메뉴 건너뛰기




Volumn 24, Issue 6, 2017, Pages 1052-1061

Calibration drift in regression and machine learning models for acute kidney injury

Author keywords

Acute kidney injury; Calibration; Clinical decision support; Clinical prediction; Discrimination; Machine learning

Indexed keywords

ACUTE KIDNEY FAILURE; AGED; ARTICLE; CALIBRATION; CLINICAL DECISION SUPPORT SYSTEM; FEMALE; HUMAN; MACHINE LEARNING; MAJOR CLINICAL STUDY; MALE; MEDICAL DECISION MAKING; OUTCOME ASSESSMENT; PROBABILITY; RANDOM FOREST; REGRESSION ANALYSIS; RISK ASSESSMENT; SAFETY; STATISTICAL MODEL; VALIDATION STUDY; BAYES THEOREM; CLINICAL DECISION MAKING; DECISION SUPPORT SYSTEM; MIDDLE AGED; PUBLIC HOSPITAL; UNITED STATES;

EID: 85032453950     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocx030     Document Type: Article
Times cited : (207)

References (64)
  • 1
    • 84905973448 scopus 로고    scopus 로고
    • Implementing electronic health care predictive analytics: considerations and challenges
    • Amarasingham R, Patzer RE, Huesch M, Nguyen NQ, Xie B. Implementing electronic health care predictive analytics: considerations and challenges. Health Affairs. 2014;33(7):1148-54.
    • (2014) Health Affairs. , vol.33 , Issue.7 , pp. 1148-1154
    • Amarasingham, R.1    Patzer, R.E.2    Huesch, M.3    Nguyen, N.Q.4    Xie, B.5
  • 4
    • 78650824776 scopus 로고    scopus 로고
    • Development of inpatient risk stratification models of acute kidney injury for use in electronic health records
    • Matheny ME, Miller RA, Ikizler TA, et al. Development of inpatient risk stratification models of acute kidney injury for use in electronic health records. Med Decision Making. 2010;30(6):639-50.
    • (2010) Med Decision Making. , vol.30 , Issue.6 , pp. 639-650
    • Matheny, M.E.1    Miller, R.A.2    Ikizler, T.A.3
  • 5
    • 80054764509 scopus 로고    scopus 로고
    • Risk prediction models for hospital readmission: a systematic review
    • Kansagara D, Englander H, Salanitro A, et al. Risk prediction models for hospital readmission: a systematic review. JAMA. 2011;306(15): 1688-98.
    • (2011) JAMA. , vol.306 , Issue.15 , pp. 1688-1698
    • Kansagara, D.1    Englander, H.2    Salanitro, A.3
  • 6
    • 84874505367 scopus 로고    scopus 로고
    • Prognosis Research Strategy (PROGRESS) 3: prognostic model research
    • Steyerberg EW, Moons KG, van der Windt DA, et al. Prognosis Research Strategy (PROGRESS) 3: prognostic model research. PLoS Med. 2013;10(2):e1001381.
    • (2013) PLoS Med. , vol.10 , Issue.2
    • Steyerberg, E.W.1    Moons, K.G.2    van der Windt, D.A.3
  • 7
    • 52949100612 scopus 로고    scopus 로고
    • Validation, updating and impact of clinical prediction rules: a review
    • Toll DB, Janssen KJ, Vergouwe Y, Moons KG. Validation, updating and impact of clinical prediction rules: a review. J Clin Epidemiol. 2008;61(11):1085-94.
    • (2008) J Clin Epidemiol. , vol.61 , Issue.11 , pp. 1085-1094
    • Toll, D.B.1    Janssen, K.J.2    Vergouwe, Y.3    Moons, K.G.4
  • 8
    • 84878182367 scopus 로고    scopus 로고
    • Dynamic trends in cardiac surgery: why the logistic euroscore is no longer suitable for contemporary cardiac surgery and implications for future risk models
    • Hickey GL, Grant SW, Murphy GJ, et al. Dynamic trends in cardiac surgery: why the logistic euroscore is no longer suitable for contemporary cardiac surgery and implications for future risk models. Eur J Cardiothoracic Surg. 2013;43(6):1146-52.
