메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 3010-3019

Learning a deep embedding model for zero-shot learning

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; NEAREST NEIGHBOR SEARCH; SEMANTICS;

EID: 85041928291     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.321     Document Type: Conference Paper
Times cited : (699)

References (49)
  • 2
    • 84959243017 scopus 로고    scopus 로고
    • Evaluation of output embeddings for fine-grained image classification
    • Z. Akata, S. Reed, D. Walter, H. Lee, and B. Schiele. Evaluation of output embeddings for fine-grained image classification. In CVPR, 2015.
    • (2015) CVPR
    • Akata, Z.1    Reed, S.2    Walter, D.3    Lee, H.4    Schiele, B.5
  • 3
    • 85031906203 scopus 로고    scopus 로고
    • Improving semantic embedding consistency by metric learning for zero-shot classiffication
    • M. Bucher, S. Herbin, and F. Jurie. Improving semantic embedding consistency by metric learning for zero-shot classiffication. In ECCV, 2016.
    • (2016) ECCV
    • Bucher, M.1    Herbin, S.2    Jurie, F.3
  • 4
    • 84986274021 scopus 로고    scopus 로고
    • Synthesized classifiers for zero-shot learning
    • S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Synthesized classifiers for zero-shot learning. In CVPR, 2016.
    • (2016) CVPR
    • Changpinyo, S.1    Chao, W.-L.2    Gong, B.3    Sha, F.4
  • 5
    • 85041895800 scopus 로고    scopus 로고
    • An empirical study and analysis of generalized zero-shot learning for object recognition in the wild
    • W.-L. Chao, S. Changpinyo, B. Gong, and F. Sha. An empirical study and analysis of generalized zero-shot learning for object recognition in the wild. In ECCV, 2016.
    • (2016) ECCV
    • Chao, W.-L.1    Changpinyo, S.2    Gong, B.3    Sha, F.4
  • 7
    • 85006816659 scopus 로고    scopus 로고
    • Improving zero-shot learning by mitigating the hubness problem
    • G. Dinu, A. Lazaridou, and M. Baroni. Improving zero-shot learning by mitigating the hubness problem. In ICLR workshop, 2014.
    • (2014) ICLR Workshop
    • Dinu, G.1    Lazaridou, A.2    Baroni, M.3
  • 9
    • 70450219358 scopus 로고    scopus 로고
    • Learning visual attributes
    • V. Ferrari and A. Zisserman. Learning visual attributes. In NIPS, 2007.
    • (2007) NIPS
    • Ferrari, V.1    Zisserman, A.2
  • 11
    • 84906482165 scopus 로고    scopus 로고
    • Transductive multi-view embedding for zero-shot recognition and annotation
    • Y. Fu, T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong. Transductive multi-view embedding for zero-shot recognition and annotation. In ECCV, 2014.
    • (2014) ECCV
    • Fu, Y.1    Hospedales, T.M.2    Xiang, T.3    Fu, Z.4    Gong, S.5
  • 13
    • 84986246085 scopus 로고    scopus 로고
    • Semi-supervised vocabulary-informed learning
    • Y. Fu and L. Sigal. Semi-supervised vocabulary-informed learning. In CVPR, 2016.
    • (2016) CVPR
    • Fu, Y.1    Sigal, L.2
  • 14
    • 84940993365 scopus 로고    scopus 로고
    • Zero-shot object recognition by semantic manifold distance
    • Z. Fu, T. Xiang, E. Kodirov, and S. Gong. Zero-shot object recognition by semantic manifold distance. In CVPR, 2015.
    • (2015) CVPR
    • Fu, Z.1    Xiang, T.2    Kodirov, E.3    Gong, S.4
  • 15
    • 84893701254 scopus 로고    scopus 로고
    • Hybrid speech recognition with deep bidirectional lstm
    • A. Graves, N. Jaitly, and A.-r. Mohamed. Hybrid speech recognition with deep bidirectional lstm. In ASRU, 2013.
    • (2013) ASRU
    • Graves, A.1    Jaitly, N.2    Mohamed, A.-R.3
  • 16
    • 84890543083 scopus 로고    scopus 로고
    • Speech recognition with deep recurrent neural networks
    • A. Graves, A. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. In ICASSP, 2013.
    • (2013) ICASSP
    • Graves, A.1    Mohamed, A.2    Hinton, G.3
  • 18
    • 85019222252 scopus 로고    scopus 로고
    • Local similarity-aware deep feature embedding
    • C. Huang, C. C. Loy, and X. Tang. Local similarity-aware deep feature embedding. In NIPS, 2016.
    • (2016) NIPS
    • Huang, C.1    Loy, C.C.2    Tang, X.3
  • 19
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015.
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 20
    • 85083951076 scopus 로고    scopus 로고
    • Adam: A method for stochastic optimization
    • D. Kingma and J. Ba. Adam: A method for stochastic optimization. In ICLR, 2015.
    • (2015) ICLR
    • Kingma, D.1    Ba, J.2
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 22
    • 84894522762 scopus 로고    scopus 로고
    • Attributebased classification for zero-shot visual object categorization
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Attributebased classification for zero-shot visual object categorization. PAMI, 2014.
    • (2014) PAMI
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 24
    • 84973882857 scopus 로고    scopus 로고
    • Predicting deep zero-shot convolutional neural networks using textual descriptions
