메뉴 건너뛰기




Volumn 221, Issue , 2019, Pages 173-187

Joint Deep Learning for land cover and land use classification

Author keywords

Convolutional neural network; Land cover and land use classification; Multilayer perceptron; Object based CNN; VFSR remotely sensed imagery

Indexed keywords

AERIAL PHOTOGRAPHY; ANTENNAS; CLASSIFICATION (OF INFORMATION); CONVOLUTION; ITERATIVE METHODS; LAND USE; MARKOV PROCESSES; MULTILAYER NEURAL NETWORKS; MULTILAYERS; NEURAL NETWORKS; REMOTE SENSING;

EID: 85056770380     PISSN: 00344257     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.rse.2018.11.014     Document Type: Article
Times cited : (376)

References (57)
  • 1
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning - a new frontier in artificial intelligence research
    • Arel, I., Rose, D.C., Karnowski, T.P., Deep machine learning - a new frontier in artificial intelligence research. IEEE Comput. Intell. Mag. 5 (2010), 13–18, 10.1109/MCI.2010.938364.
    • (2010) IEEE Comput. Intell. Mag. , vol.5 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 2
    • 0031105739 scopus 로고    scopus 로고
    • Introduction neural networks in remote sensing
    • Atkinson, P.M., Tatnall, A.R.L., Introduction neural networks in remote sensing. Int. J. Remote Sens. 18 (1997), 699–709, 10.1080/014311697218700.
    • (1997) Int. J. Remote Sens. , vol.18 , pp. 699-709
    • Atkinson, P.M.1    Tatnall, A.R.L.2
  • 3
    • 0031420264 scopus 로고    scopus 로고
    • A region-based, graph-theoretic data model for the inference of second-order thematic information from remotely-sensed images
    • Barr, S.L., Barnsley, M.J., A region-based, graph-theoretic data model for the inference of second-order thematic information from remotely-sensed images. Int. J. Geogr. Inf. Sci. 11 (1997), 555–576, 10.1080/136588197242194.
    • (1997) Int. J. Geogr. Inf. Sci. , vol.11 , pp. 555-576
    • Barr, S.L.1    Barnsley, M.J.2
  • 4
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Blaschke, T., Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 65 (2010), 2–16, 10.1016/j.isprsjprs.2009.06.004.
    • (2010) ISPRS J. Photogramm. Remote Sens. , vol.65 , pp. 2-16
    • Blaschke, T.1
  • 6
    • 78649418027 scopus 로고    scopus 로고
    • Social and ecological factors and land-use land-cover diversity in two provinces in Southeast Asia
    • Cassidy, L., Binford, M., Southworth, J., Barnes, G., Social and ecological factors and land-use land-cover diversity in two provinces in Southeast Asia. J. Land Use Sci. 5 (2010), 277–306, 10.1080/1747423X.2010.500688.