    • (2013) Eur J Cardiothoracic Surg. , vol.43 , Issue.6 , pp. 1146-1152
    • Hickey, G.L.1    Grant, S.W.2    Murphy, G.J.3
  • 9
    • 84859882316 scopus 로고    scopus 로고
    • Effect of changes over time in the performance of a customized SAPS-II model on the quality of care assessment
    • Minne L, Eslami S, De Keizer N, De Jonge E, De Rooij SE, Abu-Hanna A. Effect of changes over time in the performance of a customized SAPS-II model on the quality of care assessment. Intensive Care Med. 2012;38(1):40-46.
    • (2012) Intensive Care Med. , vol.38 , Issue.1 , pp. 40-46
    • Minne, L.1    Eslami, S.2    De Keizer, N.3    De Jonge, E.4    De Rooij, S.E.5    Abu-Hanna, A.6
  • 10
    • 84864856820 scopus 로고    scopus 로고
    • Statistical process control for monitoring standardized mortality ratios of a classification tree model
    • Minne L, Eslami S, de Keizer N, de Jonge E, de Rooij SE, Abu-Hanna A. Statistical process control for monitoring standardized mortality ratios of a classification tree model. Methods Inf Med. 2012;51(4):353-58.
    • (2012) Methods Inf Med. , vol.51 , Issue.4 , pp. 353-358
    • Minne, L.1    Eslami, S.2    de Keizer, N.3    de Jonge, E.4    de Rooij, S.E.5    Abu-Hanna, A.6
  • 11
    • 67650089602 scopus 로고    scopus 로고
    • Prognosis and prognostic research: application and impact of prognostic models in clinical practice
    • Moons KG, Altman DG, Vergouwe Y, Royston P. Prognosis and prognostic research: application and impact of prognostic models in clinical practice. BMJ. 2009;338:b606.
    • (2009) BMJ. , vol.338 , pp. b606
    • Moons, K.G.1    Altman, D.G.2    Vergouwe, Y.3    Royston, P.4
  • 12
    • 84924041681 scopus 로고    scopus 로고
    • External validation of the Intensive Care National Audit & Research Centre (ICNARC) risk prediction model in critical care units in Scotland
    • Harrison DA, Lone NI, Haddow C, et al. External validation of the Intensive Care National Audit & Research Centre (ICNARC) risk prediction model in critical care units in Scotland. BMC Anesthesiol. 2014;14:116.
    • (2014) BMC Anesthesiol. , vol.14 , pp. 116
    • Harrison, D.A.1    Lone, N.I.2    Haddow, C.3
  • 13
    • 84871892981 scopus 로고    scopus 로고
    • Performance of APACHE III over time in Australia and New Zealand: a retrospective cohort study
    • Paul E, Bailey M, Van Lint A, Pilcher V. Performance of APACHE III over time in Australia and New Zealand: a retrospective cohort study. Anaesthesia Intensive Care. 2012;40(6):980-94.
    • (2012) Anaesthesia Intensive Care. , vol.40 , Issue.6 , pp. 980-994
    • Paul, E.1    Bailey, M.2    Van Lint, A.3    Pilcher, V.4
  • 14
    • 79957449041 scopus 로고    scopus 로고
    • Risk-prediction models for mortality after coronary artery bypass surgery: application to individual patients
    • Madan P, Elayda MA, Lee VV, Wilson JM. Risk-prediction models for mortality after coronary artery bypass surgery: application to individual patients. Int J Cardiol. 2011;149(2):227-31.
