-
1
-
-
34249662628
-
Cystic fibrosis: A disease of vulnerability to airway surface dehydration
-
R. C. Boucher, “Cystic fibrosis: a disease of vulnerability to airway surface dehydration,” Trends in Molecular Medicine, vol. 13, no. 6, pp. 231–240, 2007.
-
(2007)
Trends in Molecular Medicine
, vol.13
, Issue.6
, pp. 231-240
-
-
Boucher, R.C.1
-
2
-
-
40649112565
-
Airway epithelial control of pseudomonas aeruginosa infection in cystic fibrosis
-
V. L. Campodonico, M. Gadjeva, C. Paradis-Bleau, A. Uluer, and G. B. Pier, “Airway epithelial control of Pseudomonas aeruginosa infection in cystic fibrosis,” Trends in Molecular Medicine, vol. 14, no. 3, pp. 120–133, 2008.
-
(2008)
Trends in Molecular Medicine
, vol.14
, Issue.3
, pp. 120-133
-
-
Campodonico, V.L.1
Gadjeva, M.2
Paradis-Bleau, C.3
Uluer, A.4
Pier, G.B.5
-
3
-
-
0029670051
-
TNF-alpha, IL-8, soluble ICAM-1, and neutrophils in sputum of cystic fibrosis patients
-
P. S. Salva, N. A. Doyle, L. Graham, H. Eigen, and C. M. Doerschuk, “TNF-alpha, IL-8, soluble ICAM-1, and neutrophils in sputum of cystic fibrosis patients,” Pediatric Pulmonology, vol. 21, no. 1, pp. 11–19, 1996.
-
(1996)
Pediatric Pulmonology
, vol.21
, Issue.1
, pp. 11-19
-
-
Salva, P.S.1
Doyle, N.A.2
Graham, L.3
Eigen, H.4
Doerschuk, C.M.5
-
4
-
-
0032817772
-
Altered respiratory epithelial cell cytokine production in cystic fibrosis
-
T. L. Bonfield, M. W. Konstan, and M. Berger, “Altered respiratory epithelial cell cytokine production in cystic fibrosis,” The Journal of Allergy and Clinical Immunology, vol. 104, no. 1, pp. 72–78, 1999.
-
(1999)
The Journal of Allergy and Clinical Immunology
, vol.104
, Issue.1
, pp. 72-78
-
-
Bonfield, T.L.1
Konstan, M.W.2
Berger, M.3
-
5
-
-
58349104978
-
Neutrophils in cystic fibrosis
-
D. G. Downey, S. C. Bell, and J. S. Elborn, “Neutrophils in cystic fibrosis,” Thorax, vol. 64, no. 1, pp. 81–88, 2009.
-
(2009)
Thorax
, vol.64
, Issue.1
, pp. 81-88
-
-
Downey, D.G.1
Bell, S.C.2
Elborn, J.S.3
-
6
-
-
84906850138
-
Current concepts: Host-pathogen interactions in cystic fibrosis airways disease
-
A. C. Tang, S. E. Turvey, M. P. Alves, N. Regamey, B. Tummler, and D. Hartl, “Current concepts: host-pathogen interactions in cystic fibrosis airways disease,” European Respiratory Review, vol. 23, no. 133, pp. 320–332, 2014.
-
(2014)
European Respiratory Review
, vol.23
, Issue.133
, pp. 320-332
-
-
Tang, A.C.1
Turvey, S.E.2
Alves, M.P.3
Regamey, N.4
Tummler, B.5
Hartl, D.6
-
7
-
-
84884284486
-
Does epithelial sodium channel hyperactivity contribute to cystic fibrosis lung disease?
-
C. A. Hobbs, C. Da Tan, and R. Tarran, “Does epithelial sodium channel hyperactivity contribute to cystic fibrosis lung disease?,” The Journal of Physiology, vol. 591, no. 18, pp. 4377–4387, 2013.
-
(2013)
The Journal of Physiology
, vol.591
, Issue.18
, pp. 4377-4387
-
-
Hobbs, C.A.1
Da Tan, C.2
Tarran, R.3
-
8
-
-
33845992179
-
Evidence for airway surface dehydration as the initiating event in CF airway disease
-
R. C. Boucher, “Evidence for airway surface dehydration as the initiating event in CF airway disease,” Journal of Internal Medicine, vol. 261, no. 1, pp. 5–16, 2007.
-
(2007)
Journal of Internal Medicine
, vol.261
, Issue.1
, pp. 5-16
-
-
Boucher, R.C.1
-
9
-
-
38449109697
-
Mucoactive agents for airway mucus hypersecretory diseases
-
D. F. Rogers, “Mucoactive agents for airway mucus hypersecretory diseases,” Respiratory Care, vol. 52, pp. 1176–1197, 2007.
-
(2007)
Respiratory Care
, vol.52
, pp. 1176-1197
-
-
Rogers, D.F.1
-
10
-
-
84928037777
-
Origins of cystic fibrosis lung disease
-
A. Munder and B. Tümmler, “Origins of cystic fibrosis lung disease,” The New England Journal of Medicine, vol. 372, no. 16, pp. 1574-1575, 2015.
-
(2015)
The New England Journal of Medicine
, vol.372
, Issue.16
, pp. 1574-1575
-
-
Munder, A.1
Tümmler, B.2
-
11
-
-
0034816784
-
Antioxidant imbalance in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice
-
L. W. Velsor, A. van Heeckeren, and B. J. Day, “Antioxidant imbalance in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 281, no. 1, pp. L31–L38, 2001.
-
(2001)
American Journal of Physiology Lung Cellular and Molecular Physiology
, vol.281
, Issue.1
, pp. L31-L38
-
-
Velsor, L.W.1
van Heeckeren, A.2
Day, B.J.3
-
12
-
-
1842431869
-
Role for cystic fibrosis transmembrane conductance regulator protein in a glutathione response to bronchopulmonary pseudomonas infection
-
B. J. Day, A. M. van Heeckeren, E. Min, and L. W. Velsor, “Role for cystic fibrosis transmembrane conductance regulator protein in a glutathione response to bronchopulmonary pseudomonas infection,” Infection and Immunity, vol. 72, no. 4, pp. 2045–2051, 2004.
-
(2004)
Infection and Immunity
, vol.72
, Issue.4
, pp. 2045-2051
-
-
Day, B.J.1
van Heeckeren, A.M.2
Min, E.3
Velsor, L.W.4
-
13
-
-
84863395512
-
CFTR is the primary known apical glutathione transporter involved in cigarette smoke-induced adaptive responses in the lung
-
N. S. Gould, E. Min, R. J. Martin, and B. J. Day, “CFTR is the primary known apical glutathione transporter involved in cigarette smoke-induced adaptive responses in the lung,” Free Radical Biology & Medicine, vol. 52, no. 7, pp. 1201–1206, 2012.
-
(2012)
Free Radical Biology & Medicine
, vol.52
, Issue.7
, pp. 1201-1206
-
-
Gould, N.S.1
Min, E.2
Martin, R.J.3
Day, B.J.4
-
15
-
-
85044841634
-
Airway disease phenotypes in animal models of cystic fibrosis
-
A. McCarron, M. Donnelley, and D. Parsons, “Airway disease phenotypes in animal models of cystic fibrosis,” Respiratory Research, vol. 19, no. 1, p. 54, 2018.
-
(2018)
Respiratory Research
, vol.19
, Issue.1
, pp. 54
-
-
McCarron, A.1
Donnelley, M.2
Parsons, D.3
-
16
-
-
84975257314
-
Animal models of cystic fibrosis pathology: Phenotypic parallels and divergences
-
G. M. Lavelle, M. M. White, N. Browne, N. G. McElvaney, and E. P. Reeves, “Animal models of cystic fibrosis pathology: phenotypic parallels and divergences,” BioMed Research International, vol. 2016, Article ID 5258727, 14 pages, 2016.
-
(2016)
BioMed Research International
, vol.2016
-
-
Lavelle, G.M.1
White, M.M.2
Browne, N.3
McElvaney, N.G.4
Reeves, E.P.5
-
17
-
-
85029555711
-
Animal and model systems for studying cystic fibrosis
-
B. H. Rosen, M. Chanson, L. R. Gawenis et al., “Animal and model systems for studying cystic fibrosis,” Journal of Cystic Fibrosis, vol. 17, no. 2, pp. S28–S34, 2018.
-
(2018)
Journal of Cystic Fibrosis
, vol.17
, Issue.2
, pp. S28-S34
-
-
Rosen, B.H.1
Chanson, M.2
Gawenis, L.R.3
-
18
-
-
77949488849
-
How useful are cystic fibrosis mouse models?
-
M. E. Egan, “How useful are cystic fibrosis mouse models?,” Drug Discovery Today: Disease Models, vol. 6, no. 2, pp. 35–41, 2009.
-
(2009)
Drug Discovery Today: Disease Models
, vol.6
, Issue.2
, pp. 35-41
-
-
Egan, M.E.1
-
19
-
-
0019364354
-
The cells of the tracheobronchial epithelium of the mouse: A quantitative light and electron microscope study
-
R. J. Pack, L. H. Al-Ugaily, and G. Morris, “The cells of the tracheobronchial epithelium of the mouse: a quantitative light and electron microscope study,” Journal of Anatomy, vol. 132, Part 1, pp. 71–84, 1981.
-
(1981)
Journal of Anatomy
, vol.132
, pp. 71-84
-
-
Pack, R.J.1
Al-Ugaily, L.H.2
Morris, G.3
-
20
-
-
84897426911
-
Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)knockout rats
-
article
-
K. L. Tuggle, S. E. Birket, X. Cui et al., “Characterization of defects in ion transport and tissue development in cystic fibrosis transmembrane conductance regulator (CFTR)knockout rats,” PLoS One, vol. 9, no. 3, article e91253, 2014.
-
(2014)
PLoS One
, vol.9
, Issue.3
-
-
Tuggle, K.L.1
Birket, S.E.2
Cui, X.3
-
21
-
-
77956379893
-
Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis
-
X. Sun, H. Sui, J. T. Fisher et al., “Disease phenotype of a ferret CFTR-knockout model of cystic fibrosis,” The Journal of Clinical Investigation, vol. 120, no. 9, pp. 3149–3160, 2010.
-
(2010)
The Journal of Clinical Investigation
, vol.120
, Issue.9
, pp. 3149-3160
-
-
Sun, X.1
Sui, H.2
Fisher, J.T.3
-
22
-
-
41849148289
-
Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer
-
C. S. Rogers, Y. Hao, T. Rokhlina et al., “Production of CFTR-null and CFTR-DeltaF508 heterozygous pigs by adeno-associated virus-mediated gene targeting and somatic cell nuclear transfer,” The Journal of Clinical Investigation, vol. 118, no. 4, pp. 1571–1577, 2008.
-
(2008)
The Journal of Clinical Investigation
, vol.118
, Issue.4
, pp. 1571-1577
-
-
Rogers, C.S.1
Hao, Y.2
Rokhlina, T.3
-
23
-
-
84862577098
-
Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis
-
N. Klymiuk, L. Mundhenk, K. Kraehe et al., “Sequential targeting of CFTR by BAC vectors generates a novel pig model of cystic fibrosis,” Journal of Molecular Medicine, vol. 90, no. 5, pp. 597–608, 2012.