    • (2010) J. Land Use Sci. , vol.5 , pp. 277-306
    • Cassidy, L.1    Binford, M.2    Southworth, J.3    Barnes, G.4
  • 7
    • 84901322878 scopus 로고    scopus 로고
    • Vehicle detection in satellite images by hybrid deep Convolutional Neural Networks
    • Chen, X., Xiang, S., Liu, C.-L., Pan, C.-H., Vehicle detection in satellite images by hybrid deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 11 (2014), 1797–1801, 10.1109/LGRS.2014.2309695.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , pp. 1797-1801
    • Chen, X.1    Xiang, S.2    Liu, C.-L.3    Pan, C.-H.4
  • 8
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P., Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54 (2016), 6232–6251, 10.1109/TGRS.2016.2584107.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 9
    • 85014892308 scopus 로고    scopus 로고
    • Automatic road detection and centerline extraction via cascaded end-to-end Convolutional Neural Network
    • Cheng, G., Wang, Y., Xu, S., Wang, H., Xiang, S., Pan, C., Automatic road detection and centerline extraction via cascaded end-to-end Convolutional Neural Network. IEEE Trans. Geosci. Remote Sens. 55 (2017), 3322–3337, 10.1109/TGRS.2017.2669341.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , pp. 3322-3337
    • Cheng, G.1    Wang, Y.2    Xu, S.3    Wang, H.4    Xiang, S.5    Pan, C.6
  • 10
    • 33947699893 scopus 로고    scopus 로고
    • Use of neural networks for automatic classification from high-resolution images
    • Del Frate, F., Pacifici, F., Schiavon, G., Solimini, C., Use of neural networks for automatic classification from high-resolution images. IEEE Trans. Geosci. Remote Sens. 45 (2007), 800–809, 10.1109/TGRS.2007.892009.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , pp. 800-809
    • Del Frate, F.1    Pacifici, F.2    Schiavon, G.3    Solimini, C.4
  • 11
    • 85028222906 scopus 로고    scopus 로고
    • Vehicle type classification using unsupervised Convolutional Neural Network
    • Dong, Z., Pei, M., He, Y., Liu, T., Dong, Y., Jia, Y., Vehicle type classification using unsupervised Convolutional Neural Network. IEEE Trans. Intell. Transp. Syst. 16 (2015), 2247–2256, 10.1109/ICPR.2014.39.
    • (2015) IEEE Trans. Intell. Transp. Syst. , vol.16 , pp. 2247-2256
    • Dong, Z.1    Pei, M.2    He, Y.3    Liu, T.4    Dong, Y.5    Jia, Y.6
  • 12
    • 85019898857 scopus 로고    scopus 로고
    • Classification for high resolution remote sensing imagery using a fully convolutional network
    • Fu, G., Liu, C., Zhou, R., Sun, T., Zhang, Q., Classification for high resolution remote sensing imagery using a fully convolutional network. Remote Sens., 9, 2017, 10.3390/rs9050498.
    • (2017) Remote Sens. , vol.9
    • Fu, G.1    Liu, C.2    Zhou, R.3    Sun, T.4    Zhang, Q.5
  • 13
    • 84983060394 scopus 로고    scopus 로고
    • A new cascade model for the hierarchical joint classification of multitemporal and multiresolution remote sensing data
    • Hedhli, I., Moser, G., Zerubia, J., Serpico, S.B., A new cascade model for the hierarchical joint classification of multitemporal and multiresolution remote sensing data. IEEE Trans. Geosci. Remote Sens. 54 (2016), 6333–6348, 10.1109/TGRS.2016.2580321.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , pp. 6333-6348
    • Hedhli, I.1    Moser, G.2    Zerubia, J.3    Serpico, S.B.4
  • 14
    • 0042421792 scopus 로고    scopus 로고
    • Spatial metrics and image texture for mapping urban land use
    • Herold, M., Liu, X., Clarke, K.C., Spatial metrics and image texture for mapping urban land use. Photogramm. Eng. Remote. Sens. 69 (2003), 991–1001, 10.14358/PERS.69.9.991.
    • (2003) Photogramm. Eng. Remote. Sens. , vol.69 , pp. 991-1001
    • Herold, M.1    Liu, X.2    Clarke, K.C.3
  • 15
    • 41549154690 scopus 로고    scopus 로고
    • Per-pixel classification of high spatial resolution satellite imagery for urban land-cover mapping
    • Hester, D.B., Cakir, H.I., Nelson, S. a C., Khorram, S., Per-pixel classification of high spatial resolution satellite imagery for urban land-cover mapping. Photogramm. Eng. Remote. Sens. 74 (2008), 463–471.
    • (2008) Photogramm. Eng. Remote. Sens. , vol.74 , pp. 463-471
    • Hester, D.B.1    Cakir, H.I.2    Nelson, S.A.C.3    Khorram, S.4
  • 16
    • 84867259081 scopus 로고    scopus 로고
    • Automated urban land-use classification with remote sensing
    • Hu, S., Wang, L., Automated urban land-use classification with remote sensing. Int. J. Remote Sens. 34 (2013), 790–803, 10.1080/01431161.2012.714510.
