-
1
-
-
33750729556
-
Manifold regularization: A geometric framework for learning from labeled and unlabeled examples
-
Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. Journal of Machine Learning Research, 7:2399-2434, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
5
-
-
0034592781
-
Data selection for support vector machine classifiers
-
New York, NY, USA, ACM
-
Glenn Fung and Olvi L. Mangasarian. Data selection for support vector machine classifiers. In KDD '00: Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 64-70, New York, NY, USA, 2000. ACM.
-
(2000)
KDD '00: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 64-70
-
-
Fung, G.1
Mangasarian, O.L.2
-
7
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1-3):389-422, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
8
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Gert R. G. Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael I. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Gert, R.1
Lanckriet, G.2
Cristianini, N.3
Bartlett, P.4
El Ghaoui, L.5
Jordan, M.I.6
-
9
-
-
57249084590
-
SimpleMKL
-
Alain Rakotomamonjy, Francis R. Bach, Stéphane Canu, and Yves Grandvalet. SimpleMKL. Journal of Machine Learning Research, 9:1179-1225, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1179-1225
-
-
Rakotomamonjy, A.1
Francis, R.2
Bach, S.C.3
Grandvalet, Y.4
-
10
-
-
44649150219
-
Forward semi-supervised feature selection
-
Jiangtao Ren, Zhengyuan Qiu, Wei Fan, Hong Cheng, and Philip S. Yu. Forward semi-supervised feature selection. In Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD '08), pages 970-976, 2008.
-
(2008)
Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD '08)
, pp. 970-976
-
-
Ren, J.1
Qiu, Z.2
Fan, W.3
Cheng, H.4
Yu, P.S.5
-
11
-
-
33745776113
-
Large scale multiple kernel learning
-
Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, and Bernhard Schölkopf. Large scale multiple kernel learning. Journal of Machine Learning Research, 7:1531-1565, 2006.
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Rätsch, G.2
Schäfer, C.3
Schölkopf, B.4
-
12
-
-
84890520049
-
Use of the zero norm with linear models and kernel methods
-
Jason Weston, André Elisseeff, Bernhard Schölkopf, and Mike Tipping. Use of the zero norm with linear models and kernel methods. Journal of Machine Learning Research, 3:1439-1461, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseeff, A.2
Schölkopf, B.3
Tipping, M.4
-
13
-
-
84863385308
-
An extended level method for efficient multiple kernel learning
-
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, (NIPS)
-
Zenglin Xu, Rong Jin, Irwin King, and Michael Lyu. An extended level method for efficient multiple kernel learning. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in Neural Information Processing Systems 21 (NIPS), pages 1825-1832. 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.21
, pp. 1825-1832
-
-
Xu, Z.1
Jin, R.2
King, I.3
Lyu, M.4
-
14
-
-
70449102559
-
Semi-supervised feature selection via spectral analysis
-
Zheng Zhao and Huan Liu. Semi-supervised feature selection via spectral analysis. In SDM, pages 641-646, 2007.
-
(2007)
SDM
, pp. 641-646
-
-
Zhao, Z.1
Liu, H.2
|