    • J. Lei Ba, K. Swersky, S. Fidler, and R. Salakhutdinov. Predicting deep zero-shot convolutional neural networks using textual descriptions. In ICCV, 2015.
    • (2015) ICCV
    • Lei Ba, J.1    Swersky, K.2    Fidler, S.3    Salakhutdinov, R.4
  • 25
    • 57249084011 scopus 로고    scopus 로고
    • Visualizing data using t-SNE
    • L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. JMLR, 2008.
    • (2008) JMLR
    • Maaten, L.V.D.1    Hinton, G.2
  • 26
    • 85044398049 scopus 로고    scopus 로고
    • Hubness and pollution: Delving into cross-space mapping for zero-shot learning
    • B. Marco, L. Angeliki, and D. Georgiana. Hubness and pollution: Delving into cross-space mapping for zero-shot learning. In ACL, 2015.
    • (2015) ACL
    • Marco, B.1    Angeliki, L.2    Georgiana, D.3
  • 27
    • 84883488616 scopus 로고    scopus 로고
    • Metric learning for large scale image classification: Generalizing to new classes at near-zero cost
    • T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Metric learning for large scale image classification: Generalizing to new classes at near-zero cost. In ECCV, 2012.
    • (2012) ECCV
    • Mensink, T.1    Verbeek, J.2    Perronnin, F.3    Csurka, G.4
  • 29
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 30
    • 85049401332 scopus 로고    scopus 로고
    • Gaussian visual-linguistic embedding for zero-shot recognition
    • T. Mukherjee and T. Hospedales. Gaussian visual-linguistic embedding for zero-shot recognition. In EMNLP, 2016.
    • (2016) EMNLP
    • Mukherjee, T.1    Hospedales, T.2
  • 32
  • 33
    • 78649417385 scopus 로고    scopus 로고
    • Hubs in space: Popular nearest neighbors in high-dimensional data
    • M. Radovanović, A. Nanopoulos, and M. Ivanović. Hubs in space: Popular nearest neighbors in high-dimensional data. JMLR, 2010.
    • (2010) JMLR
    • Radovanović, M.1    Nanopoulos, A.2    Ivanović, M.3
  • 34
    • 84986250442 scopus 로고    scopus 로고
    • Learning deep representations of fine-grained visual descriptions
    • S. Reed, Z. Akata, B. Schiele, and H. Lee. Learning deep representations of fine-grained visual descriptions. In CVPR, 2016.
    • (2016) CVPR
    • Reed, S.1    Akata, Z.2    Schiele, B.3    Lee, H.4
  • 35
    • 84899001511 scopus 로고    scopus 로고
    • Transfer learning in a transductive setting
    • M. Rohrbach, S. Ebert, and B. Schiele. Transfer learning in a transductive setting. In NIPS, 2013.
    • (2013) NIPS
    • Rohrbach, M.1    Ebert, S.2    Schiele, B.3
  • 36
    • 80052892795 scopus 로고    scopus 로고
    • Evaluating knowledge transfer and zero-shot learning in a large-scale setting
    • M. Rohrbach, M. Stark, and B. Schiele. Evaluating knowledge transfer and zero-shot learning in a large-scale setting. In CVPR, 2011.
    • (2011) CVPR
    • Rohrbach, M.1    Stark, M.2    Schiele, B.3
  • 37
    • 84969931523 scopus 로고    scopus 로고
    • An embarrassingly simple approach to zero-shot learning
    • B. Romera-Paredes and P. Torr. An embarrassingly simple approach to zero-shot learning. In ICML, 2015.
    • (2015) ICML
    • Romera-Paredes, B.1    Torr, P.2
  • 43
    • 84898938559 scopus 로고    scopus 로고
    • Zero-shot learning through cross-modal transfer
    • R. Socher, M. Ganjoo, C. D. Manning, and A. Ng. Zero-shot learning through cross-modal transfer. In NIPS, 2013.
    • (2013) NIPS
    • Socher, R.1    Ganjoo, M.2    Manning, C.D.3    Ng, A.4
  • 45
    • 84856635994 scopus 로고    scopus 로고
    • Multiclass recognition and part localization with humans in the loop
    • C. Wah, S. Branson, P. Perona, and S. Belongie. Multiclass recognition and part localization with humans in the loop. In ICCV, 2011.
    • (2011) ICCV
    • Wah, C.1    Branson, S.2    Perona, P.3    Belongie, S.4
  • 46
    • 85083954228 scopus 로고    scopus 로고
    • A unified perspective on multi-domain and multi-task learning
    • Y. Yang and T. M. Hospedales. A unified perspective on multi-domain and multi-task learning. In ICLR, 2015.
    • (2015) ICLR
    • Yang, Y.1    Hospedales, T.M.2
  • 47
    • 84973910934 scopus 로고    scopus 로고
    • Zero-shot learning via semantic similarity embedding
    • Z. Zhang and V. Saligrama. Zero-shot learning via semantic similarity embedding. In ICCV, 2015.
    • (2015) ICCV
    • Zhang, Z.1    Saligrama, V.2
  • 48
    • 84986292720 scopus 로고    scopus 로고
    • Zero-shot learning via joint latent similarity embedding
    • Z. Zhang and V. Saligrama. Zero-shot learning via joint latent similarity embedding. In CVPR, 2016.
    • (2016) CVPR
    • Zhang, Z.1    Saligrama, V.2
  • 49
    • 85031924576 scopus 로고    scopus 로고
    • Zero-shot recognition via structured prediction
    • Z. Zhang and V. Saligrama. Zero-shot recognition via structured prediction. In ECCV, 2016.
    • (2016) ECCV
    • Zhang, Z.1    Saligrama, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.