    • Clark, M.C., et al. Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging 17 (1998), 187–201.
    • (1998) IEEE Trans Med Imaging , vol.17 , pp. 187-201
    • Clark, M.C.1
  • 12
    • 85057937335 scopus 로고    scopus 로고
    • Project InnerEye – Medical Imaging AI to Empower Clinicians. Available at: (Accessed: 1st November 2017)
    • Project InnerEye – Medical Imaging AI to Empower Clinicians. Available at: https://www.microsoft.com/en-us/research/project/medical-image-analysis/. (Accessed: 1st November 2017).
  • 13
    • 85057933699 scopus 로고    scopus 로고
    • Unsupervised domain adaptation in brain lesion segmentation with adversarial networks.
    • Kamnitsas, K. et al. Unsupervised domain adaptation in brain lesion segmentation with adversarial networks. (2016).
    • (2016)
    • Kamnitsas, K.1
  • 14
    • 84910147436 scopus 로고    scopus 로고
    • Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer
    • Walker, G.V., et al. Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer. Radiother Oncol 112 (2014), 321–325.
    • (2014) Radiother Oncol , vol.112 , pp. 321-325
    • Walker, G.V.1
  • 15
    • 85015598280 scopus 로고    scopus 로고
    • Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks
    • Ibragimov, B., Xing, L., Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Med Phys 44 (2017), 547–557.
    • (2017) Med Phys , vol.44 , pp. 547-557
    • Ibragimov, B.1    Xing, L.2
  • 16
    • 84990026646 scopus 로고    scopus 로고
    • Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy
    • Delpon, G., et al. Comparison of automated atlas-based segmentation software for postoperative prostate cancer radiotherapy. Front Oncol, 6, 2016, 178.
    • (2016) Front Oncol , vol.6 , pp. 178
    • Delpon, G.1
  • 17
    • 84881368203 scopus 로고    scopus 로고
    • A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning
    • Good, D., et al. A knowledge-based approach to improving and homogenizing intensity modulated radiation therapy planning quality among treatment centers: an example application to prostate cancer planning. Int J Radiat Oncol Biol Phys 87 (2013), 176–181.
    • (2013) Int J Radiat Oncol Biol Phys , vol.87 , pp. 176-181
    • Good, D.1
  • 18
    • 84873604523 scopus 로고    scopus 로고
    • Using overlap volume histogram and IMRT plan data to guide and automate VMAT planning: a head-and-neck case study
    • Wu, B., et al. Using overlap volume histogram and IMRT plan data to guide and automate VMAT planning: a head-and-neck case study. Med Phys, 40, 2013, 21714.
    • (2013) Med Phys , vol.40 , pp. 21714
    • Wu, B.1
  • 19
    • 80052799311 scopus 로고    scopus 로고
    • Experience-based quality control of clinical intensity-modulated radiotherapy planning
    • Moore, K.L., Brame, R.S., Low, D.A., Mutic, S., Experience-based quality control of clinical intensity-modulated radiotherapy planning. Int J Radiat Oncol Biol Phys 81 (2011), 545–551.
    • (2011) Int J Radiat Oncol Biol Phys , vol.81 , pp. 545-551
    • Moore, K.L.1    Brame, R.S.2    Low, D.A.3    Mutic, S.4
  • 20
    • 84930211229 scopus 로고    scopus 로고
    • Knowledge-based radiation therapy (KBRT) treatment planning versus planning by experts: validation of a KBRT algorithm for prostate cancer treatment planning
    • Nwankwo, O., Mekdash, H., Sihono, D.S.K., Wenz, F., Glatting, G., Knowledge-based radiation therapy (KBRT) treatment planning versus planning by experts: validation of a KBRT algorithm for prostate cancer treatment planning. Radiat Oncol, 10, 2015, 111.
    • (2015) Radiat Oncol , vol.10 , pp. 111
    • Nwankwo, O.1    Mekdash, H.2    Sihono, D.S.K.3    Wenz, F.4    Glatting, G.5
  • 21
    • 85019868236 scopus 로고    scopus 로고
    • Intercenter validation of a knowledge based model for automated planning of volumetric modulated arc therapy for prostate cancer. The experience of the German RapidPlan Consortium
    • Schubert, C., et al. Intercenter validation of a knowledge based model for automated planning of volumetric modulated arc therapy for prostate cancer. The experience of the German RapidPlan Consortium. PLoS One, 12, 2017, e0178034.