-
(2012)
Journal of Molecular Medicine
, vol.90
, Issue.5
, pp. 597-608
-
-
Klymiuk, N.1
Mundhenk, L.2
Kraehe, K.3
-
24
-
-
84978149866
-
Current concepts and controversies in innate immunity of cystic fibrosis lung disease
-
A. Ralhan, J. Laval, F. Lelis et al., “Current concepts and controversies in innate immunity of cystic fibrosis lung disease,” Journal of Innate Immunity, vol. 8, no. 6, pp. 531–540, 2016.
-
(2016)
Journal of Innate Immunity
, vol.8
, Issue.6
, pp. 531-540
-
-
Ralhan, A.1
Laval, J.2
Lelis, F.3
-
25
-
-
59449089139
-
Anti-inflammatory therapies for cystic fibrosis-related lung disease
-
D. P. Nichols, M. W. Konstan, and J. F. Chmiel, “Anti-inflammatory therapies for cystic fibrosis-related lung disease,” Clinical Reviews in Allergy and Immunology, vol. 35, no. 3, pp. 135–153, 2008.
-
(2008)
Clinical Reviews in Allergy and Immunology
, vol.35
, Issue.3
, pp. 135-153
-
-
Nichols, D.P.1
Konstan, M.W.2
Chmiel, J.F.3
-
26
-
-
84868296268
-
Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis
-
S. D. Sagel, B. D. Wagner, M. M. Anthony, P. Emmett, and E. T. Zemanick, “Sputum biomarkers of inflammation and lung function decline in children with cystic fibrosis,” American Journal of Respiratory and Critical Care Medicine, vol. 186, no. 9, pp. 857–865, 2012.
-
(2012)
American Journal of Respiratory and Critical Care Medicine
, vol.186
, Issue.9
, pp. 857-865
-
-
Sagel, S.D.1
Wagner, B.D.2
Anthony, M.M.3
Emmett, P.4
Zemanick, E.T.5
-
27
-
-
85066987515
-
Biomarkers of inflammation and remodelling in cystic fibrosis
-
M. Conese, S. A. Tirelli, G. Alicandro et al., “Biomarkers of inflammation and remodelling in cystic fibrosis,” Clinical Immunology, Endocrine & Metabolic Drugs, vol. 3, no. 2, pp. 92–108, 2017.
-
(2017)
Clinical Immunology, Endocrine & Metabolic Drugs
, vol.3
, Issue.2
, pp. 92-108
-
-
Conese, M.1
Tirelli, S.A.2
Alicandro, G.3
-
28
-
-
60149103022
-
Extracellular barriers in respiratory gene therapy
-
N. Sanders, C. Rudolph, K. Braeckmans, S. C. De Smedt, and J. Demeester, “Extracellular barriers in respiratory gene therapy,” Advanced Drug Delivery Reviews, vol. 61, no. 2, pp. 115–127, 2009.
-
(2009)
Advanced Drug Delivery Reviews
, vol.61
, Issue.2
, pp. 115-127
-
-
Sanders, N.1
Rudolph, C.2
Braeckmans, K.3
De Smedt, S.C.4
Demeester, J.5
-
29
-
-
84994112846
-
The mucus barrier to inhaled gene therapy
-
G. A. Duncan, J. Jung, J. Hanes, and J. S. Suk, “The mucus barrier to inhaled gene therapy,” Molecular Therapy, vol. 24, no. 12, pp. 2043–2053, 2016.
-
(2016)
Molecular Therapy
, vol.24
, Issue.12
, pp. 2043-2053
-
-
Duncan, G.A.1
Jung, J.2
Hanes, J.3
Suk, J.S.4
-
30
-
-
85067041014
-
Role of neutrophils in cystic fibrosis lung disease
-
M. Khajah, Ed.,. IntechOpen Limited, London, England
-
M. Conese, S. Castellani, S. D'Oria, and P. Montemurro, “Role of neutrophils in cystic fibrosis lung disease,” in Role of Neutrophils in Disease Pathogenesis, M. Khajah, Ed., pp. 119–141, IntechOpen Limited, London, England, 2017.
-
(2017)
Role of Neutrophils in Disease Pathogenesis
, pp. 119-141
-
-
Conese, M.1
Castellani, S.2
D'Oria, S.3
Montemurro, P.4
-
31
-
-
84926500091
-
The innate immune function of airway epithelial cells in inflammatory lung disease
-
P. S. Hiemstra, P. B. McCray Jr, and R. Bals, “The innate immune function of airway epithelial cells in inflammatory lung disease,” The European Respiratory Journal, vol. 45, no. 4, pp. 1150–1162, 2015.
-
(2015)
The European Respiratory Journal
, vol.45
, Issue.4
, pp. 1150-1162
-
-
Hiemstra, P.S.1
McCray, P.B.2
Bals, R.3
-
32
-
-
0025574615
-
Dendritic cells in the respiratory tract
-
P. G. Holt, M. A. Schon-Hegrad, and P. G. McMenamin, “Dendritic cells in the respiratory tract,” International Reviews of Immunology, vol. 6, no. 2-3, pp. 139–149, 1990.
-
(1990)
International Reviews of Immunology
, vol.6
, Issue.2-3
, pp. 139-149
-
-
Holt, P.G.1
Schon-Hegrad, M.A.2
McMenamin, P.G.3
-
33
-
-
0026738545
-
Pulmonary and thoracic macrophage subpop-ulations and clearance of particles from the lung
-
B. E. Lehnert, “Pulmonary and thoracic macrophage subpop-ulations and clearance of particles from the lung,” Environmental Health Perspectives, vol. 97, pp. 17–46, 1992.
-
(1992)
Environmental Health Perspectives
, vol.97
, pp. 17-46
-
-
Lehnert, B.E.1
-
34
-
-
84976584948
-
Cystic fibrosis lung immunity: The role of the macrophage
-
E. M. Bruscia and T. L. Bonfield, “Cystic fibrosis lung immunity: the role of the macrophage,” Journal of Innate Immunity, vol. 8, no. 6, pp. 550–563, 2016.
-
(2016)
Journal of Innate Immunity
, vol.8
, Issue.6
, pp. 550-563
-
-
Bruscia, E.M.1
Bonfield, T.L.2
-
35
-
-
84959500692
-
Innate and adaptive immunity in cystic fibrosis
-
E. M. Bruscia and T. L. Bonfield, “Innate and adaptive immunity in cystic fibrosis,” Clinics in Chest Medicine, vol. 37, no. 1, pp. 17–29, 2016.
-
(2016)
Clinics in Chest Medicine
, vol.37
, Issue.1
, pp. 17-29
-
-
Bruscia, E.M.1
Bonfield, T.L.2
-
36
-
-
85021433033
-
Gel-forming mucins form distinct morphologic structures in airways
-
L. S. Ostedgaard, T. O. Moninger, J. D. McMenimen et al., “Gel-forming mucins form distinct morphologic structures in airways,” Proceedings of the National Academy of Sciences of the United States of America, vol. 114, pp. 6842–6847, 2017.
-
(2017)
Proceedings of the National Academy of Sciences of the United States of America
, vol.114
, pp. 6842-6847
-
-
Ostedgaard, L.S.1
Moninger, T.O.2
McMenimen, J.D.3
-
37
-
-
73649115308
-
Birth of mucus
-
P. M. Quinton, “Birth of mucus,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 298, no. 1, pp. L13–L14, 2010.
-
(2010)
American Journal of Physiology Lung Cellular and Molecular Physiology
, vol.298
, Issue.1
, pp. L13-L14
-
-
Quinton, P.M.1
-
38
-
-
77957330470
-
A new role for bicarbonate in mucus formation
-
E. Y. T. Chen, N. Yang, P. M. Quinton, and W.-C. Chin, “A new role for bicarbonate in mucus formation,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 299, no. 4, pp. L542–L549, 2010.
-
(2010)
American Journal of Physiology Lung Cellular and Molecular Physiology
, vol.299
, Issue.4
, pp. L542-L549
-
-
Chen, E.Y.T.1
Yang, N.2
Quinton, P.M.3
Chin, W.-C.4
-
39
-
-
84866103207
-
CFTR, mucins, and mucus obstruction in cystic fibrosis
-
S. M. Kreda, C. W. Davis, and M. C. Rose, “CFTR, mucins, and mucus obstruction in cystic fibrosis,” Cold Spring Harbor Perspectives in Medicine, vol. 2, no. 9, 2012.
-
(2012)
Cold Spring Harbor Perspectives in Medicine
, vol.2
, Issue.9
-
-
Kreda, S.M.1
Davis, C.W.2
Rose, M.C.3
-
40
-
-
2442718786
-
+ absorption produces cystic fibrosis-like lung disease in mice
-
+ absorption produces cystic fibrosis-like lung disease in mice,” Nature Medicine, vol. 10, no. 5, pp. 487–493, 2004.
-
(2004)
Nature Medicine
, vol.10
, Issue.5
, pp. 487-493
-
-
Mall, M.1
Grubb, B.R.2
Harkema, J.R.3
O'Neal, W.K.4
Boucher, R.C.5
-
41
-
-
41749115751
-
Development of chronic bronchitis and emphysema in beta-epithelial Na+ channel-overexpressing mice
-
M. A. Mall, J. R. Harkema, J. B. Trojanek et al., “Development of chronic bronchitis and emphysema in beta-epithelial Na+ channel-overexpressing mice,” American Journal of Respiratory and Critical Care Medicine, vol. 177, no. 7, pp. 730–742, 2008.
-
(2008)
American Journal of Respiratory and Critical Care Medicine
, vol.177
, Issue.7
, pp. 730-742
-
-
Mall, M.A.1
Harkema, J.R.2
Trojanek, J.B.3
-
42
-
-
79958142002
-
The ENaC-overexpressing mouse as a model of cystic fibrosis lung disease
-
Z. Zhou, J. Duerr, B. Johannesson et al., “The ENaC-overexpressing mouse as a model of cystic fibrosis lung disease,” Journal of Cystic Fibrosis, vol. 10, Supplement 2, pp. S172–S182, 2011.
-
(2011)
Journal of Cystic Fibrosis
, vol.10
, pp. S172-S182
-
-
Zhou, Z.1
Duerr, J.2
Johannesson, B.3
-
43
-
-
84895512997
-
Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets
-
X. Sun, A. K. Olivier, B. Liang et al., “Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets,” American Journal of Respiratory Cell and Molecular Biology, vol. 50, no. 3, pp. 502–512, 2014.
-
(2014)
American Journal of Respiratory Cell and Molecular Biology
, vol.50
, Issue.3
, pp. 502-512
-
-
Sun, X.1
Olivier, A.K.2
Liang, B.3
-
44
-
-
77952974496
-
Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth
-
article
-
D. A. Stoltz, D. K. Meyerholz, A. A. Pezzulo et al., “Cystic fibrosis pigs develop lung disease and exhibit defective bacterial eradication at birth,” Science Translational Medicine, vol. 2, no. 29, article 29ra31, 2010.
