메뉴 건너뛰기




Volumn 8, Issue 5, 2015, Pages 1924-1935

Semantic Segmentation of Remote Sensing Imagery Using Object-Based Markov Random Field Model with Regional Penalties

Author keywords

Object based Markov random field (OMRF); regional penalties; remote sensing images; semantic segmentation

Indexed keywords

IMAGE RECONSTRUCTION; MARKOV PROCESSES; REMOTE SENSING; SEMANTICS;

EID: 85027953873     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2014.2361756     Document Type: Article
Times cited : (55)

References (45)
  • 1
    • 0026172104 scopus 로고
    • Efficient algorithm based on immersion simulations
    • Jun.
    • L. Vincent and P. Soille, "Efficient algorithm based on immersion simulations, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 13, no. 6, pp. 583-598, Jun. 1991.
    • (1991) IEEE Trans. Pattern Anal. Mach. Intell. , vol.13 , Issue.6 , pp. 583-598
    • Vincent, L.1    Soille, P.2
  • 2
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • May
    • D. Comaniciu and P.Meer, "Mean shift: A robust approach toward feature space analysis, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603-619, May 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 3
    • 35348889732 scopus 로고    scopus 로고
    • An adaptive multiscale information fusion approach for feature extraction and classification of IKONOS multispectral imagery over urban areas
    • Apr.
    • X. Huang, L. P. Zhang, and P. X. Li, "An adaptive multiscale information fusion approach for feature extraction and classification of IKONOS multispectral imagery over urban areas, " IEEE Geosci. Remote Sens. Lett., vol. 4, no. 4, pp. 654-658, Apr. 2007.
    • (2007) IEEE Geosci. Remote Sens. Lett. , vol.4 , Issue.4 , pp. 654-658
    • Huang, X.1    Zhang, L.P.2    Li, P.X.3
  • 4
    • 84880446839 scopus 로고    scopus 로고
    • Optimization of segmentation algorithms through mean-shift filtering preprocessing
    • Mar.
    • L. G. Wang, G. Y. Liu, and Q. L. Dai, "Optimization of segmentation algorithms through mean-shift filtering preprocessing, " IEEE Geosci. Remote Sens. Lett., vol. 11, no. 3, pp. 622-626, Mar. 2014.
    • (2014) IEEE Geosci. Remote Sens. Lett. , vol.11 , Issue.3 , pp. 622-626
    • Wang, L.G.1    Liu, G.Y.2    Dai, Q.L.3
  • 5
    • 9644254228 scopus 로고    scopus 로고
    • Efficient graph-based image segmentation
    • P. Felzenszwalb and D. Huttenlocher, "Efficient graph-based image segmentation, " Int. J. Comput. Vis., vol. 59, no. 2, pp. 167-181, 2004.
    • (2004) Int. J. Comput. Vis. , vol.59 , Issue.2 , pp. 167-181
    • Felzenszwalb, P.1    Huttenlocher, D.2
  • 6
    • 0034244751 scopus 로고    scopus 로고
    • Normalized cuts and image segmentation
    • Aug.
    • J. Shi and J. Malik, "Normalized cuts and image segmentation, " IEEE Trans. Pattern Anal.Mach. Intell., vol. 22, no. 8, pp. 888-905, Aug. 2000.
    • (2000) IEEE Trans. Pattern Anal.Mach. Intell. , vol.22 , Issue.8 , pp. 888-905
    • Shi, J.1    Malik, J.2
  • 7
    • 5044220774 scopus 로고    scopus 로고
    • Recovering human body configurations: Combining segmentation and recognition
    • Washington, DC, USA
    • G. Mori, X. Ren, A. A. Efros, and J. Malik, "Recovering human body configurations: Combining segmentation and recognition, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Washington, DC, USA, 2004, pp. 326-333.
    • (2004) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. , pp. 326-333
    • Mori, G.1    Ren, X.2    Efros, A.A.3    Malik, J.4
  • 9
    • 70350618485 scopus 로고    scopus 로고
    • Turbopixels: Fast superpixels using geometric flows
    • Dec.
    • A. Levinshtein et al., "Turbopixels: Fast superpixels using geometric flows, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 31, no. 12, pp. 2290-2297, Dec. 2009.
    • (2009) IEEE Trans. Pattern Anal. Mach. Intell. , vol.31 , Issue.12 , pp. 2290-2297
    • Levinshtein, A.1
  • 10
    • 78049248989 scopus 로고    scopus 로고
    • TurboPixel segmentation using Eigen-images
    • Nov.