    • (2017) PLoS One , vol.12 , pp. e0178034
    • Schubert, C.1
  • 22
    • 85003828464 scopus 로고    scopus 로고
    • Highly efficient training, refinement, and validation of a knowledge-based planning quality-control system for radiation therapy clinical trials
    • Li, N., et al. Highly efficient training, refinement, and validation of a knowledge-based planning quality-control system for radiation therapy clinical trials. Int J Radiat Oncol Biol Phys 97 (2017), 164–172.
    • (2017) Int J Radiat Oncol Biol Phys , vol.97 , pp. 164-172
    • Li, N.1
  • 23
    • 85028660153 scopus 로고    scopus 로고
    • Performance of knowledge-based radiation therapy planning for the glioblastoma disease site
    • Chatterjee, A., et al. Performance of knowledge-based radiation therapy planning for the glioblastoma disease site. Int J Radiat Oncol, 2017, 10.1016/j.ijrobp.2017.07.012.
    • (2017) Int J Radiat Oncol
    • Chatterjee, A.1
  • 25
    • 85017503411 scopus 로고    scopus 로고
    • An analysis of knowledge-based planning for stereotactic body radiation therapy of the spine
    • Foy, J.J., et al. An analysis of knowledge-based planning for stereotactic body radiation therapy of the spine. Pract Radiat Oncol, 2017, 10.1016/j.prro.2017.02.007.
    • (2017) Pract Radiat Oncol
    • Foy, J.J.1
  • 26
    • 79551664662 scopus 로고    scopus 로고
    • A planning quality evaluation tool for prostate adaptive IMRT based on machine learning
    • Zhu, X., et al. A planning quality evaluation tool for prostate adaptive IMRT based on machine learning. Med Phys 38 (2011), 719–726.
    • (2011) Med Phys , vol.38 , pp. 719-726
    • Zhu, X.1
  • 27
    • 84870905344 scopus 로고    scopus 로고
    • Predicting dose-volume histograms for organs-at-risk in IMRT planning
    • Appenzoller, L.M., Michalski, J.M., Thorstad, W.L., Mutic, S., Moore, K.L., Predicting dose-volume histograms for organs-at-risk in IMRT planning. Med Phys 39 (2012), 7446–7461.
    • (2012) Med Phys , vol.39 , pp. 7446-7461
    • Appenzoller, L.M.1    Michalski, J.M.2    Thorstad, W.L.3    Mutic, S.4    Moore, K.L.5
  • 28
    • 84928938597 scopus 로고    scopus 로고
    • Quantifying unnecessary normal tissue complication risks due to suboptimal planning: a secondary study of RTOG 0126
    • Moore, K.L., et al. Quantifying unnecessary normal tissue complication risks due to suboptimal planning: a secondary study of RTOG 0126. Int J Radiat Oncol Biol Phys 92 (2015), 228–235.
    • (2015) Int J Radiat Oncol Biol Phys , vol.92 , pp. 228-235
    • Moore, K.L.1
  • 29
    • 85009761160 scopus 로고    scopus 로고
    • Comparison of planning quality and efficiency between conventional and knowledge-based algorithms in nasopharyngeal cancer patients using intensity modulated radiation therapy
    • Chang, A.T.Y., et al. Comparison of planning quality and efficiency between conventional and knowledge-based algorithms in nasopharyngeal cancer patients using intensity modulated radiation therapy. Int J Radiat Oncol Biol Phys 95 (2016), 981–990.
    • (2016) Int J Radiat Oncol Biol Phys , vol.95 , pp. 981-990
    • Chang, A.T.Y.1
  • 30
    • 84960288475 scopus 로고    scopus 로고
    • Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer - Comparison of dose, toxicity and cost-effectiveness
    • Cheng, Q., et al. Development and evaluation of an online three-level proton vs photon decision support prototype for head and neck cancer - Comparison of dose, toxicity and cost-effectiveness. Radiother Oncol 118 (2016), 281–285.