-
(2010)
Science Translational Medicine
, vol.2
, Issue.29
-
-
Stoltz, D.A.1
Meyerholz, D.K.2
Pezzulo, A.A.3
-
45
-
-
79952779452
-
The δf508 mutation causes CFTR misprocessing and cystic fibrosis–like disease in pigs
-
article
-
L. S. Ostedgaard, D. K. Meyerholz, J. H. Chen et al., “The ΔF508 mutation causes CFTR misprocessing and cystic fibrosis–like disease in pigs,” Science Translational Medicine, vol. 3, no. 74, article 74ra24, 2011.
-
(2011)
Science Translational Medicine
, vol.3
, Issue.74
-
-
Ostedgaard, L.S.1
Meyerholz, D.K.2
Chen, J.H.3
-
46
-
-
84890445863
-
Air trapping and airflow obstruction in newborn cystic fibrosis piglets
-
R. J. Adam, A. S. Michalski, C. Bauer et al., “Air trapping and airflow obstruction in newborn cystic fibrosis piglets,” American Journal of Respiratory and Critical Care Medicine, vol. 188, no. 12, pp. 1434–1441, 2013.
-
(2013)
American Journal of Respiratory and Critical Care Medicine
, vol.188
, Issue.12
, pp. 1434-1441
-
-
Adam, R.J.1
Michalski, A.S.2
Bauer, C.3
-
47
-
-
8544250584
-
Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium
-
P. R. Burgel and J. A. Nadel, “Roles of epidermal growth factor receptor activation in epithelial cell repair and mucin production in airway epithelium,” Thorax, vol. 59, no. 11, pp. 992–996, 2004.
-
(2004)
Thorax
, vol.59
, Issue.11
, pp. 992-996
-
-
Burgel, P.R.1
Nadel, J.A.2
-
48
-
-
0033045546
-
Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells
-
J. A. Voynow, L. R. Young, Y. Wang, T. Horger, M. C. Rose, and B. M. Fischer, “Neutrophil elastase increases MUC5AC mRNA and protein expression in respiratory epithelial cells,” The American Journal of Physiology, vol. 276, 5 Part 1, pp. L835–L843, 1999.
-
(1999)
The American Journal of Physiology
, vol.276
, Issue.5
, pp. L835-L843
-
-
Voynow, J.A.1
Young, L.R.2
Wang, Y.3
Horger, T.4
Rose, M.C.5
Fischer, B.M.6
-
49
-
-
0036724121
-
Neutrophil elastase induces mucin production by ligand-dependent epidermal growth factor receptor activation
-
K. Kohri, I. F. Ueki, and J. A. Nadel, “Neutrophil elastase induces mucin production by ligand-dependent epidermal growth factor receptor activation,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 283, no. 3, pp. L531–L540, 2002.
-
(2002)
American Journal of Physiology Lung Cellular and Molecular Physiology
, vol.283
, Issue.3
, pp. L531-L540
-
-
Kohri, K.1
Ueki, I.F.2
Nadel, J.A.3
-
50
-
-
57649180453
-
Different effects of telithromycin on MUC5AC production induced by human neutrophil peptide-1 or lipopolysaccharide in NCI-H292 cells compared with azithromycin and clarithromycin
-
H. Ishimoto, H. Mukae, N. Sakamoto et al., “Different effects of telithromycin on MUC5AC production induced by human neutrophil peptide-1 or lipopolysaccharide in NCI-H292 cells compared with azithromycin and clarithromycin,” The Journal of Antimicrobial Chemotherapy, vol. 63, no. 1, pp. 109–114, 2009.
-
(2009)
The Journal of Antimicrobial Chemotherapy
, vol.63
, Issue.1
, pp. 109-114
-
-
Ishimoto, H.1
Mukae, H.2
Sakamoto, N.3
-
51
-
-
0033823601
-
Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells. Analysis of the effects of cystic fibrosis transmembrane conductance regulator dysfunction and bacterial virulence factors
-
S. Rajan, G. Cacalano, R. Bryan et al., “Pseudomonas aeruginosa induction of apoptosis in respiratory epithelial cells. Analysis of the effects of cystic fibrosis transmembrane conductance regulator dysfunction and bacterial virulence factors,” American Journal of Respiratory Cell and Molecular Biology, vol. 23, no. 3, pp. 304–312, 2000.
-
(2000)
American Journal of Respiratory Cell and Molecular Biology
, vol.23
, Issue.3
, pp. 304-312
-
-
Rajan, S.1
Cacalano, G.2
Bryan, R.3
-
52
-
-
73949113850
-
Azithromycin maintains airway epithelial integrity during pseudomonas aeruginosa infection
-
S. Halldorsson, T. Gudjonsson, M. Gottfredsson, P. K. Singh, G. H. Gudmundsson, and O. Baldursson, “Azithromycin maintains airway epithelial integrity during Pseudomonas aeruginosa infection,” American Journal of Respiratory Cell and Molecular Biology, vol. 42, no. 1, pp. 62–68, 2010.
-
(2010)
American Journal of Respiratory Cell and Molecular Biology
, vol.42
, Issue.1
, pp. 62-68
-
-
Halldorsson, S.1
Gudjonsson, T.2
Gottfredsson, M.3
Singh, P.K.4
Gudmundsson, G.H.5
Baldursson, O.6
-
53
-
-
0029318990
-
Cell proliferation in bronchial epithelium and submucosal glands of cystic fibrosis patients
-
M. W. Leigh, J. E. Kylander, J. R. Yankaskas, and R. C. Boucher, “Cell proliferation in bronchial epithelium and submucosal glands of cystic fibrosis patients,” American Journal of Respiratory Cell and Molecular Biology, vol. 12, no. 6, pp. 605–612, 1995.
-
(1995)
American Journal of Respiratory Cell and Molecular Biology
, vol.12
, Issue.6
, pp. 605-612
-
-
Leigh, M.W.1
Kylander, J.E.2
Yankaskas, J.R.3
Boucher, R.C.4
-
54
-
-
0034081090
-
Cartilaginous airway wall dimensions and airway resistance in cystic fibrosis lungs
-
H. A. W. M. Tiddens, L. P. Koopman, R. K. Lambert et al., “Cartilaginous airway wall dimensions and airway resistance in cystic fibrosis lungs,” The European Respiratory Journal, vol. 15, no. 4, pp. 735–742, 2000.
-
(2000)
The European Respiratory Journal
, vol.15
, Issue.4
, pp. 735-742
-
-
Tiddens, H.A.W.M.1
Koopman, L.P.2
Lambert, R.K.3
-
55
-
-
0034999076
-
Quantitative analysis of inflammatory cells infiltrating the cystic fibrosis airway mucosa
-
C. Hubeau, M. Lorenzato, J. P. Couetil et al., “Quantitative analysis of inflammatory cells infiltrating the cystic fibrosis airway mucosa,” Clinical and Experimental Immunology, vol. 124, no. 1, pp. 69–76, 2001.
-
(2001)
Clinical and Experimental Immunology
, vol.124
, Issue.1
, pp. 69-76
-
-
Hubeau, C.1
Lorenzato, M.2
Couetil, J.P.3
-
56
-
-
26944447487
-
Basal-like cells constitute the proliferating cell population in cystic fibrosis airways
-
J. A. Voynow, B. M. Fischer, B. C. Roberts, and A. D. Proia, “Basal-like cells constitute the proliferating cell population in cystic fibrosis airways,” American Journal of Respiratory and Critical Care Medicine, vol. 172, no. 8, pp. 1013–1018, 2005.
-
(2005)
American Journal of Respiratory and Critical Care Medicine
, vol.172
, Issue.8
, pp. 1013-1018
-
-
Voynow, J.A.1
Fischer, B.M.2
Roberts, B.C.3
Proia, A.D.4
-
57
-
-
64549128662
-
Correlation between the stage of cystic fibrosis and the level of morphological changes in adult patients
-
T. Piorunek, A. Marszalek, W. Biczysko, J. Gozdzik, S. Cofta, and M. Seget, “Correlation between the stage of cystic fibrosis and the level of morphological changes in adult patients,” Journal of Physiology and Pharmacology, vol. 59, Supplement 6, pp. 565–572, 2008.
-
(2008)
Journal of Physiology and Pharmacology
, vol.59
, pp. 565-572
-
-
Piorunek, T.1
Marszalek, A.2
Biczysko, W.3
Gozdzik, J.4
Cofta, S.5
Seget, M.6
-
58
-
-
84871217142
-
Improvement of defective cystic fibrosis airway epithelial wound repair after CFTR rescue
-
N. T. N. Trinh, O. Bardou, A. Privé et al., “Improvement of defective cystic fibrosis airway epithelial wound repair after CFTR rescue,” The European Respiratory Journal, vol. 40, no. 6, pp. 1390–1400, 2012.
-
(2012)
The European Respiratory Journal
, vol.40
, Issue.6
, pp. 1390-1400
-
-
Trinh, N.T.N.1
Bardou, O.2
Privé, A.3
-
59
-
-
79959287741
-
Airway remodelling and its relationship to inflammation in cystic fibrosis
-
N. Regamey, P. K. Jeffery, E. W. F. W. Alton, A. Bush, and J. C. Davies, “Airway remodelling and its relationship to inflammation in cystic fibrosis,” Thorax, vol. 66, no. 7, pp. 624–629, 2011.
-
(2011)
Thorax
, vol.66
, Issue.7
, pp. 624-629
-
-
Regamey, N.1
Jeffery, P.K.2
Alton, E.W.F.W.3
Bush, A.4
Davies, J.C.5
-
60
-
-
36048972322
-
Airway remodelling in children with cystic fibrosis
-
T. N. Hilliard, N. Regamey, J. K. Shute et al., “Airway remodelling in children with cystic fibrosis,” Thorax, vol. 62, no. 12, pp. 1074–1080, 2007.
-
(2007)
Thorax
, vol.62
, Issue.12
, pp. 1074-1080
-
-
Hilliard, T.N.1
Regamey, N.2
Shute, J.K.3
-
61
-
-
33846570486
-
Human airway surface epithelial regeneration is delayed and abnormal in cystic fibrosis
-
R. Hajj, P. Lesimple, B. Nawrocki-Raby, P. Birembaut, E. Puchelle, and C. Coraux, “Human airway surface epithelial regeneration is delayed and abnormal in cystic fibrosis,” The Journal of Pathology, vol. 211, no. 3, pp. 340–350, 2007.
-
(2007)
The Journal of Pathology
, vol.211
, Issue.3
, pp. 340-350
-
-
Hajj, R.1
Lesimple, P.2
Nawrocki-Raby, B.3
Birembaut, P.4
Puchelle, E.5
Coraux, C.6
-
62
-
-
77954603744
-
Loss of cystic fibrosis transmembrane conductance regulator function enhances activation of p38 and ERK MAPKs, increasing interleukin-6 synthesis in airway epithelial cells exposed to pseudomonas aeruginosa
-
J. Bérubé, L. Roussel, L. Nattagh, and S. Rousseau, “Loss of cystic fibrosis transmembrane conductance regulator function enhances activation of p38 and ERK MAPKs, increasing interleukin-6 synthesis in airway epithelial cells exposed to Pseudomonas aeruginosa,” The Journal of Biological Chemistry, vol. 285, no. 29, pp. 22299–22307, 2010.