    • (2013) Int. J. Remote Sens. , vol.34 , pp. 790-803
    • Hu, S.1    Wang, L.2
  • 17
    • 84950141946 scopus 로고    scopus 로고
    • Transferring deep Convolutional Neural Networks for the scene classification of high-resolution remote sensing imagery
    • Hu, F., Xia, G.-S., Hu, J., Zhang, L., Transferring deep Convolutional Neural Networks for the scene classification of high-resolution remote sensing imagery. Remote Sens. 7 (2015), 14680–14707, 10.3390/rs71114680.
    • (2015) Remote Sens. , vol.7 , pp. 14680-14707
    • Hu, F.1    Xia, G.-S.2    Hu, J.3    Zhang, L.4
  • 18
    • 84878919540 scopus 로고    scopus 로고
    • ImageNet classification with deep Convolutional Neural Networks
    • Curran Associates, Inc. Lake Tahoe, Nevada
    • Krizhevsky, A., Sutskever, I., Hinton, G.E., ImageNet classification with deep Convolutional Neural Networks. NIPS2012: Neural Information Processing Systems, 2012, Curran Associates, Inc., Lake Tahoe, Nevada, 1–9.
    • (2012) NIPS2012: Neural Information Processing Systems , pp. 1-9
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 19
    • 84971612769 scopus 로고    scopus 로고
    • Classification and segmentation of satellite orthoimagery using Convolutional Neural Networks
    • Längkvist, M., Kiselev, A., Alirezaie, M., Loutfi, A., Classification and segmentation of satellite orthoimagery using Convolutional Neural Networks. Remote Sens. 8 (2016), 1–21, 10.3390/rs8040329.
    • (2016) Remote Sens. , vol.8 , pp. 1-21
    • Längkvist, M.1    Kiselev, A.2    Alirezaie, M.3    Loutfi, A.4
  • 20
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun, Y., Bengio, Y., Hinton, G., Deep learning. Nature 521 (2015), 436–444, 10.1038/nature14539.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 21
    • 85019131244 scopus 로고    scopus 로고
    • Classifying urban land use by integrating remote sensing and social media data
    • Liu, X., He, J., Yao, Y., Zhang, J., Liang, H., Wang, H., Hong, Y., Classifying urban land use by integrating remote sensing and social media data. Int. J. Geogr. Inf. Sci. 31 (2017), 1675–1696, 10.1080/13658816.2017.1324976.
    • (2017) Int. J. Geogr. Inf. Sci. , vol.31 , pp. 1675-1696
    • Liu, X.1    He, J.2    Yao, Y.3    Zhang, J.4    Liang, H.5    Wang, H.6    Hong, Y.7
  • 22
    • 84992121956 scopus 로고    scopus 로고
    • Convolutional Neural Networks for large-scale remote-sensing image classification
    • Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., Convolutional Neural Networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 55 (2017), 645–657, 10.1109/TGRS.2016.2612821.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , pp. 645-657
    • Maggiori, E.1    Tarabalka, Y.2    Charpiat, G.3    Alliez, P.4
  • 23
    • 37549009133 scopus 로고    scopus 로고
    • The application of artificial neural networks to the analysis of remotely sensed data
    • Mas, J.F., Flores, J.J., The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 29 (2008), 617–663, 10.1080/01431160701352154.
    • (2008) Int. J. Remote Sens. , vol.29 , pp. 617-663
    • Mas, J.F.1    Flores, J.J.2
  • 24
    • 84906943622 scopus 로고    scopus 로고
    • Post-classification approaches to estimating change in forest area using remotely sensed auxiliary data
    • McRoberts, R.E., Post-classification approaches to estimating change in forest area using remotely sensed auxiliary data. Remote Sens. Environ. 151 (2013), 149–156, 10.1016/j.rse.2013.03.036.
