-
1
-
-
84905973448
-
Implementing electronic health care predictive analytics: considerations and challenges
-
Amarasingham R, Patzer RE, Huesch M, Nguyen NQ, Xie B. Implementing electronic health care predictive analytics: considerations and challenges. Health Affairs. 2014;33(7):1148-54.
-
(2014)
Health Affairs.
, vol.33
, Issue.7
, pp. 1148-1154
-
-
Amarasingham, R.1
Patzer, R.E.2
Huesch, M.3
Nguyen, N.Q.4
Xie, B.5
-
3
-
-
84860159431
-
Risk prediction models: II
-
Moons KG, Kengne AP, Grobbee DE, et al. Risk prediction models: II. External validation, model updating, and impact assessment. Heart. 2012;98(9):691-98.
-
(2012)
External validation, model updating, and impact assessment. Heart.
, vol.98
, Issue.9
, pp. 691-698
-
-
Moons, K.G.1
Kengne, A.P.2
Grobbee, D.E.3
-
4
-
-
78650824776
-
Development of inpatient risk stratification models of acute kidney injury for use in electronic health records
-
Matheny ME, Miller RA, Ikizler TA, et al. Development of inpatient risk stratification models of acute kidney injury for use in electronic health records. Med Decision Making. 2010;30(6):639-50.
-
(2010)
Med Decision Making.
, vol.30
, Issue.6
, pp. 639-650
-
-
Matheny, M.E.1
Miller, R.A.2
Ikizler, T.A.3
-
5
-
-
80054764509
-
Risk prediction models for hospital readmission: a systematic review
-
Kansagara D, Englander H, Salanitro A, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15): 1688-98.
-
(2011)
JAMA.
, vol.306
, Issue.15
, pp. 1688-1698
-
-
Kansagara, D.1
Englander, H.2
Salanitro, A.3
-
6
-
-
84874505367
-
Prognosis Research Strategy (PROGRESS) 3: prognostic model research
-
Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10(2):e1001381.
-
(2013)
PLoS Med.
, vol.10
, Issue.2
-
-
Steyerberg, E.W.1
Moons, K.G.2
van der Windt, D.A.3
-
7
-
-
52949100612
-
Validation, updating and impact of clinical prediction rules: a review
-
Toll DB, Janssen KJ, Vergouwe Y, Moons KG. Validation, updating and impact of clinical prediction rules: a review. J Clin Epidemiol. 2008;61(11):1085-94.
-
(2008)
J Clin Epidemiol.
, vol.61
, Issue.11
, pp. 1085-1094
-
-
Toll, D.B.1
Janssen, K.J.2
Vergouwe, Y.3
Moons, K.G.4
-
8
-
-
84878182367
-
Dynamic trends in cardiac surgery: why the logistic euroscore is no longer suitable for contemporary cardiac surgery and implications for future risk models
-
Hickey GL, Grant SW, Murphy GJ, et al. Dynamic trends in cardiac surgery: why the logistic euroscore is no longer suitable for contemporary cardiac surgery and implications for future risk models. Eur J Cardiothoracic Surg. 2013;43(6):1146-52.
-
(2013)
Eur J Cardiothoracic Surg.
, vol.43
, Issue.6
, pp. 1146-1152
-
-
Hickey, G.L.1
Grant, S.W.2
Murphy, G.J.3
-
9
-
-
84859882316
-
Effect of changes over time in the performance of a customized SAPS-II model on the quality of care assessment
-
Minne L, Eslami S, De Keizer N, De Jonge E, De Rooij SE, Abu-Hanna A. Effect of changes over time in the performance of a customized SAPS-II model on the quality of care assessment. Intensive Care Med. 2012;38(1):40-46.
-
(2012)
Intensive Care Med.
, vol.38
, Issue.1
, pp. 40-46
-
-
Minne, L.1
Eslami, S.2
De Keizer, N.3
De Jonge, E.4
De Rooij, S.E.5
Abu-Hanna, A.6
-
10
-
-
84864856820
-
Statistical process control for monitoring standardized mortality ratios of a classification tree model
-
Minne L, Eslami S, de Keizer N, de Jonge E, de Rooij SE, Abu-Hanna A. Statistical process control for monitoring standardized mortality ratios of a classification tree model. Methods Inf Med. 2012;51(4):353-58.
