메뉴 건너뛰기




Volumn , Issue , 2006, Pages 209-216

Sparse Multinomial Logistic Regression via Bayesian L1 Regularisation

Author keywords

[No Author keywords available]

Indexed keywords

BENCHMARKING; CHARACTER RECOGNITION; MAXIMUM LIKELIHOOD; REGRESSION ANALYSIS;

EID: 85015152103     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (24)

References (32)
  • 3
    • 0014710323 scopus 로고
    • On optimum recognition error and reject tradeoff
    • January
    • C. K. Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory, 16(1):41-46, January 1970.
    • (1970) IEEE Transactions on Information Theory , vol.16 , Issue.1 , pp. 41-46
    • Chow, C. K.1
  • 4
    • 0036134369 scopus 로고    scopus 로고
    • Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
    • M. Saerens, P. Latinne, and C. Decaestecker. Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure. Neural Computation, 14(1):21-41, 2001.
    • (2001) Neural Computation , vol.14 , Issue.1 , pp. 21-41
    • Saerens, M.1    Latinne, P.2    Decaestecker, C.3
  • 5
    • 0003757758 scopus 로고
    • Statistical decision theory and Bayesian analysis
    • Springer, second edition
    • J. O. Berger. Statistical decision theory and Bayesian analysis. Springer Series in Statistics. Springer, second edition, 1985.
    • (1985) Springer Series in Statistics
    • Berger, J. O.1
  • 6
    • 15944363312 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • J. Zhu and T. Hastie. Classification of gene microarrays by penalized logistic regression. Biostatistics, 5(3):427-443, 2004.
    • (2004) Biostatistics , vol.5 , Issue.3 , pp. 427-443
    • Zhu, J.1    Hastie, T.2
  • 7
    • 33645057908 scopus 로고    scopus 로고
    • Multi-class cancer classification using multinomial probit regression with Bayesian gene selection
    • March
    • X. Zhou, X. Wang, and E. R. Dougherty. Multi-class cancer classification using multinomial probit regression with Bayesian gene selection. IEE Proceedings - Systems Biology, 153(2):70-76, March 2006.
    • (2006) IEE Proceedings - Systems Biology , vol.153 , Issue.2 , pp. 70-76
    • Zhou, X.1    Wang, X.2    Dougherty, E. R.3
  • 8
    • 0001868572 scopus 로고    scopus 로고
    • Text categorization based on regularised linear classification methods
    • April
    • T. Zhang and F. J. Oles. Text categorization based on regularised linear classification methods. Information Retrieval, 4(1):5-31, April 2001.
    • (2001) Information Retrieval , vol.4 , Issue.1 , pp. 5-31
    • Zhang, T.1    Oles, F. J.2
  • 9
    • 32144452542 scopus 로고    scopus 로고
    • Sequence features of DNA binding sites reveal structural class of associated transcription factor
    • L. Narlikar and A. J. Hartemink. Sequence features of DNA binding sites reveal structural class of associated transcription factor. Bioinformatics, 22(2):157-163, 2006.
    • (2006) Bioinformatics , vol.22 , Issue.2 , pp. 157-163
    • Narlikar, L.1    Hartemink, A. J.2
  • 10
    • 33751560009 scopus 로고
    • Regularisation in the selection of radial basis function centres
    • M. J. L. Orr. Regularisation in the selection of radial basis function centres. Neural Computation, 7(3):606-623, 1995.
    • (1995) Neural Computation , vol.7 , Issue.3 , pp. 606-623
    • Orr, M. J. L.1
  • 11
    • 0004123838 scopus 로고    scopus 로고
    • Least absolute shrinkage is equivalent to quadratic penalisation
    • L. Niklasson, M. Bodén, and T. Ziemske, editors, pages Skövde, Sweeden, September 2-4 Springer
    • Y. Grandvalet. Least absolute shrinkage is equivalent to quadratic penalisation. In L. Niklasson, M. Bodén, and T. Ziemske, editors, Proceedings of the International Conference on Artificial Neural Networks, Perspectives in Neural Computing, pages 201-206, Skövde, Sweeden, September 2-4 1998. Springer.
    • (1998) Proceedings of the International Conference on Artificial Neural Networks, Perspectives in Neural Computing , pp. 201-206
    • Grandvalet, Y.1
  • 12
    • 0041879258 scopus 로고    scopus 로고
    • Outcomes of the quivalence of adaptive ridge with least absolute shrinkage
    • MIT Press
    • Y. Grandvalet and S. Canu. Outcomes of the quivalence of adaptive ridge with least absolute shrinkage. In Advances in Neural Information Processing Systems, volume 11. MIT Press, 1999.
    • (1999) Advances in Neural Information Processing Systems , vol.11
    • Grandvalet, Y.1    Canu, S.2
  • 13
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the Relevance Vector Machine
    • M. E. Tipping. Sparse Bayesian learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1:211-244, 2001.
    • (2001) Journal of Machine Learning Research , vol.1 , pp. 211-244
    • Tipping, M. E.1
  • 17
    • 0000673452 scopus 로고
    • Bayesian regularization and pruning using a Laplace prior
    • P. M. Williams. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 7(1):117-143, 1995.
    • (1995) Neural Computation , vol.7 , Issue.1 , pp. 117-143
    • Williams, P. M.1
  • 19
    • 0000583248 scopus 로고
    • Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
    • F. Fogelman Soulié and J. Hérault, editors, pages Springer-Verlag, New York
    • J. S. Bridle. Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In F. Fogelman Soulié and J. Hérault, editors, Neurocomputing: Algorithms, architectures and applications, pages 227-236. Springer-Verlag, New York, 1990.
    • (1990) Neurocomputing: Algorithms, architectures and applications , pp. 227-236
    • Bridle, J. S.1
  • 21
    • 0001942829 scopus 로고
    • Neural networks and the bias/variance dilema
    • S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilema. Neural Computation, 4(1):1-58, 1992.
    • (1992) Neural Computation , vol.4 , Issue.1 , pp. 1-58
    • Geman, S.1    Bienenstock, E.2    Doursat, R.3
  • 22
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation, 4(5):720-736, 1992.
    • (1992) Neural Computation , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D. J. C.1
  • 25
    • 0345327592 scopus 로고    scopus 로고
    • A simple and efficient algorithm for gene selection using sparse logistic regression
    • S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19(17):2246-2253, 2003.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2246-2253
    • Shevade, S. K.1    Keerthi, S. S.2
  • 26
    • 33751240089 scopus 로고    scopus 로고
    • Bayesian multinomial logistic regression for author identification
    • D. Madigan, A. Genkin, D. D. Lewis, and D. Fradkin. Bayesian multinomial logistic regression for author identification. In AIP Conference Proceedings, volume 803, pages 509-516, 2005.
    • (2005) AIP Conference Proceedings , vol.803 , pp. 509-516
    • Madigan, D.1    Genkin, A.2    Lewis, D. D.3    Fradkin, D.4
  • 32
    • 33750012146 scopus 로고    scopus 로고
    • Gene selection in cancer classification using sparse logistic regression with Bayesian regularisation
    • October
    • G. C. Cawley and N. L. C. Talbot. Gene selection in cancer classification using sparse logistic regression with Bayesian regularisation. Bioinformatics, 22(19):2348-2355, October 2006.
    • (2006) Bioinformatics , vol.22 , Issue.19 , pp. 2348-2355
    • Cawley, G. C.1    Talbot, N. L. C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.