메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Zero-shot learning through cross-modal transfer

Author keywords

[No Author keywords available]

Indexed keywords

DISTRIBUTIONAL INFORMATION; LEARNING MODELS; RECOGNITION MODELS; SEMANTIC FEATURES; SEMANTIC SPACE; STATE-OF-THE-ART PERFORMANCE; TRAINING DATA; TRAINING IMAGE;

EID: 85083954315     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (77)

References (33)
  • 1
    • 78650686637 scopus 로고    scopus 로고
    • Distributional memory: A general framework for corpus-based semantics
    • M. Baroni and A. Lenci. Distributional memory: A general framework for corpus-based semantics. Computational Linguistics, 36(4):673–721, 2010.
    • (2010) Computational Linguistics , vol.36 , Issue.4 , pp. 673-721
    • Baroni, M.1    Lenci, A.2
  • 2
    • 33745139169 scopus 로고    scopus 로고
    • Cross-generalization: Learning novel classes from a single example by feature replacement
    • E. Bart and S. Ullman. Cross-generalization: learning novel classes from a single example by feature replacement. In CVPR, 2005.
    • (2005) CVPR
    • Bart, E.1    Ullman, S.2
  • 4
    • 84860524227 scopus 로고    scopus 로고
    • Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
    • J. Blitzer, M. Dredze, and F. Pereira. Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. In ACL, 2007.
    • (2007) ACL
    • Blitzer, J.1    Dredze, M.2    Pereira, F.3
  • 5
    • 84878188804 scopus 로고    scopus 로고
    • Distributional semantics in technicolor
    • E. Bruni, G. Boleda, M. Baroni, and N. Tran. Distributional semantics in technicolor. In ACL, 2012.
    • (2012) ACL
    • Bruni, E.1    Boleda, G.2    Baroni, M.3    Tran, N.4
  • 6
    • 80053442434 scopus 로고    scopus 로고
    • The importance of encoding versus training with sparse coding and vector quantization
    • A. Coates and A. Ng. The Importance of Encoding Versus Training with Sparse Coding and Vector Quantization . In ICML, 2011.
    • (2011) ICML
    • Coates, A.1    Ng, A.2
  • 7
    • 56449095373 scopus 로고    scopus 로고
    • A unified architecture for natural language processing: Deep neural networks with multitask learning
    • R. Collobert and J. Weston. A unified architecture for natural language processing: deep neural networks with multitask learning. In ICML, 2008.
    • (2008) ICML
    • Collobert, R.1    Weston, J.2
  • 9
    • 80053377616 scopus 로고    scopus 로고
    • A structured vector space model for word meaning in context
    • K. Erk and S. Padó. A structured vector space model for word meaning in context. In EMNLP, 2008.
    • (2008) EMNLP
    • Erk, K.1    Padó, S.2
  • 11
    • 79953883820 scopus 로고    scopus 로고
    • Visual information in semantic representation
    • Y. Feng and M. Lapata. Visual information in semantic representation. In HLT-NAACL, 2010.
    • (2010) HLT-NAACL
    • Feng, Y.1    Lapata, M.2
  • 12
    • 33745908406 scopus 로고    scopus 로고
    • Object classification from a single example utilizing class relevance pseudo-metrics
    • M. Fink. Object classification from a single example utilizing class relevance pseudo-metrics. In NIPS, 2004.
    • (2004) NIPS
    • Fink, M.1
  • 13
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for Large-Scale sentiment classification: A deep learning approach
    • X. Glorot, A. Bordes, and Y. Bengio. Domain adaptation for Large-Scale sentiment classification: A deep learning approach. In ICML, 2011.
    • (2011) ICML
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 14
    • 33745947933 scopus 로고    scopus 로고
    • Geometric context from a single image
    • D. Hoiem, A.A. Efros, and M. Herbert. Geometric context from a single image. In ICCV, 2005.
    • (2005) ICCV
    • Hoiem, D.1    Efros, A.A.2    Herbert, M.3
  • 15
    • 84878180089 scopus 로고    scopus 로고
    • Improving word representations via global context and multiple word prototypes