-
(2012)
Methods Inf Med.
, vol.51
, Issue.4
, pp. 353-358
-
-
Minne, L.1
Eslami, S.2
de Keizer, N.3
de Jonge, E.4
de Rooij, S.E.5
Abu-Hanna, A.6
-
11
-
-
67650089602
-
Prognosis and prognostic research: application and impact of prognostic models in clinical practice
-
Moons KG, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ. 2009;338:b606.
-
(2009)
BMJ.
, vol.338
, pp. b606
-
-
Moons, K.G.1
Altman, D.G.2
Vergouwe, Y.3
Royston, P.4
-
12
-
-
84924041681
-
External validation of the Intensive Care National Audit & Research Centre (ICNARC) risk prediction model in critical care units in Scotland
-
Harrison DA, Lone NI, Haddow C, et al. External validation of the Intensive Care National Audit & Research Centre (ICNARC) risk prediction model in critical care units in Scotland. BMC Anesthesiol. 2014;14:116.
-
(2014)
BMC Anesthesiol.
, vol.14
, pp. 116
-
-
Harrison, D.A.1
Lone, N.I.2
Haddow, C.3
-
13
-
-
84871892981
-
Performance of APACHE III over time in Australia and New Zealand: a retrospective cohort study
-
Paul E, Bailey M, Van Lint A, Pilcher V. Performance of APACHE III over time in Australia and New Zealand: a retrospective cohort study. Anaesthesia Intensive Care. 2012;40(6):980-94.
-
(2012)
Anaesthesia Intensive Care.
, vol.40
, Issue.6
, pp. 980-994
-
-
Paul, E.1
Bailey, M.2
Van Lint, A.3
Pilcher, V.4
-
14
-
-
79957449041
-
Risk-prediction models for mortality after coronary artery bypass surgery: application to individual patients
-
Madan P, Elayda MA, Lee VV, Wilson JM. Risk-prediction models for mortality after coronary artery bypass surgery: application to individual patients. Int J Cardiol. 2011;149(2):227-31.
-
(2011)
Int J Cardiol.
, vol.149
, Issue.2
, pp. 227-231
-
-
Madan, P.1
Elayda, M.A.2
Lee, V.V.3
Wilson, J.M.4
-
15
-
-
85010843194
-
Consensus statement on electronic health predictive analytics: a guiding framework to address challenges
-
Amarasingham R, Audet AJ, Bates DW, et al. Consensus statement on electronic health predictive analytics: a guiding framework to address challenges. eGEMs. 2016;4(1):1-11.
-
(2016)
eGEMs.
, vol.4
, Issue.1
, pp. 1-11
-
-
Amarasingham, R.1
Audet, A.J.2
Bates, D.W.3
-
16
-
-
84958692123
-
Integrating predictive analytics into high-value care: the dawn of precision delivery
-
Parikh RB, Kakad M, Bates DW. Integrating predictive analytics into high-value care: the dawn of precision delivery. JAMA. 2016;315(7):651-52.
-
(2016)
JAMA.
, vol.315
, Issue.7
, pp. 651-652
-
-
Parikh, R.B.1
Kakad, M.2
Bates, D.W.3
-
17
-
-
84964923703
-
Moving from clinical trials to precision medicine: the role for predictive modeling
-
Pencina MJ, Peterson ED. Moving from clinical trials to precision medicine: the role for predictive modeling. JAMA. 2016;315(16):1713-14.
-
(2016)
JAMA.
, vol.315
, Issue.16
, pp. 1713-1714
-
-
Pencina, M.J.1
Peterson, E.D.2
-
18
-
-
33748181096
-
Machine learning for detection and diagnosis of disease
-
Sajda P. Machine learning for detection and diagnosis of disease. Ann Rev Biomed Engineering. 2006;8:537-65.