    • (2013) Remote Sens. Environ. , vol.151 , pp. 149-156
    • McRoberts, R.E.1
  • 25
    • 84929448899 scopus 로고    scopus 로고
    • Scale parameter selection by spatial statistics for GeOBIA: using mean-shift based multi-scale segmentation as an example
    • Ming, D., Li, J., Wang, J., Zhang, M., Scale parameter selection by spatial statistics for GeOBIA: using mean-shift based multi-scale segmentation as an example. ISPRS J. Photogramm. Remote Sens. 106 (2015), 28–41, 10.1016/j.isprsjprs.2015.04.010.
    • (2015) ISPRS J. Photogramm. Remote Sens. , vol.106 , pp. 28-41
    • Ming, D.1    Li, J.2    Wang, J.3    Zhang, M.4
  • 26
    • 79952069751 scopus 로고    scopus 로고
    • Enhancing and replacing spectral information with intermediate structural inputs: a case study on impervious surface detection
    • Mountrakis, G., Luo, L., Enhancing and replacing spectral information with intermediate structural inputs: a case study on impervious surface detection. Remote Sens. Environ. 115 (2011), 1162–1170, 10.1016/j.rse.2010.12.018.
    • (2011) Remote Sens. Environ. , vol.115 , pp. 1162-1170
    • Mountrakis, G.1    Luo, L.2
  • 27
    • 84899848814 scopus 로고    scopus 로고
    • A robust texture analysis and classification approach for urban land-use and land-cover feature discrimination
    • Myint, S.W., A robust texture analysis and classification approach for urban land-use and land-cover feature discrimination. Geocarto Int. 16 (2001), 29–40, 10.1080/10106040108542212.
    • (2001) Geocarto Int. , vol.16 , pp. 29-40
    • Myint, S.W.1
  • 28
    • 84889654522 scopus 로고    scopus 로고
    • Contextual classification of lidar data and building object detection in urban areas
    • Niemeyer, J., Rottensteiner, F., Soergel, U., Contextual classification of lidar data and building object detection in urban areas. ISPRS J. Photogramm. Remote Sens. 87 (2014), 152–165, 10.1016/j.isprsjprs.2013.11.001.
    • (2014) ISPRS J. Photogramm. Remote Sens. , vol.87 , pp. 152-165
    • Niemeyer, J.1    Rottensteiner, F.2    Soergel, U.3
  • 29
    • 84979775123 scopus 로고    scopus 로고
    • Towards better exploiting convolutional neural networks for remote sensing scene classification
    • Nogueira, K., Penatti, O.A.B., dos Santos, J.A., Towards better exploiting convolutional neural networks for remote sensing scene classification. Pattern Recogn. 61 (2017), 539–556, 10.1016/j.patcog.2016.07.001.
    • (2017) Pattern Recogn. , vol.61 , pp. 539-556
    • Nogueira, K.1    Penatti, O.A.B.2    dos Santos, J.A.3
  • 30
    • 84890918781 scopus 로고    scopus 로고
    • Ontology-based topological representation of remote-sensing images
    • Oliva-Santos, R., Maciá-Pérez, F., Garea-Llano, E., Ontology-based topological representation of remote-sensing images. Int. J. Remote Sens. 35 (2014), 16–28, 10.1080/01431161.2013.858847.
    • (2014) Int. J. Remote Sens. , vol.35 , pp. 16-28
    • Oliva-Santos, R.1    Maciá-Pérez, F.2    Garea-Llano, E.3
  • 32
    • 84978388572 scopus 로고    scopus 로고
    • Using convolutional features and a sparse autoencoder for land-use scene classification
    • Othman, E., Bazi, Y., Alajlan, N., Alhichri, H., Melgani, F., Using convolutional features and a sparse autoencoder for land-use scene classification. Int. J. Remote Sens. 37 (2016), 2149–2167, 10.1080/01431161.2016.1171928.