    • S. Xiang, C. Pan, F. Nie, and C. Zhang, "TurboPixel segmentation using Eigen-images, " IEEE Trans. Image Process., vol. 19, no. 11, pp. 3024-3034, Nov. 2010.
    • (2010) IEEE Trans. Image Process. , vol.19 , Issue.11 , pp. 3024-3034
    • Xiang, S.1    Pan, C.2    Nie, F.3    Zhang, C.4
  • 11
    • 84893405732 scopus 로고    scopus 로고
    • Data clustering: A review
    • Mar.
    • A. K. Jain, M. N. Murty, and P. J. Flynn, "Data clustering: A review, " ACM Comput. Surv., vol. 31, no. 3, pp. 264-323, Mar. 1999.
    • (1999) ACM Comput. Surv. , vol.31 , Issue.3 , pp. 264-323
    • Jain, A.K.1    Murty, M.N.2    Flynn, P.J.3
  • 12
    • 0036647190 scopus 로고    scopus 로고
    • An efficient k-means clustering algorithm: Analysis and implementation
    • Jul.
    • T. Kanungo et al., "An efficient k-means clustering algorithm: Analysis and implementation, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 881-892, Jul. 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.7 , pp. 881-892
    • Kanungo, T.1
  • 13
    • 3543098627 scopus 로고    scopus 로고
    • Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure
    • Apr.
    • S. C. Chen and D. Q. Zhang, "Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure, " IEEE Trans. Syst. Man Cybern. B, vol. 34, no. 4, pp. 1907-1916, Apr. 2004.
    • (2004) IEEE Trans. Syst. Man Cybern. B , vol.34 , Issue.4 , pp. 1907-1916
    • Chen, S.C.1    Zhang, D.Q.2
  • 14
    • 0035248865 scopus 로고    scopus 로고
    • Active contours without edges
    • Feb.
    • T. F. Chan and L. A. Vese, "Active contours without edges, " IEEE Trans. Image Process., vol. 10, no. 2, pp. 266-277, Feb. 2001.
    • (2001) IEEE Trans. Image Process. , vol.10 , Issue.2 , pp. 266-277
    • Chan, T.F.1    Vese, L.A.2
  • 15
    • 0033709161 scopus 로고    scopus 로고
    • Geodesic active contours and level sets for the detection and tracking of moving objects
    • Mar.
    • N. Paragios and R. Deriche, "Geodesic active contours and level sets for the detection and tracking of moving objects, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 3, pp. 266-280, Mar. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell. , vol.22 , Issue.3 , pp. 266-280
    • Paragios, N.1    Deriche, R.2
  • 16
    • 44749084234 scopus 로고
    • Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations
    • Nov.
    • S. Osher and J. A. Sethian, "Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations, " J. Comput. Phys., vol. 79, no. 1, pp. 12-49, Nov. 1988.
    • (1988) J. Comput. Phys. , vol.79 , Issue.1 , pp. 12-49
    • Osher, S.1    Sethian, J.A.2
  • 17
    • 56749172068 scopus 로고    scopus 로고
    • Level set hyperspectral image classification using best band analysis
    • Oct.
    • J. E. Ball and L. M. Bruce, "Level set hyperspectral image classification using best band analysis, " IEEE Trans. Geosci. Remote Sens., vol. 45, no. 10, pp. 3022-3027, Oct. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.10 , pp. 3022-3027
    • Ball, J.E.1    Bruce, L.M.2
  • 18
    • 67651146358 scopus 로고    scopus 로고
    • Two Specific multiple-level-set models for highresolution remote-sensing image classification
    • Jul.
    • H. C. Ma and Y. Yang, "Two Specific multiple-level-set models for highresolution remote-sensing image classification, " IEEE Geosci. Remote Sens. Lett., vol. 6, no. 3, pp. 558-561, Jul. 2009.
    • (2009) IEEE Geosci. Remote Sens. Lett. , vol.6 , Issue.3 , pp. 558-561
    • Ma, H.C.1    Yang, Y.2
  • 19
    • 0030247213 scopus 로고    scopus 로고
    • Region competition: Unifying snake/balloon, region growing and Bayes/MDL/energy for multibandimage segmentation
    • Sep.
    • S. C. Zhu and A. Yuille, "Region competition: Unifying snake/balloon, region growing and Bayes/MDL/energy for multibandimage segmentation, " IEEE Trans. Pattern Anal.Mach. Intell., vol. 18, no. 9, pp. 884-900, Sep. 1996.
    • (1996) IEEE Trans. Pattern Anal.Mach. Intell. , vol.18 , Issue.9 , pp. 884-900
    • Zhu, S.C.1    Yuille, A.2
  • 20
    • 77953812641 scopus 로고    scopus 로고
    • Image segmentation with a unified graphical model