-
(2006)
Ann Rev Biomed Engineering.
, vol.8
, pp. 537-565
-
-
Sajda, P.1
-
20
-
-
23844521731
-
Acute renal failure in critically ill patients: a multinational, multicenter study
-
Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813-18.
-
(2005)
JAMA.
, vol.294
, Issue.7
, pp. 813-818
-
-
Uchino, S.1
Kellum, J.A.2
Bellomo, R.3
-
21
-
-
0030022536
-
Acute renal failure in intensive care units - causes, outcome, and prognostic factors of hospital mortality: a prospective, multicenter study
-
Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ. Acute renal failure in intensive care units - causes, outcome, and prognostic factors of hospital mortality: a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med. 1996;24(2):192-98
-
(1996)
French Study Group on Acute Renal Failure. Crit Care Med.
, vol.24
, Issue.2
, pp. 192-198
-
-
Brivet, F.G.1
Kleinknecht, D.J.2
Loirat, P.3
Landais, P.J.4
-
22
-
-
58149505555
-
Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis
-
Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53(6):961-73
-
(2009)
Am J Kidney Dis.
, vol.53
, Issue.6
, pp. 961-973
-
-
Coca, S.G.1
Yusuf, B.2
Shlipak, M.G.3
Garg, A.X.4
Parikh, C.R.5
-
23
-
-
0031900428
-
The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings
-
Liano F, Junco E, Pascual J, Madero R, Verde E. The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. The Madrid Acute Renal Failure Study Group. Kidney Int Suppl. 1998;66:S16-24.
-
(1998)
Kidney Int
, vol.66
, pp. S16-24
-
-
Liano, F.1
Junco, E.2
Pascual, J.3
Madero, R.4
Verde, E.5
-
24
-
-
84947063569
-
National Veterans Health Administration Inpatient Risk Stratification Models for Hospital-Acquired Acute Kidney Injury
-
Cronin RM, VanHouten JP, Siew ED, et al. National Veterans Health Administration Inpatient Risk Stratification Models for Hospital-Acquired Acute Kidney Injury. J AmMed Inform Assoc. 2015;22(5):1054-71.
-
(2015)
J AmMed Inform Assoc.
, vol.22
, Issue.5
, pp. 1054-1071
-
-
Cronin, R.M.1
VanHouten, J.P.2
Siew, E.D.3
-
25
-
-
84856104459
-
A combined cardiorenal assessment for the prediction of acute kidney injury in lower respiratory tract infections
-
Breidthardt T, Christ-Crain M, Stolz D, et al. A combined cardiorenal assessment for the prediction of acute kidney injury in lower respiratory tract infections. Am J Med. 2012;125(2):168-75.
-
(2012)
Am J Med.
, vol.125
, Issue.2
, pp. 168-175
-
-
Breidthardt, T.1
Christ-Crain, M.2
Stolz, D.3
-
26
-
-
84888289654
-
Simplified clinical risk score to predict acute kidney injury after aortic surgery
-
Kim WH, Lee SM, Choi JW, et al. Simplified clinical risk score to predict acute kidney injury after aortic surgery. J Cardiothorac Vasc Anesth. 2013;27(6):1158-66.
-
(2013)
J Cardiothorac Vasc Anesth.
, vol.27
, Issue.6
, pp. 1158-1166
-
-
Kim, W.H.1
Lee, S.M.2
Choi, J.W.3
-
27
-
-
84940671276
-
Cardiac surgery-associated acute kidney injury: risk factors analysis and comparison of prediction models
-
Kristovic D, Horvatic I, Husedzinovic I, et al. Cardiac surgery-associated acute kidney injury: risk factors analysis and comparison of prediction models. Interact Cardiovasc Thorac Surg. 2015;21(3):366-73.
-
(2015)
Interact Cardiovasc Thorac Surg.
, vol.21
, Issue.3
, pp. 366-373
-
-
Kristovic, D.1
Horvatic, I.2
Husedzinovic, I.3
-
28
-
-
84887101395
-
A risk prediction score for kidney failure or mortality in rhabdomyolysis
-
McMahon GM, Zeng X, Waikar SS. A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Int Med. 2013;173(19):1821-28.
