-
3
-
-
0014710323
-
On optimum recognition error and reject tradeoff
-
January
-
C. K. Chow. On optimum recognition error and reject tradeoff. IEEE Transactions on Information Theory, 16(1):41-46, January 1970.
-
(1970)
IEEE Transactions on Information Theory
, vol.16
, Issue.1
, pp. 41-46
-
-
Chow, C. K.1
-
4
-
-
0036134369
-
Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure
-
M. Saerens, P. Latinne, and C. Decaestecker. Adjusting the outputs of a classifier to new a priori probabilities: A simple procedure. Neural Computation, 14(1):21-41, 2001.
-
(2001)
Neural Computation
, vol.14
, Issue.1
, pp. 21-41
-
-
Saerens, M.1
Latinne, P.2
Decaestecker, C.3
-
5
-
-
0003757758
-
Statistical decision theory and Bayesian analysis
-
Springer, second edition
-
J. O. Berger. Statistical decision theory and Bayesian analysis. Springer Series in Statistics. Springer, second edition, 1985.
-
(1985)
Springer Series in Statistics
-
-
Berger, J. O.1
-
6
-
-
15944363312
-
Classification of gene microarrays by penalized logistic regression
-
J. Zhu and T. Hastie. Classification of gene microarrays by penalized logistic regression. Biostatistics, 5(3):427-443, 2004.
-
(2004)
Biostatistics
, vol.5
, Issue.3
, pp. 427-443
-
-
Zhu, J.1
Hastie, T.2
-
7
-
-
33645057908
-
Multi-class cancer classification using multinomial probit regression with Bayesian gene selection
-
March
-
X. Zhou, X. Wang, and E. R. Dougherty. Multi-class cancer classification using multinomial probit regression with Bayesian gene selection. IEE Proceedings - Systems Biology, 153(2):70-76, March 2006.
-
(2006)
IEE Proceedings - Systems Biology
, vol.153
, Issue.2
, pp. 70-76
-
-
Zhou, X.1
Wang, X.2
Dougherty, E. R.3
-
8
-
-
0001868572
-
Text categorization based on regularised linear classification methods
-
April
-
T. Zhang and F. J. Oles. Text categorization based on regularised linear classification methods. Information Retrieval, 4(1):5-31, April 2001.
-
(2001)
Information Retrieval
, vol.4
, Issue.1
, pp. 5-31
-
-
Zhang, T.1
Oles, F. J.2
-
9
-
-
32144452542
-
Sequence features of DNA binding sites reveal structural class of associated transcription factor
-
L. Narlikar and A. J. Hartemink. Sequence features of DNA binding sites reveal structural class of associated transcription factor. Bioinformatics, 22(2):157-163, 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.2
, pp. 157-163
-
-
Narlikar, L.1
Hartemink, A. J.2
-
10
-
-
33751560009
-
Regularisation in the selection of radial basis function centres
-
M. J. L. Orr. Regularisation in the selection of radial basis function centres. Neural Computation, 7(3):606-623, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.3
, pp. 606-623
-
-
Orr, M. J. L.1
-
11
-
-
0004123838
-
Least absolute shrinkage is equivalent to quadratic penalisation
-
L. Niklasson, M. Bodén, and T. Ziemske, editors, pages Skövde, Sweeden, September 2-4 Springer
-
Y. Grandvalet. Least absolute shrinkage is equivalent to quadratic penalisation. In L. Niklasson, M. Bodén, and T. Ziemske, editors, Proceedings of the International Conference on Artificial Neural Networks, Perspectives in Neural Computing, pages 201-206, Skövde, Sweeden, September 2-4 1998. Springer.
-
(1998)
Proceedings of the International Conference on Artificial Neural Networks, Perspectives in Neural Computing
, pp. 201-206
-
-
Grandvalet, Y.1
-
12
-
-
0041879258
-
Outcomes of the quivalence of adaptive ridge with least absolute shrinkage
-
MIT Press
-
Y. Grandvalet and S. Canu. Outcomes of the quivalence of adaptive ridge with least absolute shrinkage. In Advances in Neural Information Processing Systems, volume 11. MIT Press, 1999.
-
(1999)
Advances in Neural Information Processing Systems
, vol.11
-
-
Grandvalet, Y.1
Canu, S.2
-
13
-
-
0001224048
-
Sparse Bayesian learning and the Relevance Vector Machine
-
M. E. Tipping. Sparse Bayesian learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1:211-244, 2001.
-
(2001)
Journal of Machine Learning Research
, vol.1
, pp. 211-244
-
-
Tipping, M. E.1
-
14
-
-
14344264768
-
Fast marginal likelihood maximisation for sparse Bayesian models
-
C. M. Bishop and B. J. Frey, editors, Key West, FL, USA, 3-6 January
-
A. C. Faul and M. E. Tipping. Fast marginal likelihood maximisation for sparse Bayesian models. In C. M. Bishop and B. J. Frey, editors, Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Key West, FL, USA, 3-6 January 2003.