    • E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng. Improving Word Representations via Global Context and Multiple Word Prototypes. In ACL, 2012.
    • (2012) ACL
    • Huang, E.H.1    Socher, R.2    Manning, C.D.3    Ng, A.Y.4
  • 17
    • 33144466753 scopus 로고    scopus 로고
    • One-shot learning of object categories
    • R; Fergus
    • R.; Perona L. Fei-Fei; Fergus. One-shot learning of object categories. TPAMI, 28, 2006.
    • (2006) TPAMI , vol.28
    • Fei-Fei, P.L.1
  • 19
    • 70450172710 scopus 로고    scopus 로고
    • Learning to detect unseen object classes by between-class attribute transfer
    • C. H. Lampert, H. Nickisch, and S. Harmeling. Learning to Detect Unseen Object Classes by Between-Class Attribute Transfer. In CVPR, 2009.
    • (2009) CVPR
    • Lampert, C.H.1    Nickisch, H.2    Harmeling, S.3
  • 20
    • 0000600219 scopus 로고    scopus 로고
    • A solution to plato’s problem: The latent semantic analysis theory of acquisition, induction and representation of knowledge
    • T. K. Landauer and S. T. Dumais. A solution to Plato’s problem: the Latent Semantic Analysis theory of acquisition, induction and representation of knowledge. Psychological Review, 104(2):211–240, 1997.
    • (1997) Psychological Review , vol.104 , Issue.2 , pp. 211-240
    • Landauer, T.K.1    Dumais, S.T.2
  • 22
    • 84953837109 scopus 로고    scopus 로고
    • Going beyond text: A hybrid image-text approach for measuring word relatedness
    • C.W. Leong and R. Mihalcea. Going beyond text: A hybrid image-text approach for measuring word relatedness. In IJCNLP, 2011.
    • (2011) IJCNLP
    • Leong, C.W.1    Mihalcea, R.2
  • 23
    • 85143523004 scopus 로고    scopus 로고
    • Automatic retrieval and clustering of similar words
    • D. Lin. Automatic retrieval and clustering of similar words. In Proceedings of COLING-ACL, pages 768–774, 1998.
    • (1998) Proceedings of COLING-ACL , pp. 768-774
    • Lin, D.1
  • 25
    • 34347357484 scopus 로고    scopus 로고
    • Dependency-based construction of semantic space models
    • S. Pado and M. Lapata. Dependency-based construction of semantic space models. Computational Linguistics, 33(2):161–199, 2007.
    • (2007) Computational Linguistics , vol.33 , Issue.2 , pp. 161-199
    • Pado, S.1    Lapata, M.2
  • 27
    • 80052901068 scopus 로고    scopus 로고
    • Towards cross-category knowledge propagation for learning visual concepts
    • Guo-Jun Qi, C. Aggarwal, Y. Rui, Q. Tian, S. Chang, and T. Huang. Towards cross-category knowledge propagation for learning visual concepts. In CVPR, 2011.
    • (2011) CVPR
    • Qi, G.-J.1    Aggarwal, C.2    Rui, Y.3    Tian, Q.4    Chang, S.5    Huang, T.6
  • 28
    • 84898971918 scopus 로고    scopus 로고
    • Learning to learn with compound hierarchical-deep models
    • A. Torralba R. Salakhutdinov, J. Tenenbaum. Learning to learn with compound hierarchical-deep models. In NIPS, 2012.
    • (2012) NIPS
    • Torralba, A.1    Salakhutdinov, R.2    Tenenbaum, J.3
  • 29
    • 0347596961 scopus 로고    scopus 로고
    • Automatic word sense discrimination
    • H. Schütze. Automatic word sense discrimination. Computational Linguistics, 24:97–124, 1998.
    • (1998) Computational Linguistics , vol.24 , pp. 97-124
    • Schütze, H.1
  • 30
    • 77955998009 scopus 로고    scopus 로고
    • Connecting modalities: Semi-supervised segmentation and annotation of images using unaligned text corpora
    • R. Socher and L. Fei-Fei. Connecting modalities: Semi-supervised segmentation and annotation of images using unaligned text corpora. In CVPR, 2010.
    • (2010) CVPR
    • Socher, R.1    Fei-Fei, L.2
  • 31
    • 84877724347 scopus 로고    scopus 로고
    • Multimodal learning with deep Boltzmann machines
    • N. Srivastava and R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In NIPS, 2012.
    • (2012) NIPS
    • Srivastava, N.1    Salakhutdinov, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.