-
(2013)
JAMA Int Med.
, vol.173
, Issue.19
, pp. 1821-1828
-
-
McMahon, G.M.1
Zeng, X.2
Waikar, S.S.3
-
29
-
-
84901204583
-
Prediction of acute kidney injury within 30 days of cardiac surgery
-
Ng SY, Sanagou M, Wolfe R, Cochrane A, Smith JA, Reid CM. Prediction of acute kidney injury within 30 days of cardiac surgery. J Thoracic Cardiovasc Surgery. 2014;147(6):1875-83, 83 e1.
-
(2014)
J Thoracic Cardiovasc Surgery.
, vol.147
, Issue.6
, pp. 1875-1883
-
-
Ng, S.Y.1
Sanagou, M.2
Wolfe, R.3
Cochrane, A.4
Smith, J.A.5
Reid, C.M.6
-
30
-
-
84942883113
-
Clinical risk scoring models for prediction of acute kidney injury after living donor liver transplantation: a retrospective observational study
-
Park MH, Shim HS, Kim WH, et al. Clinical risk scoring models for prediction of acute kidney injury after living donor liver transplantation: a retrospective observational study. PloS One. 2015;10(8):e0136230.
-
(2015)
PloS One.
, vol.10
, Issue.8
-
-
Park, M.H.1
Shim, H.S.2
Kim, W.H.3
-
31
-
-
84885839035
-
Novel prediction score including pre- and intraoperative parameters best predicts acute kidney injury after liver surgery
-
Slankamenac K, Beck-Schimmer B, Breitenstein S, Puhan MA, Clavien PA. Novel prediction score including pre- and intraoperative parameters best predicts acute kidney injury after liver surgery. World J Surgery. 2013;37(11):2618-28.
-
(2013)
World J Surgery.
, vol.37
, Issue.11
, pp. 2618-2628
-
-
Slankamenac, K.1
Beck-Schimmer, B.2
Breitenstein, S.3
Puhan, M.A.4
Clavien, P.A.5
-
32
-
-
84879388771
-
Derivation and validation of a prediction score for acute kidney injury in patients hospitalized with acute heart failure in a Chinese cohort
-
Wang YN, Cheng H, Yue T, Chen YP. Derivation and validation of a prediction score for acute kidney injury in patients hospitalized with acute heart failure in a Chinese cohort. Nephrology. 2013;18(7):489-96.
-
(2013)
Nephrology.
, vol.18
, Issue.7
, pp. 489-496
-
-
Wang, Y.N.1
Cheng, H.2
Yue, T.3
Chen, Y.P.4
-
33
-
-
84893397882
-
Risk factors for acute kidney injury in severe rhabdomyolysis
-
Rodriguez E, Soler MJ, Rap O, Barrios C, Orfila MA, Pascual J. Risk factors for acute kidney injury in severe rhabdomyolysis. PloS One. 2013;8(12):e82992.
-
(2013)
PloS One.
, vol.8
, Issue.12
-
-
Rodriguez, E.1
Soler, M.J.2
Rap, O.3
Barrios, C.4
Orfila, M.A.5
Pascual, J.6
-
34
-
-
84859212138
-
Predicting acute kidney injury among burn patients in the 21st century: a classification and regression tree analysis
-
Schneider DF, Dobrowolsky A, Shakir IA, Sinacore JM, Mosier MJ, Gamelli RL. Predicting acute kidney injury among burn patients in the 21st century: a classification and regression tree analysis. J Burn Care Res. 2012;33(2):242-51.
-
(2012)
J Burn Care Res.
, vol.33
, Issue.2
, pp. 242-251
-
-
Schneider, D.F.1
Dobrowolsky, A.2
Shakir, I.A.3
Sinacore, J.M.4
Mosier, M.J.5
Gamelli, R.L.6
-
35
-
-
84886140123
-
Incidence, risk factors and prediction of post-operative acute kidney injury following cardiac surgery for active infective endocarditis: an observational study
-
Legrand M, Pirracchio R, Rosa A, et al. Incidence, risk factors and prediction of post-operative acute kidney injury following cardiac surgery for active infective endocarditis: an observational study. Crit Care. 2013;17(5):R220.