    • (2011) Int J Cardiol. , vol.149 , Issue.2 , pp. 227-231
    • Madan, P.1    Elayda, M.A.2    Lee, V.V.3    Wilson, J.M.4
  • 15
    • 85010843194 scopus 로고    scopus 로고
    • Consensus statement on electronic health predictive analytics: a guiding framework to address challenges
    • Amarasingham R, Audet AJ, Bates DW, et al. Consensus statement on electronic health predictive analytics: a guiding framework to address challenges. eGEMs. 2016;4(1):1-11.
    • (2016) eGEMs. , vol.4 , Issue.1 , pp. 1-11
    • Amarasingham, R.1    Audet, A.J.2    Bates, D.W.3
  • 16
    • 84958692123 scopus 로고    scopus 로고
    • Integrating predictive analytics into high-value care: the dawn of precision delivery
    • Parikh RB, Kakad M, Bates DW. Integrating predictive analytics into high-value care: the dawn of precision delivery. JAMA. 2016;315(7):651-52.
    • (2016) JAMA. , vol.315 , Issue.7 , pp. 651-652
    • Parikh, R.B.1    Kakad, M.2    Bates, D.W.3
  • 17
    • 84964923703 scopus 로고    scopus 로고
    • Moving from clinical trials to precision medicine: the role for predictive modeling
    • Pencina MJ, Peterson ED. Moving from clinical trials to precision medicine: the role for predictive modeling. JAMA. 2016;315(16):1713-14.
    • (2016) JAMA. , vol.315 , Issue.16 , pp. 1713-1714
    • Pencina, M.J.1    Peterson, E.D.2
  • 18
    • 33748181096 scopus 로고    scopus 로고
    • Machine learning for detection and diagnosis of disease
    • Sajda P. Machine learning for detection and diagnosis of disease. Ann Rev Biomed Engineering. 2006;8:537-65.
    • (2006) Ann Rev Biomed Engineering. , vol.8 , pp. 537-565
    • Sajda, P.1
  • 20
    • 23844521731 scopus 로고    scopus 로고
    • Acute renal failure in critically ill patients: a multinational, multicenter study
    • Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005;294(7):813-18.
    • (2005) JAMA. , vol.294 , Issue.7 , pp. 813-818
    • Uchino, S.1    Kellum, J.A.2    Bellomo, R.3
  • 21
    • 0030022536 scopus 로고    scopus 로고
    • Acute renal failure in intensive care units - causes, outcome, and prognostic factors of hospital mortality: a prospective, multicenter study
    • Brivet FG, Kleinknecht DJ, Loirat P, Landais PJ. Acute renal failure in intensive care units - causes, outcome, and prognostic factors of hospital mortality: a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med. 1996;24(2):192-98
    • (1996) French Study Group on Acute Renal Failure. Crit Care Med. , vol.24 , Issue.2 , pp. 192-198
    • Brivet, F.G.1    Kleinknecht, D.J.2    Loirat, P.3    Landais, P.J.4
  • 22
    • 58149505555 scopus 로고    scopus 로고
    • Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis
    • Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53(6):961-73
    • (2009) Am J Kidney Dis. , vol.53 , Issue.6 , pp. 961-973
    • Coca, S.G.1    Yusuf, B.2    Shlipak, M.G.3    Garg, A.X.4    Parikh, C.R.5
  • 23
    • 0031900428 scopus 로고    scopus 로고
    • The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings
    • Liano F, Junco E, Pascual J, Madero R, Verde E. The spectrum of acute renal failure in the intensive care unit compared with that seen in other settings. The Madrid Acute Renal Failure Study Group. Kidney Int Suppl. 1998;66:S16-24.
    • (1998) Kidney Int , vol.66 , pp. S16-24
    • Liano, F.1    Junco, E.2    Pascual, J.3    Madero, R.4    Verde, E.5
  • 24
    • 84947063569 scopus 로고    scopus 로고
    • National Veterans Health Administration Inpatient Risk Stratification Models for Hospital-Acquired Acute Kidney Injury
    • Cronin RM, VanHouten JP, Siew ED, et al. National Veterans Health Administration Inpatient Risk Stratification Models for Hospital-Acquired Acute Kidney Injury. J AmMed Inform Assoc. 2015;22(5):1054-71.