    • (2016) Int. J. Remote Sens. , vol.37 , pp. 2149-2167
    • Othman, E.1    Bazi, Y.2    Alajlan, N.3    Alhichri, H.4    Melgani, F.5
  • 34
    • 85048958895 scopus 로고    scopus 로고
    • A central-point-enhanced convolutional neural network for high-resolution remote-sensing image classification
    • Pan, X., Zhao, J., A central-point-enhanced convolutional neural network for high-resolution remote-sensing image classification. Int. J. Remote Sens. 38 (2017), 6554–6581, 10.1080/01431161.2017.1362131.
    • (2017) Int. J. Remote Sens. , vol.38 , pp. 6554-6581
    • Pan, X.1    Zhao, J.2
  • 35
    • 84870393168 scopus 로고    scopus 로고
    • A review of regional science applications of satellite remote sensing in urban settings
    • Patino, J.E., Duque, J.C., A review of regional science applications of satellite remote sensing in urban settings. Comput. Environ. Urban. Syst. 37 (2013), 1–17, 10.1016/j.compenvurbsys.2012.06.003.
    • (2013) Comput. Environ. Urban. Syst. , vol.37 , pp. 1-17
    • Patino, J.E.1    Duque, J.C.2
  • 37
    • 79956324768 scopus 로고    scopus 로고
    • Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment
    • Pontius, R.G., Millones, M., Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. Int. J. Remote Sens. 32 (2011), 4407–4429, 10.1080/01431161.2011.552923.
    • (2011) Int. J. Remote Sens. , vol.32 , pp. 4407-4429
    • Pontius, R.G.1    Millones, M.2
  • 38
    • 33745102029 scopus 로고    scopus 로고
    • Creating a hydrographic network from its cartographic representation: a case study using Ordnance Survey MasterMap data
    • Regnauld, N., Mackaness, W.a., Creating a hydrographic network from its cartographic representation: a case study using Ordnance Survey MasterMap data. Int. J. Geogr. Inf. Sci. 20 (2006), 611–631, 10.1080/13658810600607402.
    • (2006) Int. J. Geogr. Inf. Sci. , vol.20 , pp. 611-631
    • Regnauld, N.1    Mackaness, W.A.2
  • 39
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Romero, A., Gatta, C., Camps-valls, G., Member, S., Unsupervised deep feature extraction for remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 54 (2016), 1349–1362, 10.1109/TGRS.2015.2478379.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-valls, G.3    Member, S.4
  • 40
    • 84863431792 scopus 로고    scopus 로고
    • A review of the effectiveness of spatial information used in urban land cover classification of VHR imagery
    • Salehi, B., Zhang, Y., Zhong, M., Dey, V., A review of the effectiveness of spatial information used in urban land cover classification of VHR imagery. Int. J. Geoinformatics 8 (2012), 35–51.
    • (2012) Int. J. Geoinformatics , vol.8 , pp. 35-51
    • Salehi, B.1    Zhang, Y.2    Zhong, M.3    Dey, V.4
  • 41
    • 84869491579 scopus 로고    scopus 로고
    • An overview and comparison of smooth labeling methods for land-cover classification
    • Schindler, K., An overview and comparison of smooth labeling methods for land-cover classification. IEEE Trans. Geosci. Remote Sens. 50 (2012), 4534–4545, 10.1109/TGRS.2012.2192741.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , pp. 4534-4545
    • Schindler, K.1
  • 43
    • 78650783264 scopus 로고    scopus 로고
    • Challenges in using land use and land cover data for global change studies
    • Verburg, P.H., Neumann, K., Nol, L., Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol. 17 (2011), 974–989, 10.1111/j.1365-2486.2010.02307.x.