-
(2010)
The Journal of Biological Chemistry
, vol.285
, Issue.29
, pp. 22299-22307
-
-
Bérubé, J.1
Roussel, L.2
Nattagh, L.3
Rousseau, S.4
-
63
-
-
84881559756
-
Normal CFTR inhibits epidermal growth factor receptor-dependent pro-inflammatory chemokine production in human airway epithelial cells
-
article
-
S. Kim, B. A. Beyer, C. Lewis, and J. A. Nadel, “Normal CFTR inhibits epidermal growth factor receptor-dependent pro-inflammatory chemokine production in human airway epithelial cells,” PLoS One, vol. 8, no. 8, article e72981, 2013.
-
(2013)
PLoS One
, vol.8
, Issue.8
-
-
Kim, S.1
Beyer, B.A.2
Lewis, C.3
Nadel, J.A.4
-
64
-
-
84890011741
-
CFTR dysfunction induces vascular endothelial growth factor synthesis in airway epithelium
-
C. Martin, N. Coolen, Y. Wu et al., “CFTR dysfunction induces vascular endothelial growth factor synthesis in airway epithelium,” The European Respiratory Journal, vol. 42, no. 6, pp. 1553–1562, 2013.
-
(2013)
The European Respiratory Journal
, vol.42
, Issue.6
, pp. 1553-1562
-
-
Martin, C.1
Coolen, N.2
Wu, Y.3
-
66
-
-
46949105608
-
Airway epithelial cell inflammatory signalling in cystic fibrosis
-
J. Jacquot, O. Tabary, P. le Rouzic, and A. Clement, “Airway epithelial cell inflammatory signalling in cystic fibrosis,” The International Journal of Biochemistry & Cell Biology, vol. 40, no. 9, pp. 1703–1715, 2008.
-
(2008)
The International Journal of Biochemistry & Cell Biology
, vol.40
, Issue.9
, pp. 1703-1715
-
-
Jacquot, J.1
Tabary, O.2
le Rouzic, P.3
Clement, A.4
-
67
-
-
12444322678
-
TLR-induced inflammation in cystic fibrosis and non-cystic fibrosis airway epithelial cells
-
C. M. Greene, T. P. Carroll, S. G. J. Smith et al., “TLR-induced inflammation in cystic fibrosis and non-cystic fibrosis airway epithelial cells,” Journal of Immunology, vol. 174, no. 3, pp. 1638–1646, 2005.
-
(2005)
Journal of Immunology
, vol.174
, Issue.3
, pp. 1638-1646
-
-
Greene, C.M.1
Carroll, T.P.2
Smith, S.G.J.3
-
68
-
-
1642494708
-
Response of human pulmonary epithelial cells to lipopolysaccharide involves toll-like receptor 4 (TLR4)-dependent signaling pathways: Evidence for an intracellular compartmentalization of TLR4
-
L. Guillot, S. Medjane, K. le-Barillec et al., “Response of human pulmonary epithelial cells to lipopolysaccharide involves toll-like receptor 4 (TLR4)-dependent signaling pathways: evidence for an intracellular compartmentalization of TLR4,” The Journal of Biological Chemistry, vol. 279, no. 4, pp. 2712–2718, 2004.
-
(2004)
The Journal of Biological Chemistry
, vol.279
, Issue.4
, pp. 2712-2718
-
-
Guillot, L.1
Medjane, S.2
le-Barillec, K.3
-
69
-
-
84901980268
-
Mimicking the host and its microenvironment in vitro for studying mucosal infections by pseudomonas aeruginosa
-
A. Crabbe, M. A. Ledesma, and C. A. Nickerson, “Mimicking the host and its microenvironment in vitro for studying mucosal infections by Pseudomonas aeruginosa,” Pathogens and Disease, vol. 71, no. 1, pp. 1–19, 2014.
-
(2014)
Pathogens and Disease
, vol.71
, Issue.1
, pp. 1-19
-
-
Crabbe, A.1
Ledesma, M.A.2
Nickerson, C.A.3
-
70
-
-
77949766973
-
Cystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition
-
M. Kelly, S. Trudel, F. Brouillard et al., “Cystic fibrosis transmembrane regulator inhibitors CFTR(inh)-172 and GlyH-101 target mitochondrial functions, independently of chloride channel inhibition,” The Journal of Pharmacology and Experimental Therapeutics, vol. 333, no. 1, pp. 60–69, 2010.
-
(2010)
The Journal of Pharmacology and Experimental Therapeutics
, vol.333
, Issue.1
, pp. 60-69
-
-
Kelly, M.1
Trudel, S.2
Brouillard, F.3
-
71
-
-
84868255280
-
Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia
-
G. Veit, F. Bossard, J. Goepp et al., “Proinflammatory cytokine secretion is suppressed by TMEM16A or CFTR channel activity in human cystic fibrosis bronchial epithelia,” Molecular Biology of the Cell, vol. 23, no. 21, pp. 4188–4202, 2012.
-
(2012)
Molecular Biology of the Cell
, vol.23
, Issue.21
, pp. 4188-4202
-
-
Veit, G.1
Bossard, F.2
Goepp, J.3
-
72
-
-
4444346481
-
Effects of CFTR, interleukin-10, and pseudomonas aeruginosa on gene expression profiles in a CF bronchial epithelial cell line
-
I. Virella-Lowell, J. D. Herlihy, B. Liu et al., “Effects of CFTR, interleukin-10, and Pseudomonas aeruginosa on gene expression profiles in a CF bronchial epithelial cell line,” Molecular Therapy, vol. 10, no. 3, pp. 562–573, 2004.
-
(2004)
Molecular Therapy
, vol.10
, Issue.3
, pp. 562-573
-
-
Virella-Lowell, I.1
Herlihy, J.D.2
Liu, B.3
-
73
-
-
84949255837
-
Normal and cystic fibrosis human bronchial epithelial cells infected with pseudomonas aeruginosa exhibit distinct gene activation patterns
-
article
-
V. Balloy, H. Varet, M. A. Dillies et al., “Normal and cystic fibrosis human bronchial epithelial cells infected with Pseudomonas aeruginosa exhibit distinct gene activation patterns,” PLoS One, vol. 10, no. 10, article e0140979, 2015.
-
(2015)
PLoS One
, vol.10
, Issue.10
-
-
Balloy, V.1
Varet, H.2
Dillies, M.A.3
-
74
-
-
25444498560
-
Influence of cystic fibrosis transmembrane conductance regulator on gene expression in response to pseudomonas aeruginosa infection of human bronchial epithelial cells
-
N. Reiniger, J. K. Ichikawa, and G. B. Pier, “Influence of cystic fibrosis transmembrane conductance regulator on gene expression in response to Pseudomonas aeruginosa infection of human bronchial epithelial cells,” Infection and Immunity, vol. 73, no. 10, pp. 6822–6830, 2005.
-
(2005)
Infection and Immunity
, vol.73
, Issue.10
, pp. 6822-6830
-
-
Reiniger, N.1
Ichikawa, J.K.2
Pier, G.B.3
-
75
-
-
34247629486
-
MPB-07 reduces the inflammatory response to pseudomonas aeruginosa in cystic fibrosis bronchial cells
-
M. C. Dechecchi, E. Nicolis, V. Bezzerri et al., “MPB-07 reduces the inflammatory response to Pseudomonas aeruginosa in cystic fibrosis bronchial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 5, pp. 615–624, 2007.
-
(2007)
American Journal of Respiratory Cell and Molecular Biology
, vol.36
, Issue.5
, pp. 615-624
-
-
Dechecchi, M.C.1
Nicolis, E.2
Bezzerri, V.3
-
76
-
-
77749274236
-
Primary bronchial epithelial cell culture from explanted cystic fibrosis lungs
-
M. Brodlie, M. C. McKean, G. E. Johnson et al., “Primary bronchial epithelial cell culture from explanted cystic fibrosis lungs,” Experimental Lung Research, vol. 36, no. 2, pp. 101–110, 2010.
-
(2010)
Experimental Lung Research
, vol.36
, Issue.2
, pp. 101-110
-
-
Brodlie, M.1
McKean, M.C.2
Johnson, G.E.3
-
77
-
-
84940766346
-
Junctional abnormalities in human airway epithelial cells expressing f508del CFTR
-
S. A. Molina, B. Stauffer, H. K. Moriarty, A. H. Kim, N. A. McCarty, and M. Koval, “Junctional abnormalities in human airway epithelial cells expressing F508del CFTR,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 309, no. 5, pp. L475–L487, 2015.
-
(2015)
American Journal of Physiology Lung Cellular and Molecular Physiology
, vol.309
, Issue.5
, pp. L475-L487
-
-
Molina, S.A.1
Stauffer, B.2
Moriarty, H.K.3
Kim, A.H.4
McCarty, N.A.5
Koval, M.6
-
78
-
-
0028307695
-
CaLu-3: A human airway epithelial cell line that shows cAMP-dependent cl- secretion
-
B. Q. Shen, W. E. Finkbeiner, J. J. Wine, R. J. Mrsny, and J. H. Widdicombe, “Calu-3: a human airway epithelial cell line that shows cAMP-dependent Cl- secretion,” The American Journal of Physiology, vol. 266, 5 Part 1, pp. L493–L501, 1994.
-
(1994)
The American Journal of Physiology
, vol.266
, Issue.5
, pp. L493-L501
-
-
Shen, B.Q.1
Finkbeiner, W.E.2
Wine, J.J.3
Mrsny, R.J.4
Widdicombe, J.H.5
-
79
-
-
85047546365
-
Most bicarbonate secretion by calu-3 cells is mediated by CFTR and independent of pendrin
-
article
-
J. Huang, D. Kim, J. Shan, A. Abu-Arish, Y. Luo, and J. W. Hanrahan, “Most bicarbonate secretion by Calu-3 cells is mediated by CFTR and independent of pendrin,” Physiological Reports, vol. 6, no. 5, article e13641, 2018.
-
(2018)
Physiological Reports
, vol.6
, Issue.5
-
-
Huang, J.1
Kim, D.2
Shan, J.3
Abu-Arish, A.4
Luo, Y.5
Hanrahan, J.W.6
-
80
-
-
77952942959
-
Cystic fibrosis transmembrane conductance regulator trafficking modulates the barrier function of airway epithelial cell monolayers
-
P. LeSimple, J. Liao, R. Robert, D. C. Gruenert, and J. W. Hanrahan, “Cystic fibrosis transmembrane conductance regulator trafficking modulates the barrier function of airway epithelial cell monolayers,” The Journal of Physiology, vol. 588, no. 8, pp. 1195–1209, 2010.
-
(2010)
The Journal of Physiology
, vol.588
, Issue.8
, pp. 1195-1209
-
-
LeSimple, P.1
Liao, J.2
Robert, R.3
Gruenert, D.C.4
Hanrahan, J.W.5
-
81
-
-
80052528051
-
Primary epithelial cell models for cystic fibrosis research
-
S. H. Randell, M. L. Fulcher, W. O’Neal, and J. C. Olsen, “Primary epithelial cell models for cystic fibrosis research,” Methods in Molecular Biology, vol. 742, pp. 285–310, 2011.
