메뉴 건너뛰기




Volumn 56, Issue 1, 2018, Pages 391-406

Unsupervised spectral-spatial feature learning via deep residual conv-deconv network for hyperspectral image classification

Author keywords

Convolutional network; Deconvolutional network; Hyperspectral image classification; Residual learning; Unsupervised spectral spatial feature learning

Indexed keywords

CLASSIFICATION (OF INFORMATION); CONVOLUTION; DECODING; FEATURE EXTRACTION; HYPERSPECTRAL IMAGING; IMAGE CLASSIFICATION; INDEPENDENT COMPONENT ANALYSIS; OBJECT DETECTION; PERSONNEL TRAINING; REMOTE SENSING; SEMANTICS; SIGNAL ENCODING; SPECTROSCOPY; SUPPORT VECTOR MACHINES;

EID: 85032438871     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2017.2748160     Document Type: Article
Times cited : (278)

References (57)
  • 2
    • 84921020001 scopus 로고    scopus 로고
    • A survey on spectral-spatial classification techniques based on attribute profiles
    • May
    • P. Ghamisi, M. Dalla Mura, and J. A. Benediktsson, "A survey on spectral-spatial classification techniques based on attribute profiles, " IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, pp. 2335-2353, May 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.5 , pp. 2335-2353
    • Ghamisi, P.1    Dalla Mura, M.2    Benediktsson, J.A.3
  • 3
    • 84955620816 scopus 로고    scopus 로고
    • Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification
    • Jun.
    • Y. Gu, T. Liu, X. Jia, J. A. Benediktsson, and J. Chanussot, "Nonlinear multiple kernel learning with multiple-structure-element extended morphological profiles for hyperspectral image classification, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3235-3247, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3235-3247
    • Gu, Y.1    Liu, T.2    Jia, X.3    Benediktsson, J.A.4    Chanussot, J.5
  • 5
    • 84900815487 scopus 로고    scopus 로고
    • Automatic spectral-spatial classification framework based on attribute profiles and supervised feature extraction
    • Sep.
    • P. Ghamisi, J. A. Benediktsson, and J. R. Sveinsson, "Automatic spectral-spatial classification framework based on attribute profiles and supervised feature extraction, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5771-5782, Sep. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.9 , pp. 5771-5782
    • Ghamisi, P.1    Benediktsson, J.A.2    Sveinsson, J.R.3
  • 6
    • 84896317984 scopus 로고    scopus 로고
    • Slow feature analysis for change detection in multispectral imagery
    • May
    • C. Wu, B. Du, and L. Zhang, "Slow feature analysis for change detection in multispectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 52, no. 5, pp. 2858-2874, May 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.5 , pp. 2858-2874
    • Wu, C.1    Du, B.2    Zhang, L.3
  • 7
    • 84974817496 scopus 로고    scopus 로고
    • Learning a transferable change rule from a recurrent neural network for land cover change detection
    • H. Lyu, H. Lu, and L. Mou, "Learning a transferable change rule from a recurrent neural network for land cover change detection, " Remote Sens., vol. 8, no. 6, p. 506, 2016.
    • (2016) Remote Sens. , vol.8 , Issue.6 , pp. 506
    • Lyu, H.1    Lu, H.2    Mou, L.3
  • 8
    • 84871725096 scopus 로고    scopus 로고
    • Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach
    • Jan.
    • B. Demir, F. Bovolo, and L. Bruzzone, "Updating land-cover maps by classification of image time series: A novel change-detection-driven transfer learning approach, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 300-312, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 300-312
    • Demir, B.1    Bovolo, F.2    Bruzzone, L.3
  • 9
    • 84867072485 scopus 로고    scopus 로고
    • Application of model-based change detection to airborne VNIR/SWIR hyperspectral imagery
    • Oct.
    • J. Meola, M. T. Eismann, R. L. Moses, and J. N. Ash, "Application of model-based change detection to airborne VNIR/SWIR hyperspectral imagery, " IEEE Trans. Geosci. Remote Sens., vol. 50, no. 10, pp. 3693-3706, Oct. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.10 , pp. 3693-3706
    • Meola, J.1    Eismann, M.T.2    Moses, R.L.3    Ash, J.N.4
  • 10
    • 84871844243 scopus 로고    scopus 로고
    • Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota
    • Mar.
    • L. G. Olmanson, P. L. Brezonik, and M. E. Bauer, "Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota, " Remote Sens. Environ., vol. 130, pp. 254-265, Mar. 2013.