    • (2015) J AmMed Inform Assoc. , vol.22 , Issue.5 , pp. 1054-1071
    • Cronin, R.M.1    VanHouten, J.P.2    Siew, E.D.3
  • 25
    • 84856104459 scopus 로고    scopus 로고
    • A combined cardiorenal assessment for the prediction of acute kidney injury in lower respiratory tract infections
    • Breidthardt T, Christ-Crain M, Stolz D, et al. A combined cardiorenal assessment for the prediction of acute kidney injury in lower respiratory tract infections. Am J Med. 2012;125(2):168-75.
    • (2012) Am J Med. , vol.125 , Issue.2 , pp. 168-175
    • Breidthardt, T.1    Christ-Crain, M.2    Stolz, D.3
  • 26
    • 84888289654 scopus 로고    scopus 로고
    • Simplified clinical risk score to predict acute kidney injury after aortic surgery
    • Kim WH, Lee SM, Choi JW, et al. Simplified clinical risk score to predict acute kidney injury after aortic surgery. J Cardiothorac Vasc Anesth. 2013;27(6):1158-66.
    • (2013) J Cardiothorac Vasc Anesth. , vol.27 , Issue.6 , pp. 1158-1166
    • Kim, W.H.1    Lee, S.M.2    Choi, J.W.3
  • 27
    • 84940671276 scopus 로고    scopus 로고
    • Cardiac surgery-associated acute kidney injury: risk factors analysis and comparison of prediction models
    • Kristovic D, Horvatic I, Husedzinovic I, et al. Cardiac surgery-associated acute kidney injury: risk factors analysis and comparison of prediction models. Interact Cardiovasc Thorac Surg. 2015;21(3):366-73.
    • (2015) Interact Cardiovasc Thorac Surg. , vol.21 , Issue.3 , pp. 366-373
    • Kristovic, D.1    Horvatic, I.2    Husedzinovic, I.3
  • 28
    • 84887101395 scopus 로고    scopus 로고
    • A risk prediction score for kidney failure or mortality in rhabdomyolysis
    • McMahon GM, Zeng X, Waikar SS. A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Int Med. 2013;173(19):1821-28.
    • (2013) JAMA Int Med. , vol.173 , Issue.19 , pp. 1821-1828
    • McMahon, G.M.1    Zeng, X.2    Waikar, S.S.3
  • 30
    • 84942883113 scopus 로고    scopus 로고
    • Clinical risk scoring models for prediction of acute kidney injury after living donor liver transplantation: a retrospective observational study
    • Park MH, Shim HS, Kim WH, et al. Clinical risk scoring models for prediction of acute kidney injury after living donor liver transplantation: a retrospective observational study. PloS One. 2015;10(8):e0136230.
    • (2015) PloS One. , vol.10 , Issue.8
    • Park, M.H.1    Shim, H.S.2    Kim, W.H.3
  • 31
    • 84885839035 scopus 로고    scopus 로고
    • Novel prediction score including pre- and intraoperative parameters best predicts acute kidney injury after liver surgery
    • Slankamenac K, Beck-Schimmer B, Breitenstein S, Puhan MA, Clavien PA. Novel prediction score including pre- and intraoperative parameters best predicts acute kidney injury after liver surgery. World J Surgery. 2013;37(11):2618-28.
    • (2013) World J Surgery. , vol.37 , Issue.11 , pp. 2618-2628
    • Slankamenac, K.1    Beck-Schimmer, B.2    Breitenstein, S.3    Puhan, M.A.4    Clavien, P.A.5
  • 32
    • 84879388771 scopus 로고    scopus 로고
    • Derivation and validation of a prediction score for acute kidney injury in patients hospitalized with acute heart failure in a Chinese cohort
    • Wang YN, Cheng H, Yue T, Chen YP. Derivation and validation of a prediction score for acute kidney injury in patients hospitalized with acute heart failure in a Chinese cohort. Nephrology. 2013;18(7):489-96.