-
(2011)
Methods in Molecular Biology
, vol.742
, pp. 285-310
-
-
Randell, S.H.1
Fulcher, M.L.2
O’Neal, W.3
Olsen, J.C.4
-
82
-
-
16644381108
-
Well-differentiated human airway epithelial cell cultures
-
M. L. Fulcher, S. Gabriel, K. A. Burns, J. R. Yankaskas, and S. H. Randell, “Well-differentiated human airway epithelial cell cultures,” Methods in Molecular Medicine, vol. 107, pp. 183–206, 2005.
-
(2005)
Methods in Molecular Medicine
, vol.107
, pp. 183-206
-
-
Fulcher, M.L.1
Gabriel, S.2
Burns, K.A.3
Yankaskas, J.R.4
Randell, S.H.5
-
83
-
-
84877115919
-
Respiratory syncytial virus interaction with human airway epithelium
-
R. Villenave, M. D. Shields, and U. F. Power, “Respiratory syncytial virus interaction with human airway epithelium,” Trends in Microbiology, vol. 21, no. 5, pp. 238–244, 2013.
-
(2013)
Trends in Microbiology
, vol.21
, Issue.5
, pp. 238-244
-
-
Villenave, R.1
Shields, M.D.2
Power, U.F.3
-
84
-
-
78650653743
-
The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia
-
A. A. Pezzulo, T. D. Starner, T. E. Scheetz et al., “The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 300, no. 1, pp. L25–L31, 2011.
-
(2011)
American Journal of Physiology Lung Cellular and Molecular Physiology
, vol.300
, Issue.1
, pp. L25-L31
-
-
Pezzulo, A.A.1
Starner, T.D.2
Scheetz, T.E.3
-
85
-
-
78650676408
-
Do airway epithelium air-liquid cultures represent the in vivo airway epithelium transcriptome?
-
A. Dvorak, A. E. Tilley, R. Shaykhiev, R. Wang, and R. G. Crystal, “Do airway epithelium air-liquid cultures represent the in vivo airway epithelium transcriptome?,” American Journal of Respiratory Cell and Molecular Biology, vol. 44, no. 4, pp. 465–473, 2011.
-
(2011)
American Journal of Respiratory Cell and Molecular Biology
, vol.44
, Issue.4
, pp. 465-473
-
-
Dvorak, A.1
Tilley, A.E.2
Shaykhiev, R.3
Wang, R.4
Crystal, R.G.5
-
86
-
-
2942544512
-
Toll-like receptors in normal and cystic fibrosis airway epithelial cells
-
A. Muir, G. Soong, S. Sokol et al., “Toll-like receptors in normal and cystic fibrosis airway epithelial cells,” American Journal of Respiratory Cell and Molecular Biology, vol. 30, no. 6, pp. 777–783, 2004.
-
(2004)
American Journal of Respiratory Cell and Molecular Biology
, vol.30
, Issue.6
, pp. 777-783
-
-
Muir, A.1
Soong, G.2
Sokol, S.3
-
87
-
-
84964068252
-
Toll-like receptors in cystic fibrosis: Impact of dysfunctional microRNA on innate immune responses in the cystic fibrosis lung
-
S. F. Vencken and C. M. Greene, “Toll-like receptors in cystic fibrosis: impact of dysfunctional microRNA on innate immune responses in the cystic fibrosis lung,” Journal of Innate Immunity, vol. 8, no. 6, pp. 541–549, 2016.
-
(2016)
Journal of Innate Immunity
, vol.8
, Issue.6
, pp. 541-549
-
-
Vencken, S.F.1
Greene, C.M.2
-
88
-
-
84906919893
-
Oxidative stress modulates the expression of genes involved in cell survival in δf508 cystic fibrosis airway epithelial cells
-
G. Voisin, G. F. Bouvet, P. Legendre, A. Dagenais, C. Massé, and Y. Berthiaume, “Oxidative stress modulates the expression of genes involved in cell survival in ΔF508 cystic fibrosis airway epithelial cells,” Physiological Genomics, vol. 46, no. 17, pp. 634–646, 2014.
-
(2014)
Physiological Genomics
, vol.46
, Issue.17
, pp. 634-646
-
-
Voisin, G.1
Bouvet, G.F.2
Legendre, P.3
Dagenais, A.4
Massé, C.5
Berthiaume, Y.6
-
89
-
-
85039848357
-
Characterization of pediatric cystic fibrosis airway epithelial cell cultures at the air-liquid interface obtained by non-invasive nasal cytology brush sampling
-
A. Schögler, F. Blank, M. Brügger et al., “Characterization of pediatric cystic fibrosis airway epithelial cell cultures at the air-liquid interface obtained by non-invasive nasal cytology brush sampling,” Respiratory Research, vol. 18, no. 1, p. 215, 2017.
-
(2017)
Respiratory Research
, vol.18
, Issue.1
, pp. 215
-
-
Schögler, A.1
Blank, F.2
Brügger, M.3
-
90
-
-
1442325340
-
Cytokine secretion by cystic fibrosis airway epithelial cells
-
M. N. Becker, M. S. Sauer, M. S. Muhlebach et al., “Cytokine secretion by cystic fibrosis airway epithelial cells,” American Journal of Respiratory and Critical Care Medicine, vol. 169, no. 5, pp. 645–653, 2004.
-
(2004)
American Journal of Respiratory and Critical Care Medicine
, vol.169
, Issue.5
, pp. 645-653
-
-
Becker, M.N.1
Sauer, M.S.2
Muhlebach, M.S.3
-
91
-
-
38049068170
-
Feasibility of nasal epithelial brushing for the study of airway epithelial functions in CF infants
-
K. Mosler, C. Coraux, K. Fragaki et al., “Feasibility of nasal epithelial brushing for the study of airway epithelial functions in CF infants,” Journal of Cystic Fibrosis, vol. 7, no. 1, pp. 44–53, 2008.
-
(2008)
Journal of Cystic Fibrosis
, vol.7
, Issue.1
, pp. 44-53
-
-
Mosler, K.1
Coraux, C.2
Fragaki, K.3
-
92
-
-
84857880134
-
Comparison of nasal and bronchial epithelial cells obtained from patients with COPD
-
article
-
D. M. Comer, J. S. Elborn, and M. Ennis, “Comparison of nasal and bronchial epithelial cells obtained from patients with COPD,” PLoS One, vol. 7, no. 3, article e32924, 2012.
-
(2012)
PLoS One
, vol.7
, Issue.3
-
-
Comer, D.M.1
Elborn, J.S.2
Ennis, M.3
-
93
-
-
84955260021
-
Comparison of innate immune responses towards rhinovirus infection of primary nasal and bronchial epithelial cells
-
M. P. Alves, A. Schögler, S. Ebener et al., “Comparison of innate immune responses towards rhinovirus infection of primary nasal and bronchial epithelial cells,” Respirology, vol. 21, no. 2, pp. 304–312, 2016.
-
(2016)
Respirology
, vol.21
, Issue.2
, pp. 304-312
-
-
Alves, M.P.1
Schögler, A.2
Ebener, S.3
-
94
-
-
85027503365
-
Development of a primary human co-culture model of inflamed airway mucosa
-
L. M. Yonker, H. Mou, K. K. Chu et al., “Development of a primary human co-culture model of inflamed airway mucosa,” Scientific Reports, vol. 7, no. 1, p. 8182, 2017.
-
(2017)
Scientific Reports
, vol.7
, Issue.1
, pp. 8182
-
-
Yonker, L.M.1
Mou, H.2
Chu, K.K.3
-
95
-
-
84868549245
-
NHERF1 and CFTR restore tight junction orga-nisation and function in cystic fibrosis airway epithelial cells: Role of ezrin and the RhoA/ROCK pathway
-
S. Castellani, L. Guerra, M. Favia, S. di Gioia, V. Casavola, and M. Conese, “NHERF1 and CFTR restore tight junction orga-nisation and function in cystic fibrosis airway epithelial cells: role of ezrin and the RhoA/ROCK pathway,” Laboratory Investigation, vol. 92, no. 11, pp. 1527–1540, 2012.
-
(2012)
Laboratory Investigation
, vol.92
, Issue.11
, pp. 1527-1540
-
-
Castellani, S.1
Guerra, L.2
Favia, M.3
di Gioia, S.4
Casavola, V.5
Conese, M.6
-
96
-
-
85046627101
-
Front-line science: Pathological conditioning of human neutrophils recruited to the airway milieu in cystic fibrosis
-
O. A. Forrest, S. A. Ingersoll, M. K. Preininger et al., “Front-line science: pathological conditioning of human neutrophils recruited to the airway milieu in cystic fibrosis,” Journal of Leukocyte Biology, vol. 104, no. 4, pp. 665–675, 2018.
-
(2018)
Journal of Leukocyte Biology
, vol.104
, Issue.4
, pp. 665-675
-
-
Forrest, O.A.1
Ingersoll, S.A.2
Preininger, M.K.3
-
97
-
-
85019639844
-
Β1-Integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections
-
H. Grassmé, B. Henry, R. Ziobro et al., “β1-Integrin accumulates in cystic fibrosis luminal airway epithelial membranes and decreases sphingosine, promoting bacterial infections,” Cell Host & Microbe, vol. 21, no. 6, pp. 707–718.e8, 2017.
-
(2017)
Cell Host & Microbe
, vol.21
, Issue.6
, pp. 707-718.e8
-
-
Grassmé, H.1
Henry, B.2
Ziobro, R.3
-
98
-
-
41849092177
-
Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis
-
V. Teichgräber, M. Ulrich, N. Endlich et al., “Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis,” Nature Medicine, vol. 14, no. 4, pp. 382–391, 2008.
-
(2008)
Nature Medicine
, vol.14
, Issue.4
, pp. 382-391
-
-
Teichgräber, V.1
Ulrich, M.2
Endlich, N.3
-
99
-
-
84867334391
-
Role of CD95 in pulmonary inflammation and infection in cystic fibrosis
-
K. A. Becker, B. Henry, R. Ziobro, B. Tümmler, E. Gulbins, and H. Grassmé, “Role of CD95 in pulmonary inflammation and infection in cystic fibrosis,” Journal of Molecular Medicine, vol. 90, no. 9, pp. 1011–1023, 2012.
-
(2012)
Journal of Molecular Medicine
, vol.90
, Issue.9
, pp. 1011-1023
-
-
Becker, K.A.1
Henry, B.2
Ziobro, R.3
Tümmler, B.4
Gulbins, E.5
Grassmé, H.6
-
100
-
-
84920850660
-
Cystic fibrosis airway epithelium remodelling: Involvement of inflammation
-
D. Adam, J. Roux-Delrieu, E. Luczka et al., “Cystic fibrosis airway epithelium remodelling: involvement of inflammation,” The Journal of Pathology, vol. 235, no. 3, pp. 408–419, 2015.
