메뉴 건너뛰기




Volumn 36, Issue 10, 2018, Pages 977-

An apobec3a-cas9 base editor with minimized bystander and off-target activities

Author keywords

[No Author keywords available]

Indexed keywords

BASE PAIRS; CYTIDINE DEAMINASE; ENZYMATIC ACTIVITIES; GENOMIC LOCUS; HUMAN CELLS; MUTATION FREQUENCY; TARGET ACTIVITY; TARGET SITES;

EID: 85054153501     PISSN: 10870156     EISSN: 15461696     Source Type: Journal    
DOI: 10.1038/nbt.4199     Document Type: Article
Times cited : (317)

References (33)
  • 1
    • 84971006562 scopus 로고    scopus 로고
    • Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
    • Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A. & Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
    • (2016) Nature , vol.533 , pp. 420-424
    • Komor, A.C.1    Kim, Y.B.2    Packer, M.S.3    Zuris, J.A.4    Liu, D.R.5
  • 2
    • 84981516964 scopus 로고    scopus 로고
    • Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
    • Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).
    • (2016) Science , vol.353 , pp. aaf8729
    • Nishida, K.1
  • 3
    • 85018918215 scopus 로고    scopus 로고
    • Highly efficient RNA-guided base editing in mouse embryos
    • Kim, K. et al. Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 35, 435–437 (2017).
    • (2017) Nat. Biotechnol. , vol.35 , pp. 435-437
    • Kim, K.1
  • 4
    • 85020458044 scopus 로고    scopus 로고
    • Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery
    • Rees, H.A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).
    • (2017) Nat. Commun. , vol.8
    • Rees, H.A.1
  • 5
    • 85018594542 scopus 로고    scopus 로고
    • Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion
    • Shimatani, Z. et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441–443 (2017).
    • (2017) Nat. Biotechnol. , vol.35 , pp. 441-443
    • Shimatani, Z.1
  • 6
    • 84992745786 scopus 로고    scopus 로고
    • Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells
    • Hess, G.T. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036–1042 (2016).
    • (2016) Nat. Methods , vol.13 , pp. 1036-1042
    • Hess, G.T.1
  • 7
    • 84913594397 scopus 로고    scopus 로고
    • The new frontier of genome engineering with CRISPR-Cas9
    • Doudna, J.A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
    • (2014) Science , vol.346 , pp. 1258096
    • Doudna, J.A.1    Charpentier, E.G.E.2
  • 8
    • 84923106217 scopus 로고    scopus 로고
    • Therapeutic genome editing: Prospects and challenges
    • Cox, D.B.T., Platt, R.J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).
    • (2015) Nat. Med. , vol.21 , pp. 121-131
    • Cox, D.B.T.1    Platt, R.J.2    Zhang, F.3
  • 9
    • 84900314611 scopus 로고    scopus 로고
    • CRISPR-Cas systems for editing, regulating and targeting genomes
    • Sander, J.D. & Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).
    • (2014) Nat. Biotechnol. , vol.32 , pp. 347-355
    • Sander, J.D.1    Joung, J.K.2
  • 10
    • 85030701188 scopus 로고    scopus 로고
    • Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity
    • Komor, A.C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).
    • (2017) Sci. Adv. , vol.3
    • Komor, A.C.1
  • 11
    • 85017397628 scopus 로고    scopus 로고
    • Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions
    • Kim, Y.B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).
    • (2017) Nat. Biotechnol. , vol.35 , pp. 371-376
    • Kim, Y.B.1
  • 12
    • 84901324507 scopus 로고    scopus 로고
    • A DNA sequence recognition loop on APOBEC3A controls substrate specificity
    • Logue, E.C. et al. A DNA sequence recognition loop on APOBEC3A controls substrate specificity. PLoS One 9, e97062 (2014).
    • (2014) Plos One , vol.9
    • Logue, E.C.1
  • 13
    • 85006341729 scopus 로고    scopus 로고
    • Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B
    • Shi, K. et al. Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat. Struct. Mol. Biol. 24, 131–139 (2017).
    • (2017) Nat. Struct. Mol. Biol. , vol.24 , pp. 131-139
    • Shi, K.1
  • 14
    • 85028336487 scopus 로고    scopus 로고
    • Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity
    • Kouno, T. et al. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nat. Commun. 8, 15024 (2017).
    • (2017) Nat. Commun. , vol.8
    • Kouno, T.1
  • 15
    • 84930189135 scopus 로고    scopus 로고
    • The ssDNA mutator APOBEC3A is regulated by cooperative dimerization
    • Bohn, M.-F. et al. The ssDNA mutator APOBEC3A is regulated by cooperative dimerization. Structure 23, 903–911 (2015).
    • (2015) Structure , vol.23 , pp. 903-911
    • Bohn, M.-F.1
  • 16
    • 67650330317 scopus 로고    scopus 로고
    • AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity
    • Wang, M., Yang, Z., Rada, C. & Neuberger, M.S. AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat. Struct. Mol. Biol. 16, 769–776 (2009).
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 769-776
    • Wang, M.1    Yang, Z.2    Rada, C.3    Neuberger, M.S.4
  • 17
