메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 1160-1169

From red wine to red tomato: Composition with context

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; FRUITS; WINE;

EID: 85044323744     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.129     Document Type: Conference Paper
Times cited : (265)

References (69)
  • 3
    • 84908681000 scopus 로고    scopus 로고
    • Word spotting and recognition with embedded attributes
    • J. Almazán, A. Gordo, A. Fornés, and E. Valveny. Word spotting and recognition with embedded attributes. TPAMI, 36(12), 2014.
    • (2014) TPAMI , vol.36 , Issue.12
    • Almazán, J.1    Gordo, A.2    Fornés, A.3    Valveny, E.4
  • 4
    • 84993660571 scopus 로고    scopus 로고
    • Learning to compose neural networks for question answering
    • J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Learning to compose neural networks for question answering. In NAACL, 2016.
    • (2016) NAACL
    • Andreas, J.1    Rohrbach, M.2    Darrell, T.3    Klein, D.4
  • 6
    • 0023322501 scopus 로고
    • Recognition-by-components: A theory of human image understanding
    • I. Biederman. Recognition-by-components: a theory of human image understanding. Psychological review, 94(2):115, 1987.
    • (1987) Psychological Review , vol.94 , Issue.2 , pp. 115
    • Biederman, I.1
  • 7
    • 1942470793 scopus 로고    scopus 로고
    • Multitask learning
    • Springer
    • R. Caruana. Multitask learning. In Learning to learn, pages 95-133. Springer, 1998.
    • (1998) Learning to Learn , pp. 95-133
    • Caruana, R.1
  • 8
    • 84887366030 scopus 로고    scopus 로고
    • Adding unlabeled samples to categories by learned attributes
    • J. Choi, M. Rastegari, A. Farhadi, and L. S. Davis. Adding unlabeled samples to categories by learned attributes. In CVPR, 2013.
    • (2013) CVPR
    • Choi, J.1    Rastegari, M.2    Farhadi, A.3    Davis, L.S.4
  • 10
    • 84898803425 scopus 로고    scopus 로고
    • Write a classifier: Zero-shot learning using purely textual descriptions
    • M. Elhoseiny, B. Saleh, and A. Elgammal. Write a classifier: Zero-shot learning using purely textual descriptions. In ICCV, pages 2584-2591, 2013.
    • (2013) ICCV , pp. 2584-2591
    • Elhoseiny, M.1    Saleh, B.2    Elgammal, A.3
  • 14
    • 33144466753 scopus 로고    scopus 로고
    • One-shot learning of object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. TPAMI, 28(4), 2006.
    • (2006) TPAMI , vol.28 , Issue.4
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 16
    • 33745948358 scopus 로고    scopus 로고
    • Building a classification cascade for visual identification from one example
    • IEEE
    • A. Ferencz, E. G. Learned-Miller, and J. Malik. Building a classification cascade for visual identification from one example. In ICCV, Volume 1. IEEE, 2005.
    • (2005) ICCV , vol.1
    • Ferencz, A.1    Learned-Miller, E.G.2    Malik, J.3
  • 17
    • 84898963788 scopus 로고    scopus 로고
    • Object classification from a single example utilizing class relevance metrics
    • M. Fink. Object classification from a single example utilizing class relevance metrics. NIPS, 17, 2005.
    • (2005) NIPS , vol.17
    • Fink, M.1
  • 19
    • 0023968207 scopus 로고
    • Connectionism and cognitive architecture: A critical analysis
    • J. A. Fodor and Z. W. Pylyshyn. Connectionism and cognitive architecture: A critical analysis. Cognition, 28(1-2):3-71, 1988.
    • (1988) Cognition , vol.28 , Issue.1-2 , pp. 3-71
    • Fodor, J.A.1    Pylyshyn, Z.W.2
  • 20
    • 20444474141 scopus 로고
    • Sense and reference
    • G. Frege. Sense and reference. The philosophical review, 57(3):209-230, 1948.
    • (1948) The Philosophical Review , vol.57 , Issue.3 , pp. 209-230
    • Frege, G.1
  • 22
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Aistats, Volume 9, pages 249-256, 2010.
    • (2010) Aistats , vol.9 , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 24
    • 84898773262 scopus 로고    scopus 로고
    • Youtube2text: Recognizing and describing arbitrary activities using semantic hierarchies and zero-shot recognition
    • S. Guadarrama, N. Krishnamoorthy, G. Malkarnenkar, S. Venugopalan, R. Mooney, T. Darrell, and K. Saenko. Youtube2text: Recognizing and describing arbitrary activities using semantic hierarchies and zero-shot recognition. In ICCV, pages 2712-2719, 2013.
    • (2013) ICCV , pp. 2712-2719
    • Guadarrama, S.1    Krishnamoorthy, N.2    Malkarnenkar, G.3    Venugopalan, S.4    Mooney, R.5    Darrell, T.6    Saenko, K.7
  • 26
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, pages 1026-1034, 2015.