    • (2013) Nephrology. , vol.18 , Issue.7 , pp. 489-496
    • Wang, Y.N.1    Cheng, H.2    Yue, T.3    Chen, Y.P.4
  • 34
    • 84859212138 scopus 로고    scopus 로고
    • Predicting acute kidney injury among burn patients in the 21st century: a classification and regression tree analysis
    • Schneider DF, Dobrowolsky A, Shakir IA, Sinacore JM, Mosier MJ, Gamelli RL. Predicting acute kidney injury among burn patients in the 21st century: a classification and regression tree analysis. J Burn Care Res. 2012;33(2):242-51.
    • (2012) J Burn Care Res. , vol.33 , Issue.2 , pp. 242-251
    • Schneider, D.F.1    Dobrowolsky, A.2    Shakir, I.A.3    Sinacore, J.M.4    Mosier, M.J.5    Gamelli, R.L.6
  • 35
    • 84886140123 scopus 로고    scopus 로고
    • Incidence, risk factors and prediction of post-operative acute kidney injury following cardiac surgery for active infective endocarditis: an observational study
    • Legrand M, Pirracchio R, Rosa A, et al. Incidence, risk factors and prediction of post-operative acute kidney injury following cardiac surgery for active infective endocarditis: an observational study. Crit Care. 2013;17(5):R220.
    • (2013) Crit Care. , vol.17 , Issue.5 , pp. R220
    • Legrand, M.1    Pirracchio, R.2    Rosa, A.3
  • 36
    • 84991523314 scopus 로고    scopus 로고
    • Acute kidney injury risk prediction in patients undergoing coronary angiography in a national Veterans Health Administration cohort with external validation
    • Brown JR, MacKenzie TA, Maddox TM, et al. Acute kidney injury risk prediction in patients undergoing coronary angiography in a national Veterans Health Administration cohort with external validation. J Am Heart Assoc. 2015;4(12):e002136.
    • (2015) J Am Heart Assoc. , vol.4 , Issue.12
    • Brown, J.R.1    MacKenzie, T.A.2    Maddox, T.M.3
  • 37
    • 84878267668 scopus 로고    scopus 로고
    • A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention
    • Gurm HS, Seth M, Kooiman J, Share D. A novel tool for reliable and accurate prediction of renal complications in patients undergoing percutaneous coronary intervention. J Am Coll Cardiol. 2013;61(22):2242-48.
    • (2013) J Am Coll Cardiol. , vol.61 , Issue.22 , pp. 2242-2248
    • Gurm, H.S.1    Seth, M.2    Kooiman, J.3    Share, D.4
  • 38
    • 26044483543 scopus 로고    scopus 로고
    • Discrimination and calibration of mortality risk prediction models in interventional cardiology
    • Matheny ME, Ohno-Machado L, Resnic FS. Discrimination and calibration of mortality risk prediction models in interventional cardiology. J Biomed Inform. 2005;38(5):367-75.
    • (2005) J Biomed Inform. , vol.38 , Issue.5 , pp. 367-375
    • Matheny, M.E.1    Ohno-Machado, L.2    Resnic, F.S.3
  • 39
    • 84863155379 scopus 로고    scopus 로고
    • Calibrating predictive model estimates to support personalized medicine
    • Jiang X, Osl M, Kim J, Ohno-Machado L. Calibrating predictive model estimates to support personalized medicine. J Am Med Inform Assoc, 2012;19(2):263-74.
