-
1
-
-
84971006562
-
Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage
-
Komor, A.C., Kim, Y.B., Packer, M.S., Zuris, J.A. & Liu, D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).
-
(2016)
Nature
, vol.533
, pp. 420-424
-
-
Komor, A.C.1
Kim, Y.B.2
Packer, M.S.3
Zuris, J.A.4
Liu, D.R.5
-
2
-
-
84981516964
-
Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems
-
Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).
-
(2016)
Science
, vol.353
, pp. aaf8729
-
-
Nishida, K.1
-
3
-
-
85018918215
-
Highly efficient RNA-guided base editing in mouse embryos
-
Kim, K. et al. Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 35, 435–437 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 435-437
-
-
Kim, K.1
-
4
-
-
85020458044
-
Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery
-
Rees, H.A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).
-
(2017)
Nat. Commun.
, vol.8
-
-
Rees, H.A.1
-
5
-
-
85018594542
-
Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion
-
Shimatani, Z. et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441–443 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 441-443
-
-
Shimatani, Z.1
-
6
-
-
84992745786
-
Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells
-
Hess, G.T. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036–1042 (2016).
-
(2016)
Nat. Methods
, vol.13
, pp. 1036-1042
-
-
Hess, G.T.1
-
7
-
-
84913594397
-
The new frontier of genome engineering with CRISPR-Cas9
-
Doudna, J.A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
-
(2014)
Science
, vol.346
, pp. 1258096
-
-
Doudna, J.A.1
Charpentier, E.G.E.2
-
8
-
-
84923106217
-
Therapeutic genome editing: Prospects and challenges
-
Cox, D.B.T., Platt, R.J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).
-
(2015)
Nat. Med.
, vol.21
, pp. 121-131
-
-
Cox, D.B.T.1
Platt, R.J.2
Zhang, F.3
-
9
-
-
84900314611
-
CRISPR-Cas systems for editing, regulating and targeting genomes
-
Sander, J.D. & Joung, J.K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32, 347–355 (2014).
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 347-355
-
-
Sander, J.D.1
Joung, J.K.2
-
10
-
-
85030701188
-
Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity
-
Komor, A.C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).
-
(2017)
Sci. Adv.
, vol.3
-
-
Komor, A.C.1
-
11
-
-
85017397628
-
Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions
-
Kim, Y.B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 371-376
-
-
Kim, Y.B.1
-
12
-
-
84901324507
-
A DNA sequence recognition loop on APOBEC3A controls substrate specificity
-
Logue, E.C. et al. A DNA sequence recognition loop on APOBEC3A controls substrate specificity. PLoS One 9, e97062 (2014).
-
(2014)
Plos One
, vol.9
-
-
Logue, E.C.1
-
13
-
-
85006341729
-
Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B
-
Shi, K. et al. Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat. Struct. Mol. Biol. 24, 131–139 (2017).
-
(2017)
Nat. Struct. Mol. Biol.
, vol.24
, pp. 131-139
-
-
Shi, K.1
-
14
-
-
85028336487
-
Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity
-
Kouno, T. et al. Crystal structure of APOBEC3A bound to single-stranded DNA reveals structural basis for cytidine deamination and specificity. Nat. Commun. 8, 15024 (2017).
-
(2017)
Nat. Commun.
, vol.8
-
-
Kouno, T.1
-
15
-
-
84930189135
-
The ssDNA mutator APOBEC3A is regulated by cooperative dimerization
-
Bohn, M.-F. et al. The ssDNA mutator APOBEC3A is regulated by cooperative dimerization. Structure 23, 903–911 (2015).
-
(2015)
Structure
, vol.23
, pp. 903-911
-
-
Bohn, M.-F.1
-
16
-
-
67650330317
-
AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity
-
Wang, M., Yang, Z., Rada, C. & Neuberger, M.S. AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat. Struct. Mol. Biol. 16, 769–776 (2009).
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 769-776
-
-
Wang, M.1
Yang, Z.2
Rada, C.3
Neuberger, M.S.4
-
17
-
-
85018935232
-
Genome-wide target specificities of CRISPR RNA-guided programmable deaminases
-
Kim, D. et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat. Biotechnol. 35, 475–480 (2017).
-
(2017)
Nat. Biotechnol.
, vol.35
, pp. 475-480
-
-
Kim, D.1
-
18
-
-
84923266604
-
GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases
-
Tsai, S.Q. et al. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33, 187–197 (2015).
-
(2015)
Nat. Biotechnol.