-
(2015)
The Journal of Pathology
, vol.235
, Issue.3
, pp. 408-419
-
-
Adam, D.1
Roux-Delrieu, J.2
Luczka, E.3
-
101
-
-
24944549139
-
Effect of inflammatory stimuli on airway ion transport
-
L. J. Galietta, C. Folli, E. Caci et al., “Effect of inflammatory stimuli on airway ion transport,” Proceedings of the American Thoracic Society, vol. 1, no. 1, pp. 62–65, 2004.
-
(2004)
Proceedings of the American Thoracic Society
, vol.1
, Issue.1
, pp. 62-65
-
-
Galietta, L.J.1
Folli, C.2
Caci, E.3
-
102
-
-
0033946122
-
Modification of transepithelial ion transport in human cultured bronchial epithelial cells by interferon-γ
-
L. J. V. Galietta, C. Folli, C. Marchetti et al., “Modification of transepithelial ion transport in human cultured bronchial epithelial cells by interferon-γ,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 278, no. 6, pp. L1186–L1194, 2000.
-
(2000)
American Journal of Physiology Lung Cellular and Molecular Physiology
, vol.278
, Issue.6
, pp. L1186-L1194
-
-
Galietta, L.J.V.1
Folli, C.2
Marchetti, C.3
-
103
-
-
0036081034
-
Interleukin-13 induces a hypersecretory ion transport phenotype in human bronchial epithelial cells
-
H. Danahay, H. Atherton, G. Jones, R. J. Bridges, and C. T. Poll, “Interleukin-13 induces a hypersecretory ion transport phenotype in human bronchial epithelial cells,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 282, no. 2, pp. L226–L236, 2002.
-
(2002)
American Journal of Physiology Lung Cellular and Molecular Physiology
, vol.282
, Issue.2
, pp. L226-L236
-
-
Danahay, H.1
Atherton, H.2
Jones, G.3
Bridges, R.J.4
Poll, C.T.5
-
104
-
-
0037080350
-
IL-4 is a potent modulator of ion transport in the human bronchial epithelium in vitro
-
L. J. V. Galietta, P. Pagesy, C. Folli et al., “IL-4 is a potent modulator of ion transport in the human bronchial epithelium in vitro,” Journal of Immunology, vol. 168, no. 2, pp. 839–845, 2002.
-
(2002)
Journal of Immunology
, vol.168
, Issue.2
, pp. 839-845
-
-
Galietta, L.J.V.1
Pagesy, P.2
Folli, C.3
-
105
-
-
84870370950
-
Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia
-
P. Scudieri, E. Caci, S. Bruno et al., “Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia,” The Journal of Physiology, vol. 590, no. 23, pp. 6141–6155, 2012.
-
(2012)
The Journal of Physiology
, vol.590
, Issue.23
, pp. 6141-6155
-
-
Scudieri, P.1
Caci, E.2
Bruno, S.3
-
106
-
-
84875159113
-
A th17- and th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for pseudomonas aeruginosa infection
-
K. Tiringer, A. Treis, P. Fucik et al., “A Th17- and Th2-skewed cytokine profile in cystic fibrosis lungs represents a potential risk factor for Pseudomonas aeruginosa infection,” American Journal of Respiratory and Critical Care Medicine, vol. 187, no. 6, pp. 621–629, 2013.
-
(2013)
American Journal of Respiratory and Critical Care Medicine
, vol.187
, Issue.6
, pp. 621-629
-
-
Tiringer, K.1
Treis, A.2
Fucik, P.3
-
107
-
-
84973157321
-
A novel regulatory role for tissue transglutaminase in epithelial-mesenchymal transition in cystic fibrosis
-
S. Nyabam, Z. Wang, T. Thibault et al., “A novel regulatory role for tissue transglutaminase in epithelial-mesenchymal transition in cystic fibrosis,” Biochimica et Biophysica Acta, vol. 1863, no. 9, pp. 2234–2244, 2016.
-
(2016)
Biochimica Et Biophysica Acta
, vol.1863
, Issue.9
, pp. 2234-2244
-
-
Nyabam, S.1
Wang, Z.2
Thibault, T.3
-
108
-
-
85045530398
-
Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity
-
M. Stolarczyk, G. Veit, A. Schnúr, M. Veltman, G. L. Lukacs, and B. J. Scholte, “Extracellular oxidation in cystic fibrosis airway epithelium causes enhanced EGFR/ADAM17 activity,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 314, no. 4, pp. L555–L568, 2018.
-
(2018)
American Journal of Physiology Lung Cellular and Molecular Physiology
, vol.314
, Issue.4
, pp. L555-L568
-
-
Stolarczyk, M.1
Veit, G.2
Schnúr, A.3
Veltman, M.4
Lukacs, G.L.5
Scholte, B.J.6
-
109
-
-
85042659230
-
The EGFR-ADAM17 axis in chronic obstructive pulmonary disease and cystic fibrosis lung pathology
-
M. Stolarczyk and B. J. Scholte, “The EGFR-ADAM17 axis in chronic obstructive pulmonary disease and cystic fibrosis lung pathology,” Mediators of Inflammation, vol. 2018, Article ID 1067134, 22 pages, 2018.
-
(2018)
Mediators of Inflammation
, vol.2018
-
-
Stolarczyk, M.1
Scholte, B.J.2
-
110
-
-
84930409897
-
Defective innate immunity and hyperinflammation in newborn cystic fibrosis transmembrane conductance regulator-knockout ferret lungs
-
N. W. Keiser, S. E. Birket, I. A. Evans et al., “Defective innate immunity and hyperinflammation in newborn cystic fibrosis transmembrane conductance regulator-knockout ferret lungs,” American Journal of Respiratory Cell and Molecular Biology, vol. 52, no. 6, pp. 683–694, 2015.
-
(2015)
American Journal of Respiratory Cell and Molecular Biology
, vol.52
, Issue.6
, pp. 683-694
-
-
Keiser, N.W.1
Birket, S.E.2
Evans, I.A.3
-
111
-
-
80051626877
-
Innate immunity in the respiratory epithelium
-
D. Parker and A. Prince, “Innate immunity in the respiratory epithelium,” American Journal of Respiratory Cell and Molecular Biology, vol. 45, no. 2, pp. 189–201, 2011.
-
(2011)
American Journal of Respiratory Cell and Molecular Biology
, vol.45
, Issue.2
, pp. 189-201
-
-
Parker, D.1
Prince, A.2
-
112
-
-
81155152426
-
Innate immune responses to pseudomonas aeruginosa infection
-
E. G. Lavoie, T. Wangdi, and B. I. Kazmierczak, “Innate immune responses to Pseudomonas aeruginosa infection,” Microbes and Infection, vol. 13, no. 14-15, pp. 1133–1145, 2011.
-
(2011)
Microbes and Infection
, vol.13
, Issue.14-15
, pp. 1133-1145
-
-
Lavoie, E.G.1
Wangdi, T.2
Kazmierczak, B.I.3
-
113
-
-
84859620802
-
Cystic fibrosis: A mucosal immunodeficiency syndrome
-
T. S. Cohen and A. Prince, “Cystic fibrosis: a mucosal immunodeficiency syndrome,” Nature Medicine, vol. 18, no. 4, pp. 509–519, 2012.
-
(2012)
Nature Medicine
, vol.18
, Issue.4
, pp. 509-519
-
-
Cohen, T.S.1
Prince, A.2
-
114
-
-
66749185766
-
Association of lower airway inflammation with physiologic findings in young children with cystic fibrosis
-
S. L. Peterson-Carmichael, W. T. Harris, R. Goel et al., “Association of lower airway inflammation with physiologic findings in young children with cystic fibrosis,” Pediatric Pulmonology, vol. 44, no. 5, pp. 503–511, 2009.
-
(2009)
Pediatric Pulmonology
, vol.44
, Issue.5
, pp. 503-511
-
-
Peterson-Carmichael, S.L.1
Harris, W.T.2
Goel, R.3
-
115
-
-
79955005042
-
Evolution of pulmonary inflammation and nutritional status in infants and young children with cystic fibrosis
-
S. C. Ranganathan, F. Parsons, C. Gangell et al., “Evolution of pulmonary inflammation and nutritional status in infants and young children with cystic fibrosis,” Thorax, vol. 66, no. 5, pp. 408–413, 2011.
-
(2011)
Thorax
, vol.66
, Issue.5
, pp. 408-413
-
-
Ranganathan, S.C.1
Parsons, F.2
Gangell, C.3
-
116
-
-
0033386691
-
Cystic fibrosis lung disease: The role of nitric oxide
-
H. Grasemann and F. Ratjen, “Cystic fibrosis lung disease: the role of nitric oxide,” Pediatric Pulmonology, vol. 28, no. 6, pp. 442–448, 1999.
-
(1999)
Pediatric Pulmonology
, vol.28
, Issue.6
, pp. 442-448
-
-
Grasemann, H.1
Ratjen, F.2
-
117
-
-
84992436652
-
Newborn cystic fibrosis pigs have a blunted early response to an inflammatory stimulus
-
J. A. Bartlett, S. Ramachandran, C. L. Wohlford-Lenane et al., “Newborn cystic fibrosis pigs have a blunted early response to an inflammatory stimulus,” American Journal of Respiratory and Critical Care Medicine, vol. 194, no. 7, pp. 845–854, 2016.
-
(2016)
American Journal of Respiratory and Critical Care Medicine
, vol.194
, Issue.7
, pp. 845-854
-
-
Bartlett, J.A.1
Ramachandran, S.2
Wohlford-Lenane, C.L.3
-
118
-
-
85016457650
-
Monocyte derived macrophages from CF pigs exhibit increased inflammatory responses at birth
-
L. Paemka, B. N. McCullagh, M. H. Abou Alaiwa et al., “Monocyte derived macrophages from CF pigs exhibit increased inflammatory responses at birth,” Journal of Cystic Fibrosis, vol. 16, no. 4, pp. 471–474, 2017.
-
(2017)
Journal of Cystic Fibrosis
, vol.16
, Issue.4
, pp. 471-474
-
-
Paemka, L.1
McCullagh, B.N.2
Abou Alaiwa, M.H.3
-
119
-
-
79959572825
-
Abnormal trafficking and degradation of TLR4 underlie the elevated inflammatory response in cystic fibrosis
-
E. M. Bruscia, P. X. Zhang, A. Satoh et al., “Abnormal trafficking and degradation of TLR4 underlie the elevated inflammatory response in cystic fibrosis,” Journal of Immunology, vol. 186, no. 12, pp. 6990–6998, 2011.
-
(2011)
Journal of Immunology
, vol.186
, Issue.12
, pp. 6990-6998
-
-
Bruscia, E.M.1
Zhang, P.X.2
Satoh, A.3
-
120
-
-
61549139061
-
Macrophages directly contribute to the exaggerated inflammatory response in cystic fibrosis transmembrane conductance regulator−/− mice
-
E. M. Bruscia, P. X. Zhang, E. Ferreira et al., “Macrophages directly contribute to the exaggerated inflammatory response in cystic fibrosis transmembrane conductance regulator−/− mice,” American Journal of Respiratory Cell and Molecular Biology, vol. 40, no. 3, pp. 295–304, 2009.
