-
1
-
-
84970028091
-
Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis
-
Litjens, G., Sanchez, C.I., Timofeeva, N., Hermsen, M., Nagtegaal, I., Kovacs, I., Hulsbergen-Van De Kaa, C., Bult, P., Van Ginneken, B., Van Der Laak, J.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Scientific reports 6 (2016)
-
(2016)
Scientific Reports
, vol.6
-
-
Litjens, G.1
Sanchez, C.I.2
Timofeeva, N.3
Hermsen, M.4
Nagtegaal, I.5
Kovacs, I.6
-
2
-
-
78651399309
-
An automated segmentation approach for highlighting the histological complexity of human lung cancer
-
Sieren, J.C., Weydert, J., Bell, A., De Young, B., Smith, A.R., Thiesse, J., Namati, E., McLennan, G.: An automated segmentation approach for highlighting the histological complexity of human lung cancer. Ann. Biomed. Eng. 38(12), 3581–3591 (2010)
-
(2010)
Ann. Biomed. Eng
, vol.38
, Issue.12
, pp. 3581-3591
-
-
Sieren, J.C.1
Weydert, J.2
Bell, A.3
De Young, B.4
Smith, A.R.5
Thiesse, J.6
Namati, E.7
McLennan, G.8
-
3
-
-
84874581572
-
RanPEC: Random projections with ensemble clustering for segmentation of tumor areas in breast histology images
-
Khan, A.M., El-Daly, H., Rajpoot, N.: RanPEC: random projections with ensemble clustering for segmentation of tumor areas in breast histology images. In: Medical Image Understanding and Analysis, pp. 17–23 (2012)
-
(2012)
Medical Image Understanding and Analysis
, pp. 17-23
-
-
Khan, A.M.1
El-Daly, H.2
Rajpoot, N.3
-
4
-
-
84899697490
-
HyMaP: A hybrid magnitude-phase approach to unsupervised segmentation of tumor areas in breast cancer histology images
-
Khan, A.M., El-Daly, H., Simmons, E., Rajpoot, N.M.: HyMaP: a hybrid magnitude-phase approach to unsupervised segmentation of tumor areas in breast cancer histology images. J. Pathol. Inform. 4(2), 1 (2013)
-
(2013)
J. Pathol. Inform.
, vol.4
, Issue.2
, pp. 1
-
-
Khan, A.M.1
El-Daly, H.2
Simmons, E.3
Rajpoot, N.M.4
-
5
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
6
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., Ma, S., Huang, Z., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)
-
(2015)
Int. J. Comput. Vis.
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Hao, S.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
-
7
-
-
84994310706
-
Gland segmentation in colon histology images: The glas challenge contest
-
Sirinukunwattana, K., Pluim, J.P.W., Chen, H., Qi, X., Heng, P.-A., Guo, Y.B., Wang, L.Y., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017)
-
(2017)
Med. Image Anal.
, vol.35
, pp. 489-502
-
-
Sirinukunwattana, K.1
Pluim, J.P.W.2
Chen, H.3
Qi, X.4
Heng, P.-A.5
Guo, Y.B.6
Wang, L.Y.7
-
8
-
-
85022204891
-
-
Accessed 10 Mar 2017
-
Camelyon 2016. https://camelyon16.grand-challenge.org/. Accessed 10 Mar 2017
-
(2016)
-
-
-
9
-
-
84985036661
-
Persistent homology for fast tumor segmentation in whole slide histology images
-
Qaiser, T., Sirinukunwattana, K., Nakane, K., Tsang, Y.-W., Epstein, D., Rajpoot, N.: Persistent homology for fast tumor segmentation in whole slide histology images. Procedia Comput. Sci. 90, 119–124 (2016)
-
(2016)
Procedia Comput. Sci.
, vol.90
, pp. 119-124
-
-
Qaiser, T.1
Sirinukunwattana, K.2
Nakane, K.3
Tsang, Y.-W.4
Epstein, D.5
Rajpoot, N.6
-
10
-
-
70049091784
-
Topology and data
-
Carlsson, G.: Topology and data. Bull. Am. Math. Soc. 46(2), 255–308 (2009)
-
(2009)
Bull. Am. Math. Soc.
, vol.46
, Issue.2
, pp. 255-308
-
-
Carlsson, G.1
-
12
-
-
84880134149
-
Betti numbers in multidimensional persistent homology are stable functions
-
Cerri, A., Fabio, B.D., Ferri, M., Frosini, P., Landi, C.: Betti numbers in multidimensional persistent homology are stable functions. Math. Methods Appl. Sci. 36(12), 1543–1557 (2013)
-
(2013)
Math. Methods Appl. Sci
, vol.36
, Issue.12
, pp. 1543-1557
-
-
Cerri, A.1
Fabio, B.D.2
Ferri, M.3
Frosini, P.4
Landi, C.5
-
13
-
-
84901269374
-
A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution
-
Khan, A.M., Rajpoot, N., Treanor, D., Magee, D.: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61(6), 1729–1738 (2014)
-
(2014)
IEEE Trans. Biomed. Eng.
, vol.61
, Issue.6
, pp. 1729-1738
-
-
Khan, A.M.1
Rajpoot, N.2
Treanor, D.3
Magee, D.4
-
14
-
-
49249119306
-
Edge-preserving decompo-sitions for multi-scale tone and detail manipulation
-
ACM
-
Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompo-sitions for multi-scale tone and detail manipulation. In: ACM Transactions on Graphics (TOG), vol. 27, no. 3, p. 67. ACM (2008)
-
(2008)
ACM Transactions on Graphics (TOG)
, vol.27
, Issue.3
, pp. 67
-
-
Farbman, Z.1
Fattal, R.2
Lischinski, D.3
Szeliski, R.4
-
15
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)
-
(2012)
Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
16
-
-
85029355144
-
Fast and accurate deep network learning by exponential linear units (Elus
-
Clevert, D.-A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)
-
(2015)
Arxiv Preprint Arxiv
, vol.1511
-
-
Clevert, D.-A.1
Unterthiner, T.2
Hochreiter, S.3
-
17
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
-
(2014)
J. Mach. Learn. Res
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.E.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
20
-
-
84971577321
-
-
arXiv preprint arXiv:1603.04467
-
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., et al.: Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)
-
(2016)
Tensorflow: Large-Scale Machine Learning on Heterogeneous Distributed Systems
-
-
Abadi, M.1
Agarwal, A.2
Barham, P.3
Brevdo, E.4
Chen, Z.5
Citro, C.6
Corrado, G.S.7
|