    • (2015) ICCV , pp. 1026-1034
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 27
    • 0021702638 scopus 로고
    • Parts of recognition
    • D. D. Hoffman and W. A. Richards. Parts of recognition. Cognition, 18(1):65-96, 1984.
    • (1984) Cognition , vol.18 , Issue.1 , pp. 65-96
    • Hoffman, D.D.1    Richards, W.A.2
  • 28
    • 84959192212 scopus 로고    scopus 로고
    • Discovering states and transformations in image collections
    • P. Isola, J. J. Lim, and E. H. Adelson. Discovering states and transformations in image collections. In CVPR, 2015.
    • (2015) CVPR
    • Isola, P.1    Lim, J.J.2    Adelson, E.H.3
  • 29
    • 84911379042 scopus 로고    scopus 로고
    • Decorrelating semantic visual attributes by resisting the urge to share
    • D. Jayaraman, F. Sha, and K. Grauman. Decorrelating semantic visual attributes by resisting the urge to share. In CVPR, 2014.
    • (2014) CVPR
    • Jayaraman, D.1    Sha, F.2    Grauman, K.3
  • 30
    • 84937843643 scopus 로고    scopus 로고
    • Deep fragment embeddings for bidirectional image sentence mapping
    • A. Karpathy, A. Joulin, and F. F. F. Li. Deep fragment embeddings for bidirectional image sentence mapping. In NIPS, 2014.
    • (2014) NIPS
    • Karpathy, A.1    Joulin, A.2    Li, F.F.F.3
  • 35
    • 78149322292 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to detect unseen object classes by between-class attribute transfer. In CVPR. IEEE, 2009.
    • (2009) CVPR. IEEE
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 38
    • 85041907562 scopus 로고    scopus 로고
    • Predicting deep zero-shot convolutional neural networks using textual descriptions
    • J. Lei Ba, K. Swersky, S. Fidler, et al. Predicting deep zero-shot convolutional neural networks using textual descriptions. In CVPR, 2015.
    • (2015) CVPR
    • Lei Ba, J.1    Swersky, K.2    Fidler, S.3
  • 39
    • 85035234967 scopus 로고    scopus 로고
    • Visual relationship detection with language priors
    • C. Lu, R. Krishna, M. Bernstein, and L. Fei-Fei. Visual relationship detection with language priors. In ECCV, 2016.
    • (2016) ECCV
    • Lu, C.1    Krishna, R.2    Bernstein, M.3    Fei-Fei, L.4
  • 40
    • 84973863256 scopus 로고    scopus 로고
    • Learning like a child: Fast novel visual concept learning from sentence descriptions of images
    • J. Mao, X. Wei, Y. Yang, J. Wang, Z. Huang, and A. L. Yuille. Learning like a child: Fast novel visual concept learning from sentence descriptions of images. In ICCV, pages 2533-2541, 2015.
    • (2015) ICCV , pp. 2533-2541
    • Mao, J.1    Wei, X.2    Yang, Y.3    Wang, J.4    Huang, Z.5    Yuille, A.L.6
  • 41
    • 84911410734 scopus 로고    scopus 로고
    • Costa: Cooccurrence statistics for zero-shot classification
    • T. Mensink, E. Gavves, and C. G. Snoek. Costa: Cooccurrence statistics for zero-shot classification. In CVPR, 2014.
    • (2014) CVPR
    • Mensink, T.1    Gavves, E.2    Snoek, C.G.3
  • 42
    • 84898956512 scopus 로고    scopus 로고
    • Distributed representations of words and phrases and their compositionality
    • T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and their compositionality. In NIPS, 2013.
    • (2013) NIPS
    • Mikolov, T.1    Sutskever, I.2    Chen, K.3    Corrado, G.S.4    Dean, J.5
  • 43
    • 84986300500 scopus 로고    scopus 로고
    • Seeing through the human reporting bias: Visual classifiers from noisy human-centric labels
    • I. Misra, C. L. Zitnick, M. Mitchell, and R. Girshick. Seeing through the Human Reporting Bias: Visual Classifiers from Noisy Human-Centric Labels. In CVPR, 2016.
    • (2016) CVPR
    • Misra, I.1    Zitnick, C.L.2    Mitchell, M.3    Girshick, R.4
  • 46
    • 84856670612 scopus 로고    scopus 로고
    • Relative attributes
    • IEEE, 2011
    • D. Parikh and K. Grauman. Relative attributes. In ICCV. IEEE, 2011.
    • ICCV
    • Parikh, D.1    Grauman, K.2
  • 47
    • 84911419955 scopus 로고    scopus 로고
    • Learning to learn, from transfer learning to domain adaptation: A unifying perspective
    • N. Patricia and B. Caputo. Learning to learn, from transfer learning to domain adaptation: A unifying perspective. In CVPR, pages 1442-1449, 2014.