-
(2013)
Crit Care.
, vol.17
, Issue.5
, pp. R220
-
-
Legrand, M.1
Pirracchio, R.2
Rosa, A.3
-
36
-
-
84991523314
-
Acute kidney injury risk prediction in patients undergoing coronary angiography in a national Veterans Health Administration cohort with external validation
-
Brown JR, MacKenzie TA, Maddox TM, et al. Acute kidney injury risk prediction in patients undergoing coronary angiography in a national Veterans Health Administration cohort with external validation. J Am Heart Assoc. 2015;4(12):e002136.
-
(2015)
J Am Heart Assoc.
, vol.4
, Issue.12
-
-
Brown, J.R.1
MacKenzie, T.A.2
Maddox, T.M.3
-
37
-
-
84878267668
-
A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention
-
Gurm HS, Seth M, Kooiman J, Share D. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention. J Am Coll Cardiol. 2013;61(22):2242-48.
-
(2013)
J Am Coll Cardiol.
, vol.61
, Issue.22
, pp. 2242-2248
-
-
Gurm, H.S.1
Seth, M.2
Kooiman, J.3
Share, D.4
-
38
-
-
26044483543
-
Discrimination and calibration of mortality risk prediction models in interventional cardiology
-
Matheny ME, Ohno-Machado L, Resnic FS. Discrimination and calibration of mortality risk prediction models in interventional cardiology. J Biomed Inform. 2005;38(5):367-75.
-
(2005)
J Biomed Inform.
, vol.38
, Issue.5
, pp. 367-375
-
-
Matheny, M.E.1
Ohno-Machado, L.2
Resnic, F.S.3
-
39
-
-
84863155379
-
Calibrating predictive model estimates to support personalized medicine
-
Jiang X, Osl M, Kim J, Ohno-Machado L. Calibrating predictive model estimates to support personalized medicine. J Am Med Inform Assoc, 2012;19(2):263-74.
-
(2012)
J Am Med Inform Assoc
, vol.19
, Issue.2
, pp. 263-274
-
-
Jiang, X.1
Osl, M.2
Kim, J.3
Ohno-Machado, L.4
-
40
-
-
84921383600
-
Calibration of risk prediction models: impact on decision-analytic performance
-
Van Calster B, Vickers AJ. Calibration of risk prediction models: impact on decision-analytic performance. Med Decis Mak. 2015;35(2):162-69.
-
(2015)
Med Decis Mak.
, vol.35
, Issue.2
, pp. 162-169
-
-
Van Calster, B.1
Vickers, A.J.2
-
41
-
-
67651009834
-
Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating
-
New York, NY: Springer
-
Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. New York, NY: Springer; 2009.
-
(2009)
-
-
Steyerberg, E.W.1
-
42
-
-
73849094087
-
Assessing the performance of prediction models: a framework for traditional and novel measures
-
Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128-38.
-
(2010)
Epidemiology.
, vol.21
, Issue.1
, pp. 128-138
-
-
Steyerberg, E.W.1
Vickers, A.J.2
Cook, N.R.3
-
43
-
-
84861556816
-
Reporting and methods in clinical prediction research: a systematic review
-
Bouwmeester W, Zuithoff NP, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS Med. 2012;9(5):1-12.
-
(2012)
PLoS Med.
, vol.9
, Issue.5
, pp. 1-12
-
-
Bouwmeester, W.1
Zuithoff, N.P.2
Mallett, S.3
-
44
-
-
84899459258
-
External validation of multivariable prediction models: a systematic review of methodological conduct and reporting
-
Collins GS, de Groot JA, Dutton S, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol. 2014;14:40.
-
(2014)
BMC Med Res Methodol.