, vol.33
, pp. 187-197
-
-
Tsai, S.Q.1
-
19
-
-
84896308706
-
Cas-OFFinder: A fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases
-
Bae, S., Park, J. & Kim, J.-S. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30, 1473–1475 (2014).
-
(2014)
Bioinformatics
, vol.30
, pp. 1473-1475
-
-
Bae, S.1
Park, J.2
Kim, J.-S.3
-
20
-
-
84963941043
-
High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects
-
Kleinstiver, B.P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).
-
(2016)
Nature
, vol.529
, pp. 490-495
-
-
Kleinstiver, B.P.1
-
21
-
-
85031099583
-
Enhanced proofreading governs CRISPR-Cas9 targeting accuracy
-
Chen, J.S. et al. Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407–410 (2017).
-
(2017)
Nature
, vol.550
, pp. 407-410
-
-
Chen, J.S.1
-
22
-
-
85030715315
-
Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor
-
Wang, L. et al. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. 27, 1289–1292 (2017).
-
(2017)
Cell Res
, vol.27
, pp. 1289-1292
-
-
Wang, L.1
-
24
-
-
85029749445
-
Correction of β-thalassemia mutant by base editor in human embryos
-
Liang, P. et al. Correction of β-thalassemia mutant by base editor in human embryos. Protein Cell 8, 811–822 (2017).
-
(2017)
Protein Cell
, vol.8
, pp. 811-822
-
-
Liang, P.1
-
25
-
-
34248147013
-
Three new beta-globin gene promoter mutations identified through newborn screening
-
Eng, B. et al. Three new beta-globin gene promoter mutations identified through newborn screening. Hemoglobin 31, 129–134 (2007).
-
(2007)
Hemoglobin
, vol.31
, pp. 129-134
-
-
Eng, B.1
-
26
-
-
84928549386
-
A novel promoter mutation (HBB: C.-75G>T) was identified as a cause of β(+)-thalassemia
-
Li, Z. et al. A novel promoter mutation (HBB: c.-75G>T) was identified as a cause of β(+)-thalassemia. Hemoglobin 39, 115–120 (2015).
-
(2015)
Hemoglobin
, vol.39
, pp. 115-120
-
-
Li, Z.1
-
27
-
-
84927514894
-
In vivo genome editing using Staphylococcus aureus Cas9
-
Ran, F.A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).
-
(2015)
Nature
, vol.520
, pp. 186-191
-
-
Ran, F.A.1
-
28
-
-
85044959586
-
Evolved Cas9 variants with broad PAM compatibility and high DNA specificity
-
Hu, J.H. et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556, 57–63 (2018).
-
(2018)
Nature
, vol.556
, pp. 57-63
-
-
Hu, J.H.1
-
29
-
-
84886725548
-
The local dinucleotide preference of APOBEC3G can be altered from 5′-CC to 5′-TC by a single amino acid substitution
-
Rathore, A. et al. The local dinucleotide preference of APOBEC3G can be altered from 5′-CC to 5′-TC by a single amino acid substitution. J. Mol. Biol. 425, 4442–4454 (2013).
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 4442-4454
-
-
Rathore, A.1
-
30
-
-
84978405425
-
Analyzing CRISPR genome-editing experiments with CRISPResso
-
Pinello, L. et al. Analyzing CRISPR genome-editing experiments with CRISPResso. Nat. Biotechnol. 34, 695–697 (2016).
-
(2016)
Nat. Biotechnol.
, vol.34
, pp. 695-697
-
-
Pinello, L.1
-
31
-
-
85030690151
-
Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage
-
Kulcsár, P.I. et al. Crossing enhanced and high fidelity SpCas9 nucleases to optimize specificity and cleavage. Genome Biol. 18, 190 (2017).
-
(2017)
Genome Biol
, vol.18
, pp. 190
-
-
Kulcsár, P.I.1
-
32
-
-
85034565473
-
Rescueof high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides
-
Kim, S., Bae, T., Hwang, J. & Kim, J.-S. Rescueof high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides. Genome Biol. 18, 218 (2017).
-
(2017)
Genome Biol
, vol.18
, Issue.218
-
-
Kim, S.1
Bae, T.2
Hwang, J.3
Kim, J.-S.4
-
33
-
-
84988643091
-
Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia
-
Ye, L. et al. Genome editing using CRISPR-Cas9 to create the HPFH genotype in HSPCs: An approach for treating sickle cell disease and β-thalassemia. Proc. Natl. Acad. Sci. USA 113, 10661–10665 (2016).
-
(2016)
Proc. Natl. Acad. Sci. USA
, vol.113
, pp. 10661-10665
-
-
Ye, L.1
|