    • (2016) Radiother Oncol , vol.118 , pp. 281-285
    • Cheng, Q.1
  • 31
    • 84881478145 scopus 로고    scopus 로고
    • Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach
    • Langendijk, J.A., et al. Selection of patients for radiotherapy with protons aiming at reduction of side effects: the model-based approach. Radiother Oncol 107 (2013), 267–273.
    • (2013) Radiother Oncol , vol.107 , pp. 267-273
    • Langendijk, J.A.1
  • 32
    • 85015347575 scopus 로고    scopus 로고
    • Predicting patient-specific dosimetric benefits of proton therapy for skull-base tumors using a geometric knowledge-based method
    • Hall, D.C., Trofimov, A.V., Winey, B.A., Liebsch, N.J., Paganetti, H., Predicting patient-specific dosimetric benefits of proton therapy for skull-base tumors using a geometric knowledge-based method. Int J Radiat Oncol Biol Phys 97 (2017), 1087–1094.
    • (2017) Int J Radiat Oncol Biol Phys , vol.97 , pp. 1087-1094
    • Hall, D.C.1    Trofimov, A.V.2    Winey, B.A.3    Liebsch, N.J.4    Paganetti, H.5
  • 33
    • 77958187748 scopus 로고    scopus 로고
    • Datamining approaches for modeling tumor control probability
    • Naqa, I.E., et al. Datamining approaches for modeling tumor control probability. Acta Oncol 49 (2010), 1363–1373.
    • (2010) Acta Oncol , vol.49 , pp. 1363-1373
    • Naqa, I.E.1
  • 34
    • 33644534479 scopus 로고    scopus 로고
    • Multivariable modeling of radiotherapy outcomes, including dose-volume and clinical factors
    • Naqa, I.E., et al. Multivariable modeling of radiotherapy outcomes, including dose-volume and clinical factors. Int J Radiat Oncol Biol Phys 64 (2006), 1275–1286.
    • (2006) Int J Radiat Oncol Biol Phys , vol.64 , pp. 1275-1286
    • Naqa, I.E.1
  • 35
    • 84908222160 scopus 로고    scopus 로고
    • A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making
    • Oberije, C., et al. A prospective study comparing the predictions of doctors versus models for treatment outcome of lung cancer patients: a step toward individualized care and shared decision making. Radiother Oncol 112 (2014), 37–43.
    • (2014) Radiother Oncol , vol.112 , pp. 37-43
    • Oberije, C.1
  • 36
    • 1542376214 scopus 로고    scopus 로고
    • Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma
    • Bradley, J., Deasy, J.O., Bentzen, S., Naqa, I.E., Dosimetric correlates for acute esophagitis in patients treated with radiotherapy for lung carcinoma. Int J Radiat Oncol Biol Phys 58 (2004), 1106–1113.
    • (2004) Int J Radiat Oncol Biol Phys , vol.58 , pp. 1106-1113
    • Bradley, J.1    Deasy, J.O.2    Bentzen, S.3    Naqa, I.E.4
  • 37
    • 33646015056 scopus 로고    scopus 로고
    • Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters
    • Hope, A.J., et al. Modeling radiation pneumonitis risk with clinical, dosimetric, and spatial parameters. Int J Radiat Oncol Biol Phys 65 (2006), 112–124.
    • (2006) Int J Radiat Oncol Biol Phys , vol.65 , pp. 112-124
    • Hope, A.J.1
  • 38
    • 84991101893 scopus 로고    scopus 로고
    • CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer
    • Huynh, E., et al. CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother Oncol 120 (2016), 258–266.
    • (2016) Radiother Oncol , vol.120 , pp. 258-266
    • Huynh, E.1
  • 39
    • 85028727313 scopus 로고    scopus 로고
    • Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT
    • Deist, T.M., et al. Infrastructure and distributed learning methodology for privacy-preserving multi-centric rapid learning health care: euroCAT. Clin Transl Radiat Oncol 4 (2017), 24–31.