    • Aug.
    • L. Zhang and Q. Ji, "Image segmentation with a unified graphical model, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 8, pp. 1406-1425, Aug. 2010.
    • (2010) IEEE Trans. Pattern Anal. Mach. Intell. , vol.32 , Issue.8 , pp. 1406-1425
    • Zhang, L.1    Ji, Q.2
  • 22
    • 0023123263 scopus 로고
    • Modeling and segmentation of noisy and textured images using Gibbs random fields
    • Jan.
    • H. Derin and H. Elliott, "Modeling and segmentation of noisy and textured images using Gibbs random fields, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 9, no. 1, pp. 39-55, Jan. 1987.
    • (1987) IEEE Trans. Pattern Anal. Mach. Intell. , vol.9 , Issue.1 , pp. 39-55
    • Derin, H.1    Elliott, H.2
  • 23
    • 0242323688 scopus 로고    scopus 로고
    • A Markov random field-based approach to decision-level fusion for remote sensing image classification
    • Oct.
    • R. Nishii, "A Markov random field-based approach to decision-level fusion for remote sensing image classification, " IEEE Trans. Geosci. Remote Sens., vol. 41, no. 10, pp. 2316-2319, Oct. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.10 , pp. 2316-2319
    • Nishii, R.1
  • 24
    • 84893851045 scopus 로고    scopus 로고
    • Image segmentation using multi-region-resolution MRF model
    • Jul.
    • C. Zheng, L. G.Wang, R. Y. Chen, and X. H. Chen, "Image segmentation using multi-region-resolution MRF model, " IEEE Geosci. Remote Sens. Lett., vol. 10, no. 4, pp. 816-820, Jul. 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.4 , pp. 816-820
    • Zheng, C.1    Wang, L.G.2    Chen, R.Y.3    Chen, X.H.4
  • 25
    • 77956023298 scopus 로고    scopus 로고
    • Self-validated labeling of Markov random fields for image segmentation
    • Oct.
    • W. Feng, J. Jia, and Z. Q. Liu, "Self-validated labeling of Markov random fields for image segmentation, " IEEE Trans. Image Process., vol. 32, no. 10, pp. 1871-1887, Oct. 2010.
    • (2010) IEEE Trans. Image Process. , vol.32 , Issue.10 , pp. 1871-1887
    • Feng, W.1    Jia, J.2    Liu, Z.Q.3
  • 26
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • May
    • J. Besag, "On the statistical analysis of dirty pictures, " J. Roy. Stat. Soc., vol. B-48, no. 3, pp. 259-302, May 1986.
    • (1986) J. Roy. Stat. Soc. , Issue.3 , pp. 259-302
    • Besag, J.1
  • 27
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Jun.
    • S. Geman and D. Geman, "Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 6, pp. 721-741, Jun. 1984.
    • (1984) IEEE Trans. Pattern Anal. Mach. Intell. , vol.6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 28
    • 0036532823 scopus 로고    scopus 로고
    • MRF-based texture segmentation using wavelet decomposed images
    • Apr.
    • H. Noda, M. N. Shirazi, and E. Kawuguchi, "MRF-based texture segmentation using wavelet decomposed images, " Pattern Recognit., vol. 35, no. 4, pp. 771-782, Apr. 2002.
    • (2002) Pattern Recognit. , vol.35 , Issue.4 , pp. 771-782
    • Noda, H.1    Shirazi, M.N.2    Kawuguchi, E.3
  • 29
    • 84859083574 scopus 로고    scopus 로고
    • Image segmentation based on multiresolution Markov random field with fuzzy constraint in wavelet domain
    • Mar.
    • C. Zheng, Q. Qin, G. Liu, and Y. Hu, "Image segmentation based on multiresolution Markov random field with fuzzy constraint in wavelet domain, " IET Image Process., vol. 6, no. 3, pp. 213-221, Mar. 2012.
    • (2012) IET Image Process. , vol.6 , Issue.3 , pp. 213-221
    • Zheng, C.1    Qin, Q.2    Liu, G.3    Hu, Y.4
  • 31
    • 73249139477 scopus 로고    scopus 로고
    • Object based image analysis for remote sensing
    • Jan.
    • T. Blaschke, "Object based image analysis for remote sensing, " ISPRS J. Photogramm. Remote Sens., vol. 65, no. 1, pp. 2-16, Jan. 2010.
    • (2010) ISPRS J. Photogramm. Remote Sens. , vol.65 , Issue.1 , pp. 2-16
    • Blaschke, T.1
  • 32
    • 84871748730 scopus 로고    scopus 로고
    • An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery
    • Oct.