    • (2012) J Am Med Inform Assoc , vol.19 , Issue.2 , pp. 263-274
    • Jiang, X.1    Osl, M.2    Kim, J.3    Ohno-Machado, L.4
  • 40
    • 84921383600 scopus 로고    scopus 로고
    • Calibration of risk prediction models: impact on decision-analytic performance
    • Van Calster B, Vickers AJ. Calibration of risk prediction models: impact on decision-analytic performance. Med Decis Mak. 2015;35(2):162-69.
    • (2015) Med Decis Mak. , vol.35 , Issue.2 , pp. 162-169
    • Van Calster, B.1    Vickers, A.J.2
  • 41
    • 67651009834 scopus 로고    scopus 로고
    • Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating
    • New York, NY: Springer
    • Steyerberg EW. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating. New York, NY: Springer; 2009.
    • (2009)
    • Steyerberg, E.W.1
  • 42
    • 73849094087 scopus 로고    scopus 로고
    • Assessing the performance of prediction models: a framework for traditional and novel measures
    • Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology. 2010;21(1):128-38.
    • (2010) Epidemiology. , vol.21 , Issue.1 , pp. 128-138
    • Steyerberg, E.W.1    Vickers, A.J.2    Cook, N.R.3
  • 43
    • 84861556816 scopus 로고    scopus 로고
    • Reporting and methods in clinical prediction research: a systematic review
    • Bouwmeester W, Zuithoff NP, Mallett S, et al. Reporting and methods in clinical prediction research: a systematic review. PLoS Med. 2012;9(5):1-12.
    • (2012) PLoS Med. , vol.9 , Issue.5 , pp. 1-12
    • Bouwmeester, W.1    Zuithoff, N.P.2    Mallett, S.3
  • 44
    • 84899459258 scopus 로고    scopus 로고
    • External validation of multivariable prediction models: a systematic review of methodological conduct and reporting
    • Collins GS, de Groot JA, Dutton S, et al. External validation of multivariable prediction models: a systematic review of methodological conduct and reporting. BMC Med Res Methodol. 2014;14:40.
    • (2014) BMC Med Res Methodol. , vol.14 , pp. 40
    • Collins, G.S.1    de Groot, J.A.2    Dutton, S.3
  • 46
    • 0035986111 scopus 로고    scopus 로고
    • Prospective independent validation of APACHE III models in an Australian tertiary adult intensive care unit
    • Cook DA, Joyce CJ, Barnett RJ, et al. Prospective independent validation of APACHE III models in an Australian tertiary adult intensive care unit. Anaesth Intensive Care. 2002;30(3):308-15.
    • (2002) Anaesth Intensive Care. , vol.30 , Issue.3 , pp. 308-315
    • Cook, D.A.1    Joyce, C.J.2    Barnett, R.J.3
  • 47
    • 84855764322 scopus 로고    scopus 로고
    • Probability machines: consistent probability estimation using nonparametric learning machines
    • Malley JD, Kruppa J, Dasgupta A, Malley KG, Ziegler A. Probability machines: consistent probability estimation using nonparametric learning machines. Methods Inform Med. 2012;51(1):74-81.
    • (2012) Methods Inform Med. , vol.51 , Issue.1 , pp. 74-81
    • Malley, J.D.1    Kruppa, J.2    Dasgupta, A.3    Malley, K.G.4    Ziegler, A.5
  • 48
    • 0000245743 scopus 로고    scopus 로고
    • Statistical modeling: the two cultures
    • Breiman L. Statistical modeling: the two cultures. Statistical Science. 2001;16(3):199-231 49. Perlin JB, Kolodner RM, Roswell RH. The Veterans Health Administration: quality, value, accountability, and information as transforming strategies for patient-centered care. AmJManaged Care. 2004;10(11 Pt 2):828-36.