-
(2009)
American Journal of Respiratory Cell and Molecular Biology
, vol.40
, Issue.3
, pp. 295-304
-
-
Bruscia, E.M.1
Zhang, P.X.2
Ferreira, E.3
-
121
-
-
84980439084
-
Polarized airway epithelial models for immunological co-culture studies
-
D. Papazian, P. A. Würtzen, and S. W. K. Hansen, “Polarized airway epithelial models for immunological co-culture studies,” International Archives of Allergy and Immunology, vol. 170, no. 1, pp. 1–21, 2016.
-
(2016)
International Archives of Allergy and Immunology
, vol.170
, Issue.1
, pp. 1-21
-
-
Papazian, D.1
Würtzen, P.A.2
Hansen, S.W.K.3
-
122
-
-
36848998523
-
Beyond inflammation: Airway epithelial cells are at the interface of innate and adaptive immunity
-
A. Kato and R. P. Schleimer, “Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity,” Current Opinion in Immunology, vol. 19, no. 6, pp. 711–720, 2007.
-
(2007)
Current Opinion in Immunology
, vol.19
, Issue.6
, pp. 711-720
-
-
Kato, A.1
Schleimer, R.P.2
-
123
-
-
34250213676
-
Innate and acquired immunity and epithelial cell function in chronic rhinosinusi-tis
-
R. P. Schleimer, A. P. Lane, and J. Kim, “Innate and acquired immunity and epithelial cell function in chronic rhinosinusi-tis,” Clinical Allergy and Immunology, vol. 20, pp. 51–78, 2007.
-
(2007)
Clinical Allergy and Immunology
, vol.20
, pp. 51-78
-
-
Schleimer, R.P.1
Lane, A.P.2
Kim, J.3
-
124
-
-
55149113944
-
Welcome to the neighborhood: Epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites
-
S. A. Saenz, B. C. Taylor, and D. Artis, “Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites,” Immunological Reviews, vol. 226, no. 1, pp. 172–190, 2008.
-
(2008)
Immunological Reviews
, vol.226
, Issue.1
, pp. 172-190
-
-
Saenz, S.A.1
Taylor, B.C.2
Artis, D.3
-
125
-
-
84921773771
-
The role of airway epithelial cells and innate immune cells in chronic respiratory disease
-
M. J. Holtzman, D. E. Byers, J. Alexander-Brett, and X. Wang, “The role of airway epithelial cells and innate immune cells in chronic respiratory disease,” Nature Reviews Immunology, vol. 14, no. 10, pp. 686–698, 2014.
-
(2014)
Nature Reviews Immunology
, vol.14
, Issue.10
, pp. 686-698
-
-
Holtzman, M.J.1
Byers, D.E.2
Alexander-Brett, J.3
Wang, X.4
-
126
-
-
84937441862
-
Airway responses towards allergens - from the airway epithelium to t cells
-
D. Papazian, S. Hansen, and P. A. Würtzen, “Airway responses towards allergens - from the airway epithelium to T cells,” Clinical and Experimental Allergy, vol. 45, no. 8, pp. 1268–1287, 2015.
-
(2015)
Clinical and Experimental Allergy
, vol.45
, Issue.8
, pp. 1268-1287
-
-
Papazian, D.1
Hansen, S.2
Würtzen, P.A.3
-
127
-
-
40149092686
-
Diesel exhaust particle-exposed human bronchial epithelial cells induce dendritic cell maturation and polarization via thymic stromal lymphopoietin
-
B. Bleck, D. B. Tse, M. A. Curotto de Lafaille, F. Zhang, and J. Reibman, “Diesel exhaust particle-exposed human bronchial epithelial cells induce dendritic cell maturation and polarization via thymic stromal lymphopoietin,” Journal of Clinical Immunology, vol. 28, no. 2, pp. 147–156, 2008.
-
(2008)
Journal of Clinical Immunology
, vol.28
, Issue.2
, pp. 147-156
-
-
Bleck, B.1
Tse, D.B.2
Curotto de Lafaille, M.A.3
Zhang, F.4
Reibman, J.5
-
128
-
-
59849099959
-
Airway epithelial cells regulate the functional phenotype of locally differentiating dendritic cells: Implications for the pathogenesis of infectious and allergic airway disease
-
A. Rate, J. W. Upham, A. Bosco, K. L. McKenna, and P. G. Holt, “Airway epithelial cells regulate the functional phenotype of locally differentiating dendritic cells: implications for the pathogenesis of infectious and allergic airway disease,” Journal of Immunology, vol. 182, no. 1, pp. 72–83, 2008.
-
(2008)
Journal of Immunology
, vol.182
, Issue.1
, pp. 72-83
-
-
Rate, A.1
Upham, J.W.2
Bosco, A.3
McKenna, K.L.4
Holt, P.G.5
-
129
-
-
78650634881
-
Diesel exhaust particle-treated human bronchial epithelial cells upregulate jagged-1 and OX40 ligand in myeloid dendritic cells via thymic stromal lymphopoietin
-
B. Bleck, D. B. Tse, T. Gordon, M. R. Ahsan, and J. Reibman, “Diesel exhaust particle-treated human bronchial epithelial cells upregulate Jagged-1 and OX40 ligand in myeloid dendritic cells via thymic stromal lymphopoietin,” Journal of Immunology, vol. 185, no. 11, pp. 6636–6645, 2010.
-
(2010)
Journal of Immunology
, vol.185
, Issue.11
, pp. 6636-6645
-
-
Bleck, B.1
Tse, D.B.2
Gordon, T.3
Ahsan, M.R.4
Reibman, J.5
-
130
-
-
84948111910
-
Direct contact between dendritic cells and bronchial epithelial cells inhibits t cell recall responses towards mite and pollen allergen extracts in vitro
-
D. Papazian, V. R. Wagtmann, S. Hansen, and P. A. Würtzen, “Direct contact between dendritic cells and bronchial epithelial cells inhibits T cell recall responses towards mite and pollen allergen extracts in vitro,” Clinical and Experimental Immunology, vol. 181, no. 2, pp. 207–218, 2015.
-
(2015)
Clinical and Experimental Immunology
, vol.181
, Issue.2
, pp. 207-218
-
-
Papazian, D.1
Wagtmann, V.R.2
Hansen, S.3
Würtzen, P.A.4
-
131
-
-
34249901318
-
Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens
-
F. Blank, B. Rothen-Rutishauser, and P. Gehr, “Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens,” American Journal of Respiratory Cell and Molecular Biology, vol. 36, no. 6, pp. 669–677, 2007.
-
(2007)
American Journal of Respiratory Cell and Molecular Biology
, vol.36
, Issue.6
, pp. 669-677
-
-
Blank, F.1
Rothen-Rutishauser, B.2
Gehr, P.3
-
132
-
-
79952310806
-
An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier
-
A. D. Lehmann, N. Daum, M. Bur, C. M. Lehr, P. Gehr, and B. M. Rothen-Rutishauser, “An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier,” European Journal of Pharmaceutics and Bio-pharmaceutics, vol. 77, no. 3, pp. 398–406, 2011.
-
(2011)
European Journal of Pharmaceutics and Bio-Pharmaceutics
, vol.77
, Issue.3
, pp. 398-406
-
-
Lehmann, A.D.1
Daum, N.2
Bur, M.3
Lehr, C.M.4
Gehr, P.5
Rothen-Rutishauser, B.M.6
-
133
-
-
49649111406
-
Airway epithelial cells modify immune responses by inducing an anti-inflammatory microenvironment
-
A. K. Mayer, H. Bartz, F. Fey, L. M. Schmidt, and A. H. Dalpke, “Airway epithelial cells modify immune responses by inducing an anti-inflammatory microenvironment,” European Journal of Immunology, vol. 38, no. 6, pp. 1689–1699, 2008.
-
(2008)
European Journal of Immunology
, vol.38
, Issue.6
, pp. 1689-1699
-
-
Mayer, A.K.1
Bartz, H.2
Fey, F.3
Schmidt, L.M.4
Dalpke, A.H.5
-
134
-
-
84952976452
-
Feasibility of neoad-juvant ad-REIC gene therapy in patients with high-risk localized prostate cancer undergoing radical prostatectomy
-
H. Kumon, K. Sasaki, Y. Ariyoshi et al., “Feasibility of neoad-juvant ad-REIC gene therapy in patients with high-risk localized prostate cancer undergoing radical prostatectomy,” Clinical and Translational Science, vol. 8, no. 6, pp. 837–840, 2015.
-
(2015)
Clinical and Translational Science
, vol.8
, Issue.6
, pp. 837-840
-
-
Kumon, H.1
Sasaki, K.2
Ariyoshi, Y.3
-
135
-
-
0036724075
-
Mesenchymal-epithelial interactions in lung development and repair: Are modeling and remodeling the same process?
-
F. Demayo, P. Minoo, C. G. Plopper, L. Schuger, J. Shannon, and J. S. Torday, “Mesenchymal-epithelial interactions in lung development and repair: are modeling and remodeling the same process?,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 283, no. 3, pp. L510–L517, 2002.
-
(2002)
American Journal of Physiology Lung Cellular and Molecular Physiology
, vol.283
, Issue.3
, pp. L510-L517
-
-
Demayo, F.1
Minoo, P.2
Plopper, C.G.3
Schuger, L.4
Shannon, J.5
Torday, J.S.6
-
136
-
-
0028840143
-
Immunological functions of the pulmonary epithelium
-
A. B. Thompson, R. A. Robbins, D. J. Romberger et al., “Immunological functions of the pulmonary epithelium,” The European Respiratory Journal, vol. 8, no. 1, pp. 127–149, 1995.
-
(1995)
The European Respiratory Journal
, vol.8
, Issue.1
, pp. 127-149
-
-
Thompson, A.B.1
Robbins, R.A.2
Romberger, D.J.3
-
137
-
-
34447562596
-
Hepa-tocyte growth factor and other fibroblast secretions modulate the phenotype of human bronchial epithelial cells
-
M. M. Myerburg, J. D. Latoche, E. E. McKenna et al., “Hepa-tocyte growth factor and other fibroblast secretions modulate the phenotype of human bronchial epithelial cells,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 292, no. 6, pp. L1352–L1360, 2007.
-
(2007)
American Journal of Physiology Lung Cellular and Molecular Physiology
, vol.292
, Issue.6
, pp. L1352-L1360
-
-
Myerburg, M.M.1
Latoche, J.D.2
McKenna, E.E.3
-
138
-
-
84878464222
-
Dysregulated proin-flammatory and fibrogenic phenotype of fibroblasts in cystic fibrosis
-
article
-
F. Huaux, S. Noel, B. Dhooghe et al., “Dysregulated proin-flammatory and fibrogenic phenotype of fibroblasts in cystic fibrosis,” PLoS One, vol. 8, no. 5, article e64341, 2013.
-
(2013)
PLoS One
, vol.8
, Issue.5
-
-
Huaux, F.1
Noel, S.2
Dhooghe, B.3
-
139
-
-
29944437618
-
Long-term cultures of polarized airway epithelial cells from patients with cystic fibrosis
-
L. Wiszniewski, L. Jornot, T. Dudez et al., “Long-term cultures of polarized airway epithelial cells from patients with cystic fibrosis,” American Journal of Respiratory Cell and Molecular Biology, vol. 34, no. 1, pp. 39–48, 2006.