    • (2017) Clin Transl Radiat Oncol , vol.4 , pp. 24-31
    • Deist, T.M.1
  • 40
    • 85057944612 scopus 로고    scopus 로고
    • OncoSpace. Available at: (Accessed: 1st December 2017)
    • OncoSpace. Available at: https://oncospace.radonc.jhmi.edu/. (Accessed: 1st December 2017).
  • 41
    • 85057926499 scopus 로고    scopus 로고
    • Flatiron Health. Available at: (Accessed: 1st November 2017)
    • Flatiron Health. Available at: https://flatiron.com/. (Accessed: 1st November 2017).
  • 42
    • 84888072190 scopus 로고    scopus 로고
    • ‘Rapid Learning health care in oncology’ – an approach towards decision support systems enabling customised radiotherapy
    • Lambin, P., et al. ‘Rapid Learning health care in oncology’ – an approach towards decision support systems enabling customised radiotherapy. Radiother Oncol 109 (2013), 159–164.
    • (2013) Radiother Oncol , vol.109 , pp. 159-164
    • Lambin, P.1
  • 43
    • 85057943813 scopus 로고    scopus 로고
    • OMOP Common Data Model v5.2 Specifications. Available at:
    • Reich, C., Ryan, P., Belenkaya, R., Natarajan, K. & Blacketer, C. OMOP Common Data Model v5.2 Specifications. (2017). Available at: https://github.com/OHDSI/CommonDataModel/blob/master/OMOP_CDM_v5_2.pdf.
    • (2017)
    • Reich, C.1    Ryan, P.2    Belenkaya, R.3    Natarajan, K.4    Blacketer, C.5
  • 44
    • 85057932686 scopus 로고    scopus 로고
    • Radiation Oncology Ontology. Available at:
    • Dekker, A. Radiation Oncology Ontology. Available at: http://bioportal.bioontology.org/ontologies/ROO.
    • Dekker, A.1
  • 45
    • 85034964412 scopus 로고    scopus 로고
    • Radiation oncology needs to adopt a comprehensive standard for data transfer: the case for HL7 FHIR
    • Phillips, M., Halasz, L., Radiation oncology needs to adopt a comprehensive standard for data transfer: the case for HL7 FHIR. Int J Radiat Oncol Biol Phys 99 (2017), 1073–1075.
    • (2017) Int J Radiat Oncol Biol Phys , vol.99 , pp. 1073-1075
    • Phillips, M.1    Halasz, L.2
  • 47
    • 84975512963 scopus 로고    scopus 로고
    • A mathematical framework for virtual IMRT QA using machine learning
    • Valdes, G., et al. A mathematical framework for virtual IMRT QA using machine learning. Med Phys, 43, 2016, 4323.
    • (2016) Med Phys , vol.43 , pp. 4323
    • Valdes, G.1
  • 48
    • 85027501141 scopus 로고    scopus 로고
    • IMRT QA using machine learning: a multi-institutional validation
    • Valdes, G., et al. IMRT QA using machine learning: a multi-institutional validation. J Appl Clin Med Phys 18 (2017), 279–284.
    • (2017) J Appl Clin Med Phys , vol.18 , pp. 279-284
    • Valdes, G.1
  • 49
    • 84938919088 scopus 로고    scopus 로고
    • Use of TrueBeam developer mode for imaging QA
    • Valdes, G., et al. Use of TrueBeam developer mode for imaging QA. J Appl Clin Med Phys 16 (2015), 322–333.
    • (2015) J Appl Clin Med Phys , vol.16 , pp. 322-333
    • Valdes, G.1
  • 50
    • 84987711717 scopus 로고    scopus 로고
    • Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study
    • Li, Q., Chan, M.F., Predictive time-series modeling using artificial neural networks for Linac beam symmetry: an empirical study. Ann N Y Acad Sci 1387 (2017), 84–94.
    • (2017) Ann N Y Acad Sci , vol.1387 , pp. 84-94
    • Li, Q.1    Chan, M.F.2
  • 51
    • 84907028637 scopus 로고    scopus 로고
    • Improving linear accelerator service response with a real- time electronic event reporting system
    • Hoisak, J.D.P., Pawlicki, T., Kim, G.-Y., Fletcher, R., Moore, K.L., Improving linear accelerator service response with a real- time electronic event reporting system. J Appl Clin Med Phys, 15, 2014, 4807.