, vol.14
, pp. 40
-
-
Collins, G.S.1
de Groot, J.A.2
Dutton, S.3
-
45
-
-
77950389784
-
Reporting performance of prognostic models in cancer: a review
-
Mallett S, Royston P, Waters R, Dutton S, Altman DG. Reporting performance of prognostic models in cancer: a review. BMC Med. 2010;8:21.
-
(2010)
BMC Med.
, vol.8
, pp. 21
-
-
Mallett, S.1
Royston, P.2
Waters, R.3
Dutton, S.4
Altman, D.G.5
-
46
-
-
0035986111
-
Prospective independent validation of APACHE III models in an Australian tertiary adult intensive care unit
-
Cook DA, Joyce CJ, Barnett RJ, et al. Prospective independent validation of APACHE III models in an Australian tertiary adult intensive care unit. Anaesth Intensive Care. 2002;30(3):308-15.
-
(2002)
Anaesth Intensive Care.
, vol.30
, Issue.3
, pp. 308-315
-
-
Cook, D.A.1
Joyce, C.J.2
Barnett, R.J.3
-
47
-
-
84855764322
-
Probability machines: consistent probability estimation using nonparametric learning machines
-
Malley JD, Kruppa J, Dasgupta A, Malley KG, Ziegler A. Probability machines: consistent probability estimation using nonparametric learning machines. Methods Inform Med. 2012;51(1):74-81.
-
(2012)
Methods Inform Med.
, vol.51
, Issue.1
, pp. 74-81
-
-
Malley, J.D.1
Kruppa, J.2
Dasgupta, A.3
Malley, K.G.4
Ziegler, A.5
-
48
-
-
0000245743
-
Statistical modeling: the two cultures
-
Breiman L. Statistical modeling: the two cultures. Statistical Science. 2001;16(3):199-231 49. Perlin JB, Kolodner RM, Roswell RH. The Veterans Health Administration: quality, value, accountability, and information as transforming strategies for patient-centered care. AmJManaged Care. 2004;10(11 Pt 2):828-36.
-
(2001)
Statistical Science.
, vol.16
, Issue.3
, pp. 199-231
-
-
Breiman, L.1
-
49
-
-
16644387094
-
The Veterans Health Administration: quality, value, accountability, and information as transforming strategies for patient-centered care
-
Perlin JB, Kolodner RM, Roswell RH. The Veterans Health Administration: quality, value, accountability, and information as transforming strategies for patient-centered care. AmJManaged Care. 2004;10(11 Pt 2):828-36
-
(2004)
AmJ Managed Care.
, vol.10
, Issue.11
, pp. 828-836
-
-
Perlin, J.B.1
Kolodner, R.M.2
Roswell, R.H.3
-
50
-
-
84864808953
-
KDIGO clinical practice guidelines for acute kidney injury
-
Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179-84.
-
(2012)
Nephron Clin Pract.
, vol.120
, Issue.4
, pp. c179-c184
-
-
Khwaja, A.1
-
51
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc Series B. 1996;58(1):267-88.
-
(1996)
J Royal Stat Soc Series B.
, vol.58
, Issue.1
, pp. 267-288
-
-
Tibshirani, R.1
-
52
-
-
84942484786
-
Ridge regression: biased estimation for nonorthogonal problems
-
Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12(1):55-67.
-
(1970)
Technometrics.
, vol.12
, Issue.1
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.W.2
-
53
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou H, Hastie T. Regularization and variable selection via the elastic net. J Royal Stat Soc Series B. 2005;67(2):301-20.
-
(2005)
J Royal Stat Soc Series B.
, vol.67
, Issue.2
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
54
-
-
0035478854
-
Random forests
-
Breiman L. Random forests. Machine Learning. 2001;45(1):5-32.
-
(2001)
Machine Learning.
, vol.45
, Issue.1
, pp. 5-32
-
-
Breiman, L.1
-
55
-
-
0003487601
-
Neural Networks for Pattern Recognition
-
New York: Oxford University Press
-
Bishop CM. Neural Networks for Pattern Recognition. New York: Oxford University Press; 1995.