    • X. Huang and L. P. Zhang, "An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 257-272, Oct. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 257-272
    • Huang, X.1    Zhang, L.P.2
  • 33
    • 56549121535 scopus 로고    scopus 로고
    • IRGS: Image segmentation using edge penalties and region growing
    • Dec.
    • Q. Yu and D. A. Clausi, "IRGS: Image segmentation using edge penalties and region growing, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 12, pp. 2126-2139, Dec. 2008.
    • (2008) IEEE Trans. Pattern Anal. Mach. Intell. , vol.30 , Issue.12 , pp. 2126-2139
    • Yu, Q.1    Clausi, D.A.2
  • 34
    • 36349035278 scopus 로고    scopus 로고
    • SAR sea-ice image analysis based on iterative region growing using semantics
    • Dec.
    • Q. Yu and D. A. Clausi, "SAR sea-ice image analysis based on iterative region growing using semantics, " IEEE Trans. Geosci. Remote Sens., vol. 45, no. 12, pp. 3919-3931, Dec. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.12 , pp. 3919-3931
    • Yu, Q.1    Clausi, D.A.2
  • 35
    • 84859784215 scopus 로고    scopus 로고
    • Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty
    • Apr.
    • P. Yu, A. K. Qin, and D. A. Clausi, "Unsupervised polarimetric SAR image segmentation and classification using region growing with edge penalty, " IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1302-1317, Apr. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.4 , pp. 1302-1317
    • Yu, P.1    Qin, A.K.2    Clausi, D.A.3
  • 36
    • 34547657583 scopus 로고    scopus 로고
    • An unsupervised segmentation method using Markov random field on region adjacency graph for SAR images
    • G. S. Xia, H. Chu, and S. Hong, "An unsupervised segmentation method using Markov random field on region adjacency graph for SAR images, " in Proc. Int. Conf. Radar (CIE'06), 2006, pp. 1-4.
    • (2006) Proc. Int. Conf. Radar (CIE'06) , pp. 1-4
    • Xia, G.S.1    Chu, H.2    Hong, S.3
  • 37
    • 70449585564 scopus 로고    scopus 로고
    • A new localized superpixel Markov field for image segmentation
    • X. F. Wang and X. P. Zhang, "A new localized superpixel Markov field for image segmentation, " in Proc. IEEE Int. Conf. Multimedia Expo, 2009, pp. 642-645.
    • (2009) Proc. IEEE Int. Conf. Multimedia Expo , pp. 642-645
    • Wang, X.F.1    Zhang, X.P.2
  • 39
    • 84992343450 scopus 로고    scopus 로고
    • Region-based classification by combining MS segmentation and MRF for POLSAR images
    • Mar.
    • B. Zhang, G. Ma, Z. Zhang, and Q. Qin, "Region-based classification by combining MS segmentation and MRF for POLSAR images, " J. Syst. Eng. Electron., vol. 24, no. 3, pp. 400-409, Mar. 2013.
    • (2013) J. Syst. Eng. Electron. , vol.24 , Issue.3 , pp. 400-409
    • Zhang, B.1    Ma, G.2    Zhang, Z.3    Qin, Q.4
  • 40
    • 77951613825 scopus 로고    scopus 로고
    • Watershed segmentation with automatic altitude selection and region merging based on the Markov random field model
    • W. F. Kuo and Y. N. Sun, "Watershed segmentation with automatic altitude selection and region merging based on the Markov random field model, " Int. J. Pattern Recognit. Artif. Intell., vol. 24, no. 1, pp. 153-171, Jan. 2010.
    • (2010) Int. J. Pattern Recognit. Artif. Intell. , vol.24 , Issue.1 , pp. 153-171
    • Kuo, W.F.1    Sun, Y.N.2
  • 41
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the em algorithm
    • Jan.
    • A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm, " J. Roy. Stat. Soc. B., vol. 39, no. 1, pp. 1-38, Jan. 1977.
    • (1977) J. Roy. Stat. Soc. B. , vol.39 , Issue.1 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 43
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-vector networks, " Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 44
    • 85028214516 scopus 로고    scopus 로고
    • last modified 2012.
    • S. Bagon. Matlab interface for EDISON [Online]. Available: http://www.wisdom.weizmann.ac.il/~bagon/matlab.html, last modified 2012.
    • Matlab Interface for EDISON
    • Bagon, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.