-
(2006)
American Journal of Respiratory Cell and Molecular Biology
, vol.34
, Issue.1
, pp. 39-48
-
-
Wiszniewski, L.1
Jornot, L.2
Dudez, T.3
-
140
-
-
34250162133
-
Mitomycin c upregulates IL-8 and MCP-1 chemokine expression via mitogen-activated protein kinases in corneal fibroblasts
-
S. F. Chou, S. W. Chang, and J. L. Chuang, “Mitomycin C upregulates IL-8 and MCP-1 chemokine expression via mitogen-activated protein kinases in corneal fibroblasts,” Investigative Ophthalmology & Visual Science, vol. 48, no. 5, pp. 2009–2016, 2007.
-
(2007)
Investigative Ophthalmology & Visual Science
, vol.48
, Issue.5
, pp. 2009-2016
-
-
Chou, S.F.1
Chang, S.W.2
Chuang, J.L.3
-
142
-
-
84912522964
-
Correction of defective CFTR/ENaC function and tightness of cystic fibrosis airway epithelium by amniotic mesenchymal stromal (stem) cells
-
A. Carbone, S. Castellani, M. Favia et al., “Correction of defective CFTR/ENaC function and tightness of cystic fibrosis airway epithelium by amniotic mesenchymal stromal (stem) cells,” Journal of Cellular and Molecular Medicine, vol. 18, no. 8, pp. 1631–1643, 2014.
-
(2014)
Journal of Cellular and Molecular Medicine
, vol.18
, Issue.8
, pp. 1631-1643
-
-
Carbone, A.1
Castellani, S.2
Favia, M.3
-
143
-
-
85042672696
-
Gap junctions are involved in the rescue of CFTR-dependent chloride efflux by amniotic mesenchymal stem cells in coculture with cystic fibrosis CFBE41o- cells
-
A. Carbone, R. Zefferino, E. Beccia et al., “Gap junctions are involved in the rescue of CFTR-dependent chloride efflux by amniotic mesenchymal stem cells in coculture with cystic fibrosis CFBE41o- cells,” Stem Cells International, vol. 2018, Article ID 1203717, 14 pages, 2018.
-
(2018)
Stem Cells International
, vol.2018
-
-
Carbone, A.1
Zefferino, R.2
Beccia, E.3
-
144
-
-
12844249498
-
A549 lung epithelial cells grown as three-dimensional aggregates: Alternative tissue culture model for pseudomonas aeruginosa pathogenesis
-
A. J. Carterson, K. Honer zu Bentrup, C. M. Ott et al., “A549 lung epithelial cells grown as three-dimensional aggregates: alternative tissue culture model for Pseudomonas aeruginosa pathogenesis,” Infection and Immunity, vol. 73, no. 2, pp. 1129–1140, 2005.
-
(2005)
Infection and Immunity
, vol.73
, Issue.2
, pp. 1129-1140
-
-
Carterson, A.J.1
Honer zu Bentrup, K.2
Ott, C.M.3
-
145
-
-
77049105927
-
Development of three-dimensional biomimetic scaffold to study epithelial-mesenchymal interactions
-
S. Ravindran, Y. Song, and A. George, “Development of three-dimensional biomimetic scaffold to study epithelial-mesenchymal interactions,” Tissue Engineering. Part A, vol. 16, no. 1, pp. 327–342, 2010.
-
(2010)
Tissue Engineering. Part A
, vol.16
, Issue.1
, pp. 327-342
-
-
Ravindran, S.1
Song, Y.2
George, A.3
-
146
-
-
85034791278
-
A 3d epithelial-mesenchymal co-culture model of human bronchial tissue recapitulates multiple features of airway tissue remodeling by TGF-β1 treatment
-
S. Ishikawa, K. Ishimori, and S. Ito, “A 3D epithelial-mesenchymal co-culture model of human bronchial tissue recapitulates multiple features of airway tissue remodeling by TGF-β1 treatment,” Respiratory Research, vol. 18, no. 1, p. 195, 2017.
-
(2017)
Respiratory Research
, vol.18
, Issue.1
, pp. 195
-
-
Ishikawa, S.1
Ishimori, K.2
Ito, S.3
-
147
-
-
84855332758
-
Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa
-
A. T. N. Hoang, P. Chen, J. Juarez et al., “Dendritic cell functional properties in a three-dimensional tissue model of human lung mucosa,” American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 302, no. 2, pp. L226–L237, 2012.
-
(2012)
American Journal of Physiology Lung Cellular and Molecular Physiology
, vol.302
, Issue.2
, pp. L226-L237
-
-
Hoang, A.T.N.1
Chen, P.2
Juarez, J.3
-
148
-
-
84903977852
-
Immunocompetent 3d model of human upper airway for disease modeling and in vitro drug evaluation
-
H. Harrington, P. Cato, F. Salazar et al., “Immunocompetent 3D model of human upper airway for disease modeling and in vitro drug evaluation,” Molecular Pharmaceutics, vol. 11, no. 7, pp. 2082–2091, 2014.
-
(2014)
Molecular Pharmaceutics
, vol.11
, Issue.7
, pp. 2082-2091
-
-
Harrington, H.1
Cato, P.2
Salazar, F.3
-
149
-
-
11044239426
-
Three-dimensional human airway epithelial cell cultures
-
M. Ulrich and G. Doring, “Three-dimensional human airway epithelial cell cultures,” Journal of Cystic Fibrosis, vol. 3, Supplement 2, pp. 55–57, 2004.
-
(2004)
Journal of Cystic Fibrosis
, vol.3
, pp. 55-57
-
-
Ulrich, M.1
Doring, G.2
-
150
-
-
31444436995
-
Moxiflox-acin and ciprofloxacin protect human respiratory epithelial cells against streptococcus pneumoniae, staphylococcus aureus, pseudomonas aeruginosa, and haemophilus influenzae in vitro
-
M. Ulrich, J. Berger, J. G. Möller, and G. Döring, “Moxiflox-acin and ciprofloxacin protect human respiratory epithelial cells against Streptococcus pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, and Haemophilus influenzae in vitro,” Infection, vol. 33, no. S2, Supplement 2, pp. 50–54, 2005.
-
(2005)
Infection
, vol.33
, Issue.S2
, pp. 50-54
-
-
Ulrich, M.1
Berger, J.2
Möller, J.G.3
Döring, G.4
-
151
-
-
84993927163
-
Human airway organoid engineering as a step toward lung regeneration and disease modeling
-
Q. Tan, K. M. Choi, D. Sicard, and D. J. Tschumperlin, “Human airway organoid engineering as a step toward lung regeneration and disease modeling,” Biomaterials, vol. 113, pp. 118–132, 2017.
-
(2017)
Biomaterials
, vol.113
, pp. 118-132
-
-
Tan, Q.1
Choi, K.M.2
Sicard, D.3
Tschumperlin, D.J.4
-
152
-
-
79951490582
-
Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model
-
A. Crabbé, S. F. Sarker, R. van Houdt et al., “Alveolar epithelium protects macrophages from quorum sensing-induced cytotoxicity in a three-dimensional co-culture model,” Cellular Microbiology, vol. 13, no. 3, pp. 469–481, 2011.
-
(2011)
Cellular Microbiology
, vol.13
, Issue.3
, pp. 469-481
-
-
Crabbé, A.1
Sarker, S.F.2
van Houdt, R.3
-
153
-
-
85017617797
-
Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling
-
D. C. Wilkinson, J. A. Alva-Ornelas, J. M. S. Sucre et al., “Development of a three-dimensional bioengineering technology to generate lung tissue for personalized disease modeling,” Stem Cells Translational Medicine, vol. 6, no. 2, pp. 622–633, 2017.
-
(2017)
Stem Cells Translational Medicine
, vol.6
, Issue.2
, pp. 622-633
-
-
Wilkinson, D.C.1
Alva-Ornelas, J.A.2
Sucre, J.M.S.3
-
154
-
-
84880815189
-
Can stem cells be used to generate new lungs? ex vivo lung bioengineering with decellularized whole lung scaffolds
-
D. E. Wagner, R. W. Bonvillain, T. Jensen et al., “Can stem cells be used to generate new lungs? Ex vivo lung bioengineering with decellularized whole lung scaffolds,” Respirology, vol. 18, no. 6, pp. 895–911, 2013.
-
(2013)
Respirology
, vol.18
, Issue.6
, pp. 895-911
-
-
Wagner, D.E.1
Bonvillain, R.W.2
Jensen, T.3
-
155
-
-
84899676080
-
Strategies for whole lung tissue engineering
-
E. A. Calle, M. Ghaedi, S. Sundaram, A. Sivarapatna, M. K. Tseng, and L. E. Niklason, “Strategies for whole lung tissue engineering,” IEEE Transactions on Biomedical Engineering, vol. 61, no. 5, pp. 1482–1496, 2014.
-
(2014)
IEEE Transactions on Biomedical Engineering
, vol.61
, Issue.5
, pp. 1482-1496
-
-
Calle, E.A.1
Ghaedi, M.2
Sundaram, S.3
Sivarapatna, A.4
Tseng, M.K.5
Niklason, L.E.6
-
156
-
-
85042577683
-
A review of cellularization strategies for tissue engineering of whole organs
-
M. E. Scarrit, N. C. Pashos, and B. A. Bunnell, “A review of cellularization strategies for tissue engineering of whole organs,” Frontiers in Bioengineering and Biotechnology, vol. 3, 2015.
-
(2015)
Frontiers in Bioengineering and Biotechnology
, vol.3
-
-
Scarrit, M.E.1
Pashos, N.C.2
Bunnell, B.A.3
-
157
-
-
85042374260
-
Reconstituting mouse lungs with conditionally reprogrammed human bronchial epithelial cells
-
R. LaRanger, J. R. Peters-Hall, M. Coquelin et al., “Reconstituting mouse lungs with conditionally reprogrammed human bronchial epithelial cells,” Tissue Engineering Part A, vol. 24, no. 7-8, pp. 559–568, 2018.
-
(2018)
Tissue Engineering Part A
, vol.24
, Issue.7-8
, pp. 559-568
-
-
LaRanger, R.1
Peters-Hall, J.R.2
Coquelin, M.3
-
158
-
-
85067037218
-
Prospects and challenges in engineering functional respiratory epithelium for in vitro and in vivo applications
-
P. Kumar, N. E. Vrana, and A. M. Ghaemmaghami, “Prospects and challenges in engineering functional respiratory epithelium for in vitro and in vivo applications,” Microphy-siological Systems, vol. 1, 2017.
-
(2017)
Microphy-Siological Systems
, vol.1
-
-
Kumar, P.1
Vrana, N.E.2
Ghaemmaghami, A.M.3
-
159
-
-
84947293007
-
Temporal monitoring of differentiated human airway epithelial cells using microflui-dics
-
article
-
C. Blume, R. Reale, M. Held et al., “Temporal monitoring of differentiated human airway epithelial cells using microflui-dics,” PLoS One, vol. 10, no. 10, article e0139872, 2015.
-
(2015)
PLoS One
, vol.10
, Issue.10
-
-
Blume, C.1
Reale, R.2
Held, M.3
|