-
(1995)
-
-
Bishop, C.M.1
-
56
-
-
84855979656
-
Naive Bayes
-
In: Wu X, Kumar V, eds. The Top Ten Algorithms in Data Mining. Chapman&Hall/CRC
-
Hand DJ. Naive Bayes. In: Wu X, Kumar V, eds. The Top Ten Algorithms in Data Mining. Chapman&Hall/CRC; 2009:163-78.
-
(2009)
, pp. 163-178
-
-
Hand, D.J.1
-
57
-
-
0020083498
-
The meaning and use of the area under a receiver operating characteristic (ROC) curve
-
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29-36.
-
(1982)
Radiology.
, vol.143
, Issue.1
, pp. 29-36
-
-
Hanley, J.A.1
McNeil, B.J.2
-
58
-
-
84957076656
-
A calibration hierarchy for risk models was defined: from utopia to empirical data
-
Van Calster B, Nieboer D, Vergouwe Y, De Cock B, Pencina MJ, Steyerberg EW. A calibration hierarchy for risk models was defined: from utopia to empirical data. J Clin Epidemiol. 2016;74:167-76.
-
(2016)
J Clin Epidemiol.
, vol.74
, pp. 167-176
-
-
Van Calster, B.1
Nieboer, D.2
Vergouwe, Y.3
De Cock, B.4
Pencina, M.J.5
Steyerberg, E.W.6
-
59
-
-
84927977915
-
A spline-based tool to assess and visualize the calibration of multiclass risk predictions
-
Van Hoorde K, Van Huffel S, Timmerman D, Bourne T, Van Calster B. A spline-based tool to assess and visualize the calibration of multiclass risk predictions. J Biomed Inform. 2015;54:283-93.
-
(2015)
J Biomed Inform.
, vol.54
, pp. 283-293
-
-
Van Hoorde, K.1
Van Huffel, S.2
Timmerman, D.3
Bourne, T.4
Van Calster, B.5
-
60
-
-
84923527988
-
A new framework to enhance the interpretation of external validation studies of clinical prediction models
-
Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KG. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol. 2015;68(3):279-89.
-
(2015)
J Clin Epidemiol.
, vol.68
, Issue.3
, pp. 279-289
-
-
Debray, T.P.1
Vergouwe, Y.2
Koffijberg, H.3
Nieboer, D.4
Steyerberg, E.W.5
Moons, K.G.6
-
62
-
-
4344696163
-
Validation and updating of predictive logistic regression models: a study on sample size and shrinkage
-
Steyerberg EW, Borsboom GJ, van Houwelingen HC, Eijkemans MJ, Habbema JD. Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Stat Med. 2004;23(16):2567-86.
-
(2004)
Stat Med.
, vol.23
, Issue.16
, pp. 2567-2586
-
-
Steyerberg, E.W.1
Borsboom, G.J.2
van Houwelingen, H.C.3
Eijkemans, M.J.4
Habbema, J.D.5
-
63
-
-
84861793982
-
Adaptation of clinical prediction models for application in local settings
-
Kappen TH, Vergouwe Y, van Klei WA, van Wolfswinkel L, Kalkman CJ, Moons KG. Adaptation of clinical prediction models for application in local settings. Med Decis Mak. 2012;32(3):E1-10.
-
(2012)
Med Decis Mak.
, vol.32
, Issue.3
, pp. E1-10
-
-
Kappen, T.H.1
Vergouwe, Y.2
van Klei, W.A.3
van Wolfswinkel, L.4
Kalkman, C.J.5
Moons, K.G.6
-
64
-
-
36849089158
-
Updating methods improved the performance of a clinical prediction model in new patients
-
Janssen KJ, Moons KG, Kalkman CJ, Grobbee DE, Vergouwe Y. Updating methods improved the performance of a clinical prediction model in new patients. J Clin Epidemiol. 2008;61(1):76-86.
-
(2008)
J Clin Epidemiol.
, vol.61
, Issue.1
, pp. 76-86
-
-
Janssen, K.J.1
Moons, K.G.2
Kalkman, C.J.3
Grobbee, D.E.4
Vergouwe, Y.5
|