    • (2014) J Appl Clin Med Phys , vol.15 , pp. 4807
    • Hoisak, J.D.P.1    Pawlicki, T.2    Kim, G.-Y.3    Fletcher, R.4    Moore, K.L.5
  • 52
    • 85015869563 scopus 로고    scopus 로고
    • Decaying relevance of clinical data towards future decisions in data-driven inpatient clinical order sets
    • Chen, J.H., Alagappan, M., Goldstein, M.K., Asch, S.M., Altman, R.B., Decaying relevance of clinical data towards future decisions in data-driven inpatient clinical order sets. Int J Med Inform 102 (2017), 71–79.
    • (2017) Int J Med Inform , vol.102 , pp. 71-79
    • Chen, J.H.1    Alagappan, M.2    Goldstein, M.K.3    Asch, S.M.4    Altman, R.B.5
  • 54
    • 80052679695 scopus 로고    scopus 로고
    • Deskilling and adaptation among primary care physicians using two work innovations
    • Hoff, T., Deskilling and adaptation among primary care physicians using two work innovations. Health Care Manage Rev 36 (2011), 338–348.
    • (2011) Health Care Manage Rev , vol.36 , pp. 338-348
    • Hoff, T.1
  • 55
    • 84977269675 scopus 로고    scopus 로고
    • Benefits of adaptive radiation therapy in lung cancer as a function of replanning frequency
    • Dial, C., Weiss, E., Siebers, J.V., Hugo, G.D., Benefits of adaptive radiation therapy in lung cancer as a function of replanning frequency. Med Phys, 43, 2016, 1787.
    • (2016) Med Phys , vol.43 , pp. 1787
    • Dial, C.1    Weiss, E.2    Siebers, J.V.3    Hugo, G.D.4
  • 56
    • 84931271939 scopus 로고    scopus 로고
    • Clinical outcomes among patients with head and neck cancer treated by intensity-modulated radiotherapy with and without adaptive replanning
    • Chen, A.M., et al. Clinical outcomes among patients with head and neck cancer treated by intensity-modulated radiotherapy with and without adaptive replanning. Head Neck 36 (2014), 1541–1546.
    • (2014) Head Neck , vol.36 , pp. 1541-1546
    • Chen, A.M.1
  • 57
    • 85040554337 scopus 로고    scopus 로고
    • Artificial intelligence will reduce the need for clinical medical physicists
    • Tang, X., Wang, B., Rong, Y., Artificial intelligence will reduce the need for clinical medical physicists. J. Appl Clin Med Phys 19 (2018), 6–9.
    • (2018) J. Appl Clin Med Phys , vol.19 , pp. 6-9
    • Tang, X.1    Wang, B.2    Rong, Y.3
  • 58
    • 85037822623 scopus 로고    scopus 로고
    • Care for patients, not for charts: a future for clinical medical physics
    • Atwood, T.F., et al. Care for patients, not for charts: a future for clinical medical physics. Int J Radiat Oncol Biol Phys 100 (2018), 21–22.
    • (2018) Int J Radiat Oncol Biol Phys , vol.100 , pp. 21-22
    • Atwood, T.F.1
  • 59
    • 85054746087 scopus 로고    scopus 로고
    • Half of hospitals to adopt artificial intelligence within 5 years
    • Healthcare IT News
    • Sullivan, T., Half of hospitals to adopt artificial intelligence within 5 years. 2017, Healthcare IT News.
    • (2017)
    • Sullivan, T.1
  • 60
    • 85027891236 scopus 로고    scopus 로고
    • Data sharing: guard the privacy of donors
    • Hill, S.Y., Data sharing: guard the privacy of donors. Nature, 548, 2017, 281.
    • (2017) Nature , vol.548 , pp. 281
    • Hill, S.Y.1
  • 61
    • 85044139214 scopus 로고    scopus 로고
    • Patient privacy in the era of big data
    • Kayaalp, M., Patient privacy in the era of big data. Balkan Med J, 2017, 10.4274/balkanmedj.2017.0966.