    • (2011) Glob. Chang. Biol. , vol.17 , pp. 974-989
    • Verburg, P.H.1    Neumann, K.2    Nol, L.3
  • 44
    • 84994217941 scopus 로고    scopus 로고
    • Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
    • Volpi, M., Tuia, D., Dense semantic labeling of subdecimeter resolution images with convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 55 (2017), 881–893, 10.1109/TGRS.2016.2616585.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , pp. 881-893
    • Volpi, M.1    Tuia, D.2
  • 45
    • 84895067941 scopus 로고    scopus 로고
    • From land cover-graphs to urban structure types
    • Walde, I., Hese, S., Berger, C., Schmullius, C., From land cover-graphs to urban structure types. Int. J. Geogr. Inf. Sci. 28 (2014), 584–609, 10.1080/13658816.2013.865189.
    • (2014) Int. J. Geogr. Inf. Sci. , vol.28 , pp. 584-609
    • Walde, I.1    Hese, S.2    Berger, C.3    Schmullius, C.4
  • 46
    • 65449189515 scopus 로고    scopus 로고
    • Using geometrical, textural, and contextual information of land parcels for classification of detailed urban land use
    • Wu, S.S., Qiu, X., Usery, E.L., Wang, L., Using geometrical, textural, and contextual information of land parcels for classification of detailed urban land use. Ann. Assoc. Am. Geogr. 99 (2009), 76–98, 10.1080/00045600802459028.
    • (2009) Ann. Assoc. Am. Geogr. , vol.99 , pp. 76-98
    • Wu, S.S.1    Qiu, X.2    Usery, E.L.3    Wang, L.4
  • 47
    • 85018642692 scopus 로고    scopus 로고
    • AID: a benchmark data set for performance evaluation of aerial scene classification
    • Xia, G.S., Hu, J., Hu, F., Shi, B., Bai, X., Zhong, Y., Zhang, L., Lu, X., AID: a benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 55 (2017), 3965–3981, 10.1109/TGRS.2017.2685945.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , pp. 3965-3981
    • Xia, G.S.1    Hu, J.2    Hu, F.3    Shi, B.4    Bai, X.5    Zhong, Y.6    Zhang, L.7    Lu, X.8
  • 48
    • 11344271078 scopus 로고    scopus 로고
    • An approach for analysis of urban morphology: methods to derive morphological properties of city blocks by using an urban landscape model and their interpretations
    • Yoshida, H., Omae, M., An approach for analysis of urban morphology: methods to derive morphological properties of city blocks by using an urban landscape model and their interpretations. Comput. Environ. Urban. Syst. 29 (2005), 223–247, 10.1016/j.compenvurbsys.2004.05.008.
    • (2005) Comput. Environ. Urban. Syst. , vol.29 , pp. 223-247
    • Yoshida, H.1    Omae, M.2
  • 49
    • 84986294630 scopus 로고    scopus 로고
    • Novel shape indices for vector landscape pattern analysis
    • Zhang, C., Atkinson, P.M., Novel shape indices for vector landscape pattern analysis. Int. J. Geogr. Inf. Sci. 30 (2016), 2442–2461, 10.1080/13658816.2016.1179313.
    • (2016) Int. J. Geogr. Inf. Sci. , vol.30 , pp. 2442-2461
    • Zhang, C.1    Atkinson, P.M.2
  • 50
    • 84928487450 scopus 로고    scopus 로고
    • A novel multi-parameter support vector machine for image classification
    • Zhang, C., Wang, T., Atkinson, P.M., Pan, X., Li, H., A novel multi-parameter support vector machine for image classification. Int. J. Remote Sens. 36 (2015), 1890–1906, 10.1080/01431161.2015.1029096.