    • (2014) CVPR , pp. 1442-1449
    • Patricia, N.1    Caputo, B.2
  • 48
    • 85044335310 scopus 로고    scopus 로고
    • Coco attributes: Attributes for people, animals, and objects
    • G. Patterson and J. Hays. Coco attributes: Attributes for people, animals, and objects. In ECCV, 2016.
    • (2016) ECCV
    • Patterson, G.1    Hays, J.2
  • 50
    • 84969931523 scopus 로고    scopus 로고
    • An embarrassingly simple approach to zero-shot learning
    • B. Romera-Paredes and P. Torr. An embarrassingly simple approach to zero-shot learning. In ICML, 2015.
    • (2015) ICML
    • Romera-Paredes, B.1    Torr, P.2
  • 52
    • 84965169182 scopus 로고    scopus 로고
    • Visalogy: Answering visual analogy questions
    • F. Sadeghi, C. L. Zitnick, and A. Farhadi. Visalogy: Answering visual analogy questions. In NIPS, 2015.
    • (2015) NIPS
    • Sadeghi, F.1    Zitnick, C.L.2    Farhadi, A.3
  • 53
    • 80052889458 scopus 로고    scopus 로고
    • Recognition using visual phrases
    • IEEE, 2011
    • M. A. Sadeghi and A. Farhadi. Recognition using visual phrases. In CVPR. IEEE, 2011.
    • CVPR
    • Sadeghi, M.A.1    Farhadi, A.2
  • 56
    • 84877780666 scopus 로고    scopus 로고
    • Shifting weights: Adapting object detectors from image to video
    • K. Tang, V. Ramanathan, L. Fei-Fei, and D. Koller. Shifting weights: Adapting object detectors from image to video. In NIPS, 2012.
    • (2012) NIPS
    • Tang, K.1    Ramanathan, V.2    Fei-Fei, L.3    Koller, D.4
  • 57
    • 84959932469 scopus 로고    scopus 로고
    • Integrating language and vision to generate natural language descriptions of videos in the wild
    • J. Thomason, S. Venugopalan, S. Guadarrama, K. Saenko, and R. J. Mooney. Integrating language and vision to generate natural language descriptions of videos in the wild. In COLING, Volume 2, page 9, 2014.
    • (2014) Coling , vol.2 , pp. 9
    • Thomason, J.1    Venugopalan, S.2    Guadarrama, S.3    Saenko, K.4    Mooney, R.J.5
  • 60
    • 85018929847 scopus 로고    scopus 로고
    • Learning to learn: Model regression networks for easy small sample learning
    • Springer
    • Y.-X. Wang and M. Hebert. Learning to learn: Model regression networks for easy small sample learning. In ECCV. Springer, 2016.
    • (2016) ECCV
    • Wang, Y.-X.1    Hebert, M.2
  • 61
    • 77954860497 scopus 로고    scopus 로고
    • A numerical study of the bottom-up and top-down inference processes in and-or graphs
    • T. Wu and S.-C. Zhu. A numerical study of the bottom-up and top-down inference processes in and-or graphs. International journal of computer vision, 93(2):226-252, 2011.
    • (2011) International Journal of Computer Vision , vol.93 , Issue.2 , pp. 226-252
    • Wu, T.1    Zhu, S.-C.2
  • 63
    • 84979887597 scopus 로고    scopus 로고
    • Complexity of representation and inference in compositional models with part sharing
    • A. Yuille and R. Mottaghi. Complexity of representation and inference in compositional models with part sharing. Journal of Machine Learning Research, 17(11):1-28, 2016.
    • (2016) Journal of Machine Learning Research , vol.17 , Issue.11 , pp. 1-28
    • Yuille, A.1    Mottaghi, R.2
  • 64
    • 84906489074 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • Springer
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, pages 818-833. Springer, 2014.
    • (2014) ECCV , pp. 818-833
    • Zeiler, M.D.1    Fergus, R.2
  • 65
    • 84973910934 scopus 로고    scopus 로고
    • Zero-shot learning via semantic similarity embedding
    • Z. Zhang and V. Saligrama. Zero-shot learning via semantic similarity embedding. In ICCV, 2015.
    • (2015) ICCV
    • Zhang, Z.1    Saligrama, V.2
  • 68
    • 80051550318 scopus 로고    scopus 로고
    • Recursive compositional models for vision: Description and review of recent work
    • L. L. Zhu, Y. Chen, and A. Yuille. Recursive compositional models for vision: Description and review of recent work. Journal of Mathematical Imaging and Vision, 41(1-2):122-146, 2011.
    • (2011) Journal of Mathematical Imaging and Vision , vol.41 , Issue.1-2 , pp. 122-146
    • Zhu, L.L.1    Chen, Y.2    Yuille, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.