    • (2017) Balkan Med J
    • Kayaalp, M.1
  • 62
    • 84916203454 scopus 로고    scopus 로고
    • Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets
    • Skripcak, T., et al. Creating a data exchange strategy for radiotherapy research: towards federated databases and anonymised public datasets. Radiother Oncol 113 (2014), 303–309.
    • (2014) Radiother Oncol , vol.113 , pp. 303-309
    • Skripcak, T.1
  • 63
    • 85006046138 scopus 로고    scopus 로고
    • Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital – a real life proof of concept
    • Jochems, A., et al. Distributed learning: developing a predictive model based on data from multiple hospitals without data leaving the hospital – a real life proof of concept. Radiother Oncol 121 (2016), 459–467.
    • (2016) Radiother Oncol , vol.121 , pp. 459-467
    • Jochems, A.1
  • 64
    • 84874370270 scopus 로고    scopus 로고
    • Data re-identification: prioritize privacy
    • Gutmann, A., Data re-identification: prioritize privacy. Science, 339, 2013, 1032.
    • (2013) Science , vol.339 , pp. 1032
    • Gutmann, A.1
  • 65
    • 85014841011 scopus 로고    scopus 로고
    • The effect of the general data protection regulation on medical research
    • Rumbold, J.M.M., Pierscionek, B., The effect of the general data protection regulation on medical research. J Med Internet Res, 19, 2017, e47.
    • (2017) J Med Internet Res , vol.19 , pp. e47
    • Rumbold, J.M.M.1    Pierscionek, B.2
  • 66
    • 85019348495 scopus 로고    scopus 로고
    • The new EU General Data Protection Regulation: what the radiologist should know. Insights Imaging 2017;8:.
    • European Society of Radiology (ESR). The new EU General Data Protection Regulation: what the radiologist should know. Insights Imaging 2017;8:295–299.
  • 67
    • 85057898014 scopus 로고    scopus 로고
    • NHS illegally handed Google firm 1.6m patient records, UK data watchdog finds
    • The Telegraph
    • McGoon, C., NHS illegally handed Google firm 1.6m patient records, UK data watchdog finds. 2017, The Telegraph.
    • (2017)
    • McGoon, C.1
  • 68
    • 79960864492 scopus 로고    scopus 로고
    • Factors affecting the implementation of complex and evolving technologies: multiple case study of intensity-modulated radiation therapy (IMRT) in Ontario Canada
    • Bak, K., Dobrow, M.J., Hodgson, D., Whitton, A., Factors affecting the implementation of complex and evolving technologies: multiple case study of intensity-modulated radiation therapy (IMRT) in Ontario Canada. BMC Health Serv Res, 11, 2011, 178.
    • (2011) BMC Health Serv Res , vol.11 , pp. 178
    • Bak, K.1    Dobrow, M.J.2    Hodgson, D.3    Whitton, A.4
  • 69
    • 33748869892 scopus 로고    scopus 로고
    • Monte Carlo characterization of target doses in stereotactic body radiation therapy (SBRT)
    • Rassiah-Szegedi, P., et al. Monte Carlo characterization of target doses in stereotactic body radiation therapy (SBRT). Acta Oncol 45 (2006), 989–994.
    • (2006) Acta Oncol , vol.45 , pp. 989-994
    • Rassiah-Szegedi, P.1
  • 70
    • 84897093663 scopus 로고    scopus 로고
    • Study of 201 non-small cell lung cancer patients given stereotactic ablative radiation therapy shows local control dependence on dose calculation algorithm
    • Latifi, K., et al. Study of 201 non-small cell lung cancer patients given stereotactic ablative radiation therapy shows local control dependence on dose calculation algorithm. Int J Radiat Oncol Biol Phys 88 (2014), 1108–1113.