    • (2013) Remote Sens. Environ. , vol.130 , pp. 254-265
    • Olmanson, L.G.1    Brezonik, P.L.2    Bauer, M.E.3
  • 11
    • 0031228124 scopus 로고    scopus 로고
    • Opportunities and limitations for image-based remote sensing in precision crop management
    • Sep.
    • M. S. Moran, Y. Inoue, and E. M. Barnes, "Opportunities and limitations for image-based remote sensing in precision crop management, " Remote Sens. Environ., vol. 61, no. 3, pp. 319-346, Sep. 1997.
    • (1997) Remote Sens. Environ. , vol.61 , Issue.3 , pp. 319-346
    • Moran, M.S.1    Inoue, Y.2    Barnes, E.M.3
  • 12
    • 84866074921 scopus 로고    scopus 로고
    • Heathland conservation status mapping through integration of hyperspectral mixture analysis and decision tree classifiers
    • Nov.
    • S. Delalieux, B. Somers, B. Haest, T. Spanhove, J. V. Borre, and C. A. Mücher, "Heathland conservation status mapping through integration of hyperspectral mixture analysis and decision tree classifiers, " Remote Sens. Environ., vol. 126, pp. 222-231, Nov. 2012.
    • (2012) Remote Sens. Environ. , vol.126 , pp. 222-231
    • Delalieux, S.1    Somers, B.2    Haest, B.3    Spanhove, T.4    Borre, J.V.5    Mücher, C.A.6
  • 13
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Mar.
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 14
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Aug.
    • T. K. Ho, "The random subspace method for constructing decision forests, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998.
    • (1998) IEEE Trans. Pattern Anal. Mach. Intell. , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 15
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines, " IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 17
    • 84872922940 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning
    • Feb.
    • J. Li, J. M. Bioucas-Dias, and A. Plaza, "Spectral-spatial classification of hyperspectral data using loopy belief propagation and active learning, " IEEE Trans. Geosci. Remote Sens., vol. 51, no. 2, pp. 844-856, Feb. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.2 , pp. 844-856
    • Li, J.1    Bioucas-Dias, J.M.2    Plaza, A.3
  • 18
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Nov.
    • M. Fauvel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles, " IEEE Trans. Geosci. Remote Sens., vol. 46, no. 11, pp. 3804-3814, Nov. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.11 , pp. 3804-3814
    • Fauvel, M.1    Benediktsson, J.A.2    Chanussot, J.3    Sveinsson, J.R.4
  • 19
    • 84982237011 scopus 로고    scopus 로고
    • A self-improving convolution neural network for the classification of hyperspectral data
    • Oct.
    • P. Ghamisi, Y. Chen, and X. X. Zhu, "A self-improving convolution neural network for the classification of hyperspectral data, " IEEE Geosci. Remote Sens. Lett., vol. 13, no. 10, pp. 1537-1541, Oct. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.10 , pp. 1537-1541
    • Ghamisi, P.1    Chen, Y.2    Zhu, X.X.3
  • 21
    • 85027942618 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral data based on deep belief network
    • Jun.
    • Y. Chen, X. Zhao, and X. Jia, "Spectral-spatial classification of hyperspectral data based on deep belief network, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 8, no. 6, pp. 2381-2392, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.8 , Issue.6 , pp. 2381-2392
    • Chen, Y.1    Zhao, X.2    Jia, X.3
  • 22
    • 84947865496 scopus 로고    scopus 로고
    • Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
    • Dec.
    • C. Tao, H. Pan, Y. Li, and Z. Zou, "Unsupervised spectral-spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification, " IEEE Geosci. Remote Sens. Lett., vol. 12, no. 12, pp. 2438-2442, Dec. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.12 , pp. 2438-2442
    • Tao, C.1    Pan, H.2    Li, Y.3    Zou, Z.4
  • 23
    • 85019010234 scopus 로고    scopus 로고
    • Deep recurrent neural networks for hyperspectral image classification
    • Jul.
    • L. Mou, P. Ghamisi, and X. X. Zhu, "Deep recurrent neural networks for hyperspectral image classification, " IEEE Trans. Geosci. Remote Sens., vol. 55, no. 7, pp. 3639-3655, Jul. 2017.
    • (2017) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.7 , pp. 3639-3655
    • Mou, L.1    Ghamisi, P.2    Zhu, X.X.3