-
(2003)
Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics
-
-
Faul, A. C.1
Tipping, M. E.2
-
16
-
-
3242708140
-
Least angle regression
-
B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals of Statistics, 32(2):407-499, 2004.
-
(2004)
Annals of Statistics
, vol.32
, Issue.2
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
17
-
-
0000673452
-
Bayesian regularization and pruning using a Laplace prior
-
P. M. Williams. Bayesian regularization and pruning using a Laplace prior. Neural Computation, 7(1):117-143, 1995.
-
(1995)
Neural Computation
, vol.7
, Issue.1
, pp. 117-143
-
-
Williams, P. M.1
-
19
-
-
0000583248
-
Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition
-
F. Fogelman Soulié and J. Hérault, editors, pages Springer-Verlag, New York
-
J. S. Bridle. Probabilistic interpretation of feedforward classification network outputs, with relationships to statistical pattern recognition. In F. Fogelman Soulié and J. Hérault, editors, Neurocomputing: Algorithms, architectures and applications, pages 227-236. Springer-Verlag, New York, 1990.
-
(1990)
Neurocomputing: Algorithms, architectures and applications
, pp. 227-236
-
-
Bridle, J. S.1
-
21
-
-
0001942829
-
Neural networks and the bias/variance dilema
-
S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilema. Neural Computation, 4(1):1-58, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.1
, pp. 1-58
-
-
Geman, S.1
Bienenstock, E.2
Doursat, R.3
-
22
-
-
0000234257
-
The evidence framework applied to classification networks
-
D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation, 4(5):720-736, 1992.
-
(1992)
Neural Computation
, vol.4
, Issue.5
, pp. 720-736
-
-
MacKay, D. J. C.1
-
25
-
-
0345327592
-
A simple and efficient algorithm for gene selection using sparse logistic regression
-
S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection using sparse logistic regression. Bioinformatics, 19(17):2246-2253, 2003.
-
(2003)
Bioinformatics
, vol.19
, Issue.17
, pp. 2246-2253
-
-
Shevade, S. K.1
Keerthi, S. S.2
-
26
-
-
33751240089
-
Bayesian multinomial logistic regression for author identification
-
D. Madigan, A. Genkin, D. D. Lewis, and D. Fradkin. Bayesian multinomial logistic regression for author identification. In AIP Conference Proceedings, volume 803, pages 509-516, 2005.
-
(2005)
AIP Conference Proceedings
, vol.803
, pp. 509-516
-
-
Madigan, D.1
Genkin, A.2
Lewis, D. D.3
Fradkin, D.4
-
30
-
-
21244437589
-
Sprse multinomial logistic regression: Fast algorithms and generalisation bounds
-
June
-
B. Krishnapuram, L. Carin, M. A. T. Figueiredo, and A. J. Hartemink. Sprse multinomial logistic regression: Fast algorithms and generalisation bounds. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(6):957-968, June 2005.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.27
, Issue.6
, pp. 957-968
-
-
Krishnapuram, B.1
Carin, L.2
Figueiredo, M. A. T.3
Hartemink, A. J.4
-
31
-
-
51449104742
-
Adaptive total variation image deconvolution: A majorization-minimization approach
-
Florence, Italy, September
-
J. M. Bioucas-Dias, M. A. T. Figueiredo, and J. P. Oliveira. Adaptive total variation image deconvolution: A majorization-minimization approach. In Proceedings of the European Signal Processing Conference (EUSIPCO'2006), Florence, Italy, September 2006.
-
(2006)
Proceedings of the European Signal Processing Conference (EUSIPCO'2006)
-
-
Bioucas-Dias, J. M.1
Figueiredo, M. A. T.2
Oliveira, J. P.3
-
32
-
-
33750012146
-
Gene selection in cancer classification using sparse logistic regression with Bayesian regularisation
-
October
-
G. C. Cawley and N. L. C. Talbot. Gene selection in cancer classification using sparse logistic regression with Bayesian regularisation. Bioinformatics, 22(19):2348-2355, October 2006.
-
(2006)
Bioinformatics
, vol.22
, Issue.19
, pp. 2348-2355
-
-
Cawley, G. C.1
Talbot, N. L. C.2
|