    • (2014) Int J Radiat Oncol Biol Phys , vol.88 , pp. 1108-1113
    • Latifi, K.1
  • 71
    • 85057898089 scopus 로고    scopus 로고
    • ™ to Guide Artificial Intelligence Use in Medical Imaging. Available at:
    • ACR Data Science Institute™ to Guide Artificial Intelligence Use in Medical Imaging. (2017). Available at: https://www.acr.org/About-Us/Media-Center/Press-Releases/2017-Press-Releases/20170521-ACR-Data-Science-Institute-to-Guide-Artificial-Intelligence-Use-in-Medical-Imaging.
    • (2017)
    • ACR Data Science Institute1
  • 72
    • 85031726444 scopus 로고    scopus 로고
    • Knowledge sharing as a social dilemma in pharmaceutical innovation
    • Kim, D., Knowledge sharing as a social dilemma in pharmaceutical innovation. Food Drug Law J 71 (2016), 673–709.
    • (2016) Food Drug Law J , vol.71 , pp. 673-709
    • Kim, D.1
  • 73
    • 85016289170 scopus 로고    scopus 로고
    • Advantages of a truly open-access data-sharing model
    • Bertagnolli, M.M., et al. Advantages of a truly open-access data-sharing model. N Engl J Med 376 (2017), 1178–1181.
    • (2017) N Engl J Med , vol.376 , pp. 1178-1181
    • Bertagnolli, M.M.1
  • 74
    • 85043343934 scopus 로고    scopus 로고
    • Data sharing: convert challenges into opportunities
    • Figueiredo, A.S., Data sharing: convert challenges into opportunities. Front Public Heal, 5, 2017, 327.
    • (2017) Front Public Heal , vol.5 , pp. 327
    • Figueiredo, A.S.1
  • 75
    • 33745699139 scopus 로고    scopus 로고
    • Whose data set is it anyway? Sharing raw data from randomized trials
    • Vickers, A.J., Whose data set is it anyway? Sharing raw data from randomized trials. Trials, 7, 2006, 15.
    • (2006) Trials , vol.7 , pp. 15
    • Vickers, A.J.1
  • 76
    • 77954531078 scopus 로고    scopus 로고
    • The delay in sharing research data is costing lives
    • Sommer, J., The delay in sharing research data is costing lives. Nat Med, 16, 2010, 744.
    • (2010) Nat Med , vol.16 , pp. 744
    • Sommer, J.1
  • 77
    • 84896404677 scopus 로고    scopus 로고
    • International data-sharing for radiotherapy research: an open-source based infrastructure for multicentric clinical data mining
    • Roelofs, E., et al. International data-sharing for radiotherapy research: an open-source based infrastructure for multicentric clinical data mining. Radiother Oncol 110 (2014), 370–374.
    • (2014) Radiother Oncol , vol.110 , pp. 370-374
    • Roelofs, E.1
  • 78
    • 33846889320 scopus 로고    scopus 로고
    • Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships
    • Naqa, I.E., et al. Dose response explorer: an integrated open-source tool for exploring and modelling radiotherapy dose-volume outcome relationships. Phys Med Biol 51 (2006), 5719–5735.
    • (2006) Phys Med Biol , vol.51 , pp. 5719-5735
    • Naqa, I.E.1
  • 79
    • 84894900429 scopus 로고    scopus 로고
    • Development of a software for quantitative evaluation radiotherapy target and organ-at-risk segmentation comparison
    • Kalpathy-Cramer, J., et al. Development of a software for quantitative evaluation radiotherapy target and organ-at-risk segmentation comparison. J Digit Imaging 27 (2014), 108–119.
    • (2014) J Digit Imaging , vol.27 , pp. 108-119
    • Kalpathy-Cramer, J.1
  • 80
    • 84923913977 scopus 로고    scopus 로고
    • IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics
    • Zhang, L., et al. IBEX: an open infrastructure software platform to facilitate collaborative work in radiomics. Med Phys 42 (2015), 1341–1353.
    • (2015) Med Phys , vol.42 , pp. 1341-1353
    • Zhang, L.1
  • 81
    • 84988431524 scopus 로고    scopus 로고
    • An open source solution for an in-house built dynamic platform for the validation of stereotactic ablative body radiotherapy for VMAT and IMRT
    • Munoz, L., Ziebell, A., Morton, J., Bhat, M., An open source solution for an in-house built dynamic platform for the validation of stereotactic ablative body radiotherapy for VMAT and IMRT. Australas Phys Eng Sci Med 39 (2016), 957–964.