  • 24
    • 84906951013 scopus 로고    scopus 로고
    • Feature selection based on hybridization of genetic algorithm and particle swarm optimization
    • Feb.
    • P. Ghamisi and J. A. Benediktsson, "Feature selection based on hybridization of genetic algorithm and particle swarm optimization, " IEEE Geosci. Remote Sens. Lett., vol. 12, no. 2, pp. 309-313, Feb. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.2 , pp. 309-313
    • Ghamisi, P.1    Benediktsson, J.A.2
  • 28
    • 85020204315 scopus 로고    scopus 로고
    • FusioNet: A twostream convolutional neural network for urban scene classification using PolSAR and hyperspectral data
    • J. Hu, L. Mou, A. Schmitt, and X. X. Zhu, "FusioNet: A twostream convolutional neural network for urban scene classification using PolSAR and hyperspectral data, " in Proc. Joint Urban Remote Sens. Event (JURSE), 2017, pp. 1-4.
    • (2017) Proc. Joint Urban Remote Sens. Event (JURSE) , pp. 1-4
    • Hu, J.1    Mou, L.2    Schmitt, A.3    Zhu, X.X.4
  • 29
    • 84961595279 scopus 로고    scopus 로고
    • Region-based convolutional networks for accurate object detection and segmentation
    • Jan.
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Region-based convolutional networks for accurate object detection and segmentation, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 38, no. 1, pp. 142-158, Jan. 2016.
    • (2016) IEEE Trans. Pattern Anal. Mach. Intell. , vol.38 , Issue.1 , pp. 142-158
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 32
    • 84973879016 scopus 로고    scopus 로고
    • Learning deconvolution network for semantic segmentation
    • Dec.
    • H. Noh, S. Hong, and B. Han, "Learning deconvolution network for semantic segmentation, " in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), Dec. 2015, pp. 1520-1528.
    • (2015) Proc. IEEE Int. Conf. Comput. Vis. (ICCV) , pp. 1520-1528
    • Noh, H.1    Hong, S.2    Han, B.3
  • 33
    • 84944068115 scopus 로고    scopus 로고
    • Scene recognition by manifold regularized deep learning architecture
    • Oct.
    • Y. Yuan, L. Mou, and X. Lu, "Scene recognition by manifold regularized deep learning architecture, " IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 10, pp. 2222-2233, Oct. 2015.
    • (2015) IEEE Trans. Neural Netw. Learn. Syst. , vol.26 , Issue.10 , pp. 2222-2233
    • Yuan, Y.1    Mou, L.2    Lu, X.3
  • 34
    • 85007436568 scopus 로고    scopus 로고
    • Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis
    • Jul.
    • L. Mou and X. X. Zhu, "Spatiotemporal scene interpretation of space videos via deep neural network and tracklet analysis, " in Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS), Jul. 2016, pp. 1823-1826.
    • (2016) Proc. IEEE Int. Geosci. Remote Sens. Symp. (IGARSS) , pp. 1823-1826
    • Mou, L.1    Zhu, X.X.2
  • 35
    • 85021836557 scopus 로고    scopus 로고
    • Multitemporal very high resolution from space: Outcome of the 2016 IEEE GRSS Data Fusion Contest
    • Aug.
    • L. Mou et al., "Multitemporal very high resolution from space: Outcome of the 2016 IEEE GRSS Data Fusion Contest, " IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 8, pp. 3435-3447, Aug. 2017.
    • (2017) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.10 , Issue.8 , pp. 3435-3447
    • Mou, L.1
  • 36
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Oct.
    • Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232-6251, Oct. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 38
    • 84979492674 scopus 로고    scopus 로고
    • Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach
    • Aug.
    • W. Zhao and S. Du, "Spectral-spatial feature extraction for hyperspectral image classification: A dimension reduction and deep learning approach, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4544-4554, Aug. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.8 , pp. 4544-4554
    • Zhao, W.1    Du, S.2
  • 39
    • 84995532079 scopus 로고    scopus 로고
    • Deep learning with attribute profiles for hyperspectral image classification
    • Dec.
    • E. Aptoula, M. C. Ozdemir, and B. Yanikoglu, "Deep learning with attribute profiles for hyperspectral image classification, " IEEE Geosci. Remote Sens. Lett., vol. 13, no. 12, pp. 1970-1974, Dec. 2016.
    • (2016) IEEE Geosci. Remote Sens. Lett. , vol.13 , Issue.12 , pp. 1970-1974
    • Aptoula, E.1    Ozdemir, M.C.2    Yanikoglu, B.3