    • (2001) Statistical Science. , vol.16 , Issue.3 , pp. 199-231
    • Breiman, L.1
  • 49
    • 16644387094 scopus 로고    scopus 로고
    • The Veterans Health Administration: quality, value, accountability, and information as transforming strategies for patient-centered care
    • Perlin JB, Kolodner RM, Roswell RH. The Veterans Health Administration: quality, value, accountability, and information as transforming strategies for patient-centered care. AmJManaged Care. 2004;10(11 Pt 2):828-36
    • (2004) AmJ Managed Care. , vol.10 , Issue.11 , pp. 828-836
    • Perlin, J.B.1    Kolodner, R.M.2    Roswell, R.H.3
  • 50
    • 84864808953 scopus 로고    scopus 로고
    • KDIGO clinical practice guidelines for acute kidney injury
    • Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179-84.
    • (2012) Nephron Clin Pract. , vol.120 , Issue.4 , pp. c179-c184
    • Khwaja, A.1
  • 51
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani R. Regression shrinkage and selection via the lasso. J Royal Stat Soc Series B. 1996;58(1):267-88.
    • (1996) J Royal Stat Soc Series B. , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 52
    • 84942484786 scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12(1):55-67.
    • (1970) Technometrics. , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 53
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou H, Hastie T. Regularization and variable selection via the elastic net. J Royal Stat Soc Series B. 2005;67(2):301-20.
    • (2005) J Royal Stat Soc Series B. , vol.67 , Issue.2 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 54
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learning. 2001;45(1):5-32.
    • (2001) Machine Learning. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 55
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • New York: Oxford University Press
    • Bishop CM. Neural Networks for Pattern Recognition. New York: Oxford University Press; 1995.
    • (1995)
    • Bishop, C.M.1
  • 56
    • 84855979656 scopus 로고    scopus 로고
    • Naive Bayes
    • In: Wu X, Kumar V, eds. The Top Ten Algorithms in Data Mining. Chapman&Hall/CRC
    • Hand DJ. Naive Bayes. In: Wu X, Kumar V, eds. The Top Ten Algorithms in Data Mining. Chapman&Hall/CRC; 2009:163-78.
    • (2009) , pp. 163-178
    • Hand, D.J.1
  • 57
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143(1):29-36.
    • (1982) Radiology. , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 59
  • 60
    • 84923527988 scopus 로고    scopus 로고
    • A new framework to enhance the interpretation of external validation studies of clinical prediction models
    • Debray TP, Vergouwe Y, Koffijberg H, Nieboer D, Steyerberg EW, Moons KG. A new framework to enhance the interpretation of external validation studies of clinical prediction models. J Clin Epidemiol. 2015;68(3):279-89.
    • (2015) J Clin Epidemiol. , vol.68 , Issue.3 , pp. 279-289
    • Debray, T.P.1    Vergouwe, Y.2    Koffijberg, H.3    Nieboer, D.4    Steyerberg, E.W.5    Moons, K.G.6
  • 62
    • 4344696163 scopus 로고    scopus 로고
    • Validation and updating of predictive logistic regression models: a study on sample size and shrinkage
    • Steyerberg EW, Borsboom GJ, van Houwelingen HC, Eijkemans MJ, Habbema JD. Validation and updating of predictive logistic regression models: a study on sample size and shrinkage. Stat Med. 2004;23(16):2567-86.
    • (2004) Stat Med. , vol.23 , Issue.16 , pp. 2567-2586
    • Steyerberg, E.W.1    Borsboom, G.J.2    van Houwelingen, H.C.3    Eijkemans, M.J.4    Habbema, J.D.5
  • 64
    • 36849089158 scopus 로고    scopus 로고
    • Updating methods improved the performance of a clinical prediction model in new patients
    • Janssen KJ, Moons KG, Kalkman CJ, Grobbee DE, Vergouwe Y. Updating methods improved the performance of a clinical prediction model in new patients. J Clin Epidemiol. 2008;61(1):76-86.
    • (2008) J Clin Epidemiol. , vol.61 , Issue.1 , pp. 76-86
    • Janssen, K.J.1    Moons, K.G.2    Kalkman, C.J.3    Grobbee, D.E.4    Vergouwe, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.