    • (2016) Australas Phys Eng Sci Med , vol.39 , pp. 957-964
    • Munoz, L.1    Ziebell, A.2    Morton, J.3    Bhat, M.4
  • 82
    • 85042648969 scopus 로고    scopus 로고
    • Anderson Cancer Center Head and Neck Quantitative Imaging Working Group. Matched computed tomography segmentation and demographic data for oropharyngeal cancer radiomics challenges
    • MICCAI/M.D., Anderson Cancer Center Head and Neck Quantitative Imaging Working Group. Matched computed tomography segmentation and demographic data for oropharyngeal cancer radiomics challenges. Sci Data, 4, 2017, 170077.
    • (2017) Sci Data , vol.4 , pp. 170077
    • MICCAI/M.D.1
  • 83
    • 85029332732 scopus 로고    scopus 로고
    • A multi-institutional comparison of dynamic contrast-enhanced magnetic resonance imaging parameter calculations
    • Ger, R.B., et al. A multi-institutional comparison of dynamic contrast-enhanced magnetic resonance imaging parameter calculations. Sci Rep, 7, 2017, 11185.
    • (2017) Sci Rep , vol.7 , pp. 11185
    • Ger, R.B.1
  • 84
    • 84902513849 scopus 로고    scopus 로고
    • Quantitative imaging network: data sharing and competitive algorithm validation leveraging the cancer imaging archive
    • Kalpathy-Cramer, J., Freymann, J.B., Kirby, J.S., Kinahan, P.E., Prior, F.W., Quantitative imaging network: data sharing and competitive algorithm validation leveraging the cancer imaging archive. Transl Oncol 7 (2014), 147–152.
    • (2014) Transl Oncol , vol.7 , pp. 147-152
    • Kalpathy-Cramer, J.1    Freymann, J.B.2    Kirby, J.S.3    Kinahan, P.E.4    Prior, F.W.5
  • 85
    • 84982187833 scopus 로고    scopus 로고
    • Genetic misdiagnoses and the potential for health disparities
    • Manrai, A.K., et al. Genetic misdiagnoses and the potential for health disparities. N Engl J Med 375 (2016), 655–665.
    • (2016) N Engl J Med , vol.375 , pp. 655-665
    • Manrai, A.K.1
  • 86
    • 85013625078 scopus 로고    scopus 로고
    • Regulatory watch: From big data to smart data: FDA's INFORMED initiative
    • Khozin, S., Kim, G., Pazdur, R., Regulatory watch: From big data to smart data: FDA's INFORMED initiative. Nat Rev Drug Discovery, 16, 2017, 306.
    • (2017) Nat Rev Drug Discovery , vol.16 , pp. 306
    • Khozin, S.1    Kim, G.2    Pazdur, R.3
  • 87
    • 85057906820 scopus 로고    scopus 로고
    • NCI announces oncology data science fellowship. Available at:
    • NCI announces oncology data science fellowship. (2017). Available at: https://astroblog.weebly.com/blog/nci-announces-oncology-data-science-fellowship.
    • (2017)
  • 88
    • 79951878870 scopus 로고    scopus 로고
    • The future of radiation oncology in the United States from 2010 to 2020: will supply keep pace with demand?
    • Smith, B.D., et al. The future of radiation oncology in the United States from 2010 to 2020: will supply keep pace with demand?. J Clin Oncol 28 (2010), 5160–5165.
    • (2010) J Clin Oncol , vol.28 , pp. 5160-5165
    • Smith, B.D.1
  • 89
    • 84969528752 scopus 로고    scopus 로고
    • Supply and demand for radiation oncology in the United States: updated projections for 2015 to 2025
    • Pan, H.Y., et al. Supply and demand for radiation oncology in the United States: updated projections for 2015 to 2025. Int J Radiat Oncol Biol Phys 96 (2016), 493–500.
    • (2016) Int J Radiat Oncol Biol Phys , vol.96 , pp. 493-500
    • Pan, H.Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.