    • 85018935232 scopus 로고    scopus 로고
    • Genome-wide target specificities of CRISPR RNA-guided programmable deaminases
    • Kim, D. et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat. Biotechnol. 35, 475–480 (2017).
    • (2017) Nat. Biotechnol. , vol.35 , pp. 475-480
    • Kim, D.1
  • 18
    • 84923266604 scopus 로고    scopus 로고
    • GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
    • Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).
    • (2015) Nat. Biotechnol. , vol.33 , pp. 187-197
    • Tsai, S.Q.1
  • 19
    • 84896308706 scopus 로고    scopus 로고
    • Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases
    • Bae, S., Park, J. & Kim, J.-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).
    • (2014) Bioinformatics , vol.30 , pp. 1473-1475
    • Bae, S.1    Park, J.2    Kim, J.-S.3
  • 20
    • 84963941043 scopus 로고    scopus 로고
    • High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
    • Kleinstiver, B.P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).
    • (2016) Nature , vol.529 , pp. 490-495
    • Kleinstiver, B.P.1
  • 21
    • 85031099583 scopus 로고    scopus 로고
    • Enhanced proofreading governs CRISPR-Cas9 targeting accuracy
    • Chen, J.S. et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407–410 (2017).
    • (2017) Nature , vol.550 , pp. 407-410
    • Chen, J.S.1
  • 22
    • 85030715315 scopus 로고    scopus 로고
    • Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor
    • Wang, L. et al. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. 27, 1289–1292 (2017).
    • (2017) Cell Res , vol.27 , pp. 1289-1292
    • Wang, L.1
  • 23
    • 77149153067 scopus 로고    scopus 로고
    • Beta-thalassemia
    • Cao, A. & Galanello, R. Beta-thalassemia. Genet. Med. 12, 61–76 (2010).
    • (2010) Genet. Med. , vol.12 , pp. 61-76
    • Cao, A.1    Galanello, R.2
  • 24
    • 85029749445 scopus 로고    scopus 로고
    • Correction of β-thalassemia mutant by base editor in human embryos
    • Liang, P. et al. Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell 8, 811–822 (2017).
    • (2017) Protein Cell , vol.8 , pp. 811-822
    • Liang, P.1
  • 25
    • 34248147013 scopus 로고    scopus 로고
    • Three new beta-globin gene promoter mutations identified through newborn screening
    • Eng, B. et al. Three new beta-globin gene promoter mutations identified through newborn screening. Hemoglobin 31, 129–134 (2007).
    • (2007) Hemoglobin , vol.31 , pp. 129-134
    • Eng, B.1
  • 26
    • 84928549386 scopus 로고    scopus 로고
    • A novel promoter mutation (HBB: C.-75G>T) was identified as a cause of β(+)-thalassemia
    • Li, Z. et al. A novel promoter mutation (HBB: c.-75G>T) was identified as a cause of β(+)-thalassemia. Hemoglobin 39, 115–120 (2015).
    • (2015) Hemoglobin , vol.39 , pp. 115-120
    • Li, Z.1
  • 27
    • 84927514894 scopus 로고    scopus 로고
    • In vivo genome editing using Staphylococcus aureus Cas9
    • Ran, F.A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).
    • (2015) Nature , vol.520 , pp. 186-191
    • Ran, F.A.1
  • 28
    • 85044959586 scopus 로고    scopus 로고
    • Evolved Cas9 variants with broad PAM compatibility and high DNA specificity
    • Hu, J.H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).
    • (2018) Nature , vol.556 , pp. 57-63
    • Hu, J.H.1
  • 29
    • 84886725548 scopus 로고    scopus 로고
    • The local dinucleotide preference of APOBEC3G can be altered from 5′-CC to 5′-TC by a single amino acid substitution
    • Rathore, A. et al. The local dinucleotide preference of APOBEC3G can be altered from 5′-CC to 5′-TC by a single amino acid substitution. J. Mol. Biol. 425, 4442–4454 (2013).
    • (2013) J. Mol. Biol. , vol.425 , pp. 4442-4454
    • Rathore, A.1
  • 30
    • 84978405425 scopus 로고    scopus 로고
    • Analyzing CRISPR genome-editing experiments with CRISPResso
    • Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695–697 (2016).
    • (2016) Nat. Biotechnol. , vol.34 , pp. 695-697
    • Pinello, L.1
  • 31
    • 85030690151 scopus 로고    scopus 로고
    • Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage
    • Kulcsár, P.I. et al. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biol. 18, 190 (2017).
    • (2017) Genome Biol , vol.18 , pp. 190
    • Kulcsár, P.I.1
  • 32
    • 85034565473 scopus 로고    scopus 로고
    • Rescueof high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides
    • Kim, S., Bae, T., Hwang, J. & Kim, J.-S. Rescueof high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides. Genome Biol. 18, 218 (2017).
    • (2017) Genome Biol , vol.18 , Issue.218
    • Kim, S.1    Bae, T.2    Hwang, J.3    Kim, J.-S.4
  • 33
    • 84988643091 scopus 로고    scopus 로고
    • Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia
    • Ye, L. et al. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Proc. Natl. Acad. Sci. USA 113, 10661–10665 (2016).
    • (2016) Proc. Natl. Acad. Sci. USA , vol.113 , pp. 10661-10665
    • Ye, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.