    • (2015) Int. J. Remote Sens. , vol.36 , pp. 1890-1906
    • Zhang, C.1    Wang, T.2    Atkinson, P.M.3    Pan, X.4    Li, H.5
  • 51
    • 85046821072 scopus 로고    scopus 로고
    • Integrating bottom-up classification and top-down feedback for improving urban land-cover and functional-zone mapping
    • Zhang, X., Du, S., Wang, Q., Integrating bottom-up classification and top-down feedback for improving urban land-cover and functional-zone mapping. Remote Sens. Environ. 212 (2018), 231–248, 10.1016/j.rse.2018.05.006.
    • (2018) Remote Sens. Environ. , vol.212 , pp. 231-248
    • Zhang, X.1    Du, S.2    Wang, Q.3
  • 52
    • 85026643598 scopus 로고    scopus 로고
    • A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
    • Zhang, C., Pan, X., Li, H., Gardiner, A., Sargent, I., Hare, J., Atkinson, P.M., A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification. ISPRS J. Photogramm. Remote Sens. 140 (2018), 133–144, 10.1016/j.isprsjprs.2017.07.014.
    • (2018) ISPRS J. Photogramm. Remote Sens. , vol.140 , pp. 133-144
    • Zhang, C.1    Pan, X.2    Li, H.3    Gardiner, A.4    Sargent, I.5    Hare, J.6    Atkinson, P.M.7
  • 53
    • 85045743328 scopus 로고    scopus 로고
    • VPRS-based regional decision fusion of CNN and MRF classifications for very fine resolution remotely sensed images
    • Zhang, C., Sargent, I., Pan, X., Gardiner, A., Hare, J., Atkinson, P.M., VPRS-based regional decision fusion of CNN and MRF classifications for very fine resolution remotely sensed images. IEEE Trans. Geosci. Remote Sens. 56 (2018), 4507–4521, 10.1109/TGRS.2018.2822783.
    • (2018) IEEE Trans. Geosci. Remote Sens. , vol.56 , pp. 4507-4521
    • Zhang, C.1    Sargent, I.2    Pan, X.3    Gardiner, A.4    Hare, J.5    Atkinson, P.M.6
  • 54
    • 85049299169 scopus 로고    scopus 로고
    • An object-based convolutional neural networks (OCNN) for urban land use classification
    • Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., Atkinson, P.M., An object-based convolutional neural networks (OCNN) for urban land use classification. Remote Sens. Environ. 216 (2018), 57–70, 10.1016/j.rse.2018.06.034.
    • (2018) Remote Sens. Environ. , vol.216 , pp. 57-70
    • Zhang, C.1    Sargent, I.2    Pan, X.3    Li, H.4    Gardiner, A.5    Hare, J.6    Atkinson, P.M.7
  • 55
    • 84962585158 scopus 로고    scopus 로고
    • A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery
    • Zhao, B., Zhong, Y., Zhang, L., A spectral-structural bag-of-features scene classifier for very high spatial resolution remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 116 (2016), 73–85, 10.1016/j.isprsjprs.2016.03.004.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.116 , pp. 73-85
    • Zhao, B.1    Zhong, Y.2    Zhang, L.3
  • 56
    • 85028705162 scopus 로고    scopus 로고
    • Contextually guided very-high-resolution imagery classification with semantic segments
    • Zhao, W., Du, S., Wang, Q., Emery, W.J., Contextually guided very-high-resolution imagery classification with semantic segments. ISPRS J. Photogramm. Remote Sens. 132 (2017), 48–60, 10.1016/j.isprsjprs.2017.08.011.
    • (2017) ISPRS J. Photogramm. Remote Sens. , vol.132 , pp. 48-60
    • Zhao, W.1    Du, S.2    Wang, Q.3    Emery, W.J.4
  • 57
    • 85027953873 scopus 로고    scopus 로고
    • Semantic segmentation of remote sensing imagery using object-based Markov random field model with regional penalties
    • Zheng, C., Wang, L., Semantic segmentation of remote sensing imagery using object-based Markov random field model with regional penalties. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8 (2015), 1924–1935.
    • (2015) IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , vol.8 , pp. 1924-1935
    • Zheng, C.1    Wang, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.