  • 40
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Mar.
    • A. Romero, C. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification, " IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1349-1362, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 41
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Dec.
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, " J. Mach. Learn. Res., vol. 11, no. 12, pp. 3371-3408, Dec. 2010.
    • (2010) J. Mach. Learn. Res. , vol.11 , Issue.12 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 42
    • 0000359337 scopus 로고
    • Backpropagation applied to handwritten zip code recognition
    • Y. LeCun et al., "Backpropagation applied to handwritten zip code recognition, " Neural Comput., vol. 1, no. 4, pp. 541-551, 1989.
    • (1989) Neural Comput. , vol.1 , Issue.4 , pp. 541-551
    • LeCun, Y.1
  • 43
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 46
    • 0028392483 scopus 로고
    • Learning long-term dependencies with gradient descent is difficult
    • Mar.
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-term dependencies with gradient descent is difficult, " IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 47
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks, " in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS), 2010, pp. 249-256.
    • (2010) Proc. Int. Conf. Artif. Intell. Statist. (AISTATS) , pp. 249-256
    • Glorot, X.1    Bengio, Y.2
  • 50
    • 3042661357 scopus 로고    scopus 로고
    • Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy
    • G. M. Foody, "Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy, " Photogramm. Eng. Remote Sens., vol. 70, no. 5, pp. 627-633, 2004.
    • (2004) Photogramm. Eng. Remote Sens. , vol.70 , Issue.5 , pp. 627-633
    • Foody, G.M.1
  • 51
    • 84939141053 scopus 로고    scopus 로고
    • Deep convolutional neural networks for hyperspectral image classification
    • Jan. Art. no. 258619
    • W. Hu, Y. Huang, L. Wei, F. Zhang, and H. Li, "Deep convolutional neural networks for hyperspectral image classification, " J. Sensors, vol. 2015, Jan. 2015, Art. no. 258619.
    • (2015) J. Sensors , vol.2015
    • Hu, W.1    Huang, Y.2    Wei, L.3    Zhang, F.4    Li, H.5
  • 53
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Jan.
    • N. Otsu, "A threshold selection method from gray-level histograms, " IEEE Trans. Syst., Man, Cybern., vol. SMC-9, no. 1, pp. 62-66, Jan. 1979.
    • (1979) IEEE Trans. Syst., Man, Cybern. , vol.SMC9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 54
    • 0035248508 scopus 로고    scopus 로고
    • A new approach for the morphological segmentation of high-resolution satellite imagery
    • Feb.
    • M. Pesaresi and J. A. Benediktsson, "A new approach for the morphological segmentation of high-resolution satellite imagery, " IEEE Trans. Geosci. Remote Sens., vol. 39, no. 2, pp. 309-320, Feb. 2001.
    • (2001) IEEE Trans. Geosci. Remote Sens. , vol.39 , Issue.2 , pp. 309-320
    • Pesaresi, M.1    Benediktsson, J.A.2
  • 55
    • 84899967600 scopus 로고    scopus 로고
    • Advances in spectral-spatial classification of hyperspectral images
    • Mar.
    • M. Fauvel, Y. Tarabalka, J. A. Benediktsson, J. Chanussot, and J. C. Tilton, "Advances in spectral-spatial classification of hyperspectral images, " Proc. IEEE, vol. 101, no. 3, pp. 652-675, Mar. 2013.
    • (2013) Proc. IEEE , vol.101 , Issue.3 , pp. 652-675
    • Fauvel, M.1    Tarabalka, Y.2    Benediktsson, J.A.3    Chanussot, J.4    Tilton, J.C.5
  • 56
    • 14644412366 scopus 로고    scopus 로고
    • Classification of hyperspectral data from urban areas based on extended morphological profiles
    • Mar.
    • J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, "Classification of hyperspectral data from urban areas based on extended morphological profiles, " IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.3 , pp. 480-491
    • Benediktsson, J.A.1    Palmason, J.A.2    Sveinsson, J.R.3
  • 57
    • 66749175769 scopus 로고    scopus 로고
    • Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas
    • Dec.
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, "Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas, " EURASIP J. Adv. Signal Process., vol. 2009, p. 783194, Dec. 2009.
    • (2009) EURASIP J. Adv. Signal Process. , vol.